
Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

Recibido: 21/06/2016
Aceptado: 13/09/2016

Keywords
Agile Software
Development, Java
Programming,
learning Software
Engineering, Scrum
Approach, XP
Approach.

Palabras clave
Aprendizaje de
la ingeniería del
software, desarrollo
ágil de software,
programación
extrema,
programación en
Java, SCRUM.

A Practical Approach to the Agile Development
of Mobile Apps in the Classroom

Ramón Ventura Roque Hernández,
 Juan Antonio Herrera Izaguirre,

Adán López Mendoza,
Juan Manuel Salinas Escandón

Universidad Autónoma de Tamaulipas, México

Abstract
This article presents a study where two groups of university stu-
dents learned the principles of the agile development of mobile
applications. The participating university students built their own
version of an application in Java for Android following the principles
of two agile methodologies: SCRUM and Extreme Programming (XP).
Each team of students was assigned either a SCRUM or XP methodol-
ogy for the development of their application in two iterations. In
the second iteration the requirements were intentionally modified to
provoke changes in the software being developed by each team. Af-
ter the completion of the development process, a questionnaire was
applied, and interviews with participants were conducted. The pur-
pose of the questionnaire and the interviews was to gain insight into
the participating students’ perceptions about teamwork, the method-
ologies used, their personal motivation, and their attitude towards
changing requirements. A Mann-Whitney test was performed on the
acquired data. The results show that the team that implemented
the XP methodology accepted the changing requirements more
than the SCRUM team. Moreover, higher levels of participation and
cooperation were observed among participants who used the XP
methodology than among those who used SCRUM.

Un acercamiento práctico al desarrollo ágil de
aplicaciones móviles en el aula

Resumen
Este artículo presenta un estudio en el que dos grupos de estudian-
tes universitarios aprendieron los principios de la agilidad en el de-
sarrollo de aplicaciones móviles y construyeron su propia versión de
una aplicación en Java para Android siguiendo los principios de dos
metodologías ágiles: SCRUM y Programación Extrema (XP). A cada
equipo se le asignó una metodología: SCRUM o XP para el desarro-
llo de su aplicación en dos iteraciones, En la segunda iteración, los
requerimientos fueron modificados intencionalmente para provocar
cambios en el software que cada equipo creaba. Después de ter-
minar el proceso de desarrollo, se administró un cuestionario y se
condujeron entrevistas con el propósito de investigar la percepción

Revista_Innovacion_73.indd 97 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]98

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

de los estudiantes acerca de: el trabajo de equipo, las metodolo-
gías utilizadas, su motivación personal, y su actitud acerca de los
requerimientos cambiantes. Se realizó la prueba de Mann-Whitney
con los datos obtenidos. Los resultados muestran que el equipo que
implementó la metodología XP aceptó mejor los requerimientos cam-
biantes que el equipo que usó SCRUM. Además, también se observó
mayor participación y cooperación entre los participantes de la me-
todología XP que entre los que usaron SCRUM.

Introduction

Special activities related to agile software development should
be promoted in universities with computer science programs
to prepare students for situations they may encounter when

creating new applications in the real business world. It should be
kept in mind that fast and good quality software development is
crucial in business applications, and students should be proficient
enough to face this challenge successfully. Agile practices seem to
be appropriate to software development performed in universities
as part of their academic programs or as part of special projects
for developing software for external companies. It is well known
that in programming courses, students must develop a program
for a specific problem, and in software engineering courses, the
phases of software systems development are explained (Arman &
Daghameen, 2007). That means that in programming courses, syn-
tax, structures, and algorithms should be more priority than meth-
odological aspects, without disregarding good practices. Moreover,
good quality working software that is delivered quickly is a must in
special university projects for companies. In these scenarios, agile
practices help by focusing on rapid programming of functioning
software that meets the specified requirements (Pressman, 2013).

There are many agile approaches; for example: Scrum, Ex-
treme Programming, and Kanban (Singh, Mishra, Singh, & Upad-
hyay, 2015). Most of them have been extensively studied in real
industry environments but not from university educational per-
spectives (Fuertes & Sepúlveda, 2016). Accordingly, we believe
that agile software development is a broad concept that needs
to be delimited and oriented according to specific educational
requirements to positively influence the teaching of software de-
velopment. An agile approach in university courses should fos-
ter rapid software development, promote application quality, and
make changing requirements easy to manage. Additionally, an
agile approach should also stimulate communication, work or-
ganization, active team participation, good relationships among
students, and motivation for present and future learning.

This article presents a study aimed at comparing two popular
software development approaches through a typical real-life busi-

Revista_Innovacion_73.indd 98 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 99

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

ness simulation conducted inside a university lab. Two groups of
students worked separately in building a mobile application within
a tight deadline. The development was experimental and focused
on programming software for the Android platform (Gironés, 2014)
using Java (Friesen, 2014), following the agile methodologies SCRUM
(Sims & Johnson, 2012) and Extreme Programming (XP) (Beck & An-
dres, 2005; Letelier & Penadés, 2006). The students committed them-
selves to deliver a functioning mobile app in twenty hours, even
when they hadn’t developed any application using agile approaches
before. Students had previously developed software but with differ-
ent tools and methodologies to those used in this study. The results
from the students’ perspectives showed that the SCRUM team had a
greater preference for permanent requirements. They felt that much
of the work had to be redone when dealing with changing require-
ments. On the other hand, XP seemed to promote the participation
of the developers more than the SCRUM approach. These prelimi-
nary results provide some guidelines for further research in compar-
ing methodologies and deciding which of them is more suitable for
teaching programming courses under specific circumstances.

The paper is outlined as follows: first the background of the
main topics that converge in this case study is presented; then the
methodology used in this research is explained; later, the results
are presented, and finally the conclusions are derived.

Related Work

Context
Agility allows the rapid construction of computer programs by
adopting iterative and incremental models where analysis, design
and construction activities are interspersed (Pressman, 2014).
There are several methodologies with these features, all of which
are based on a set of principles gathered in the agile manifest
(Kendall & Kendall, 2013). Literature extensively discusses the
philosophy, principles and practices of agile methodologies (Ken-
dall & Kendall, 2013; Pressman, 2013; Beck & Andres, 2005). In
this field, empirical research has focused more on industrial set-
tings than on educational scenarios (Fuertes & Sepúlveda, 2016).
Also, it must considered that the software engineering literature
recognizes that not all facts found in literature are based on
empirical evidence; for example, there are many procedures or
techniques purported to be better than others based on opinions
instead of real objective data (Juristo & M., 2001). On the other
hand, software engineering is a practical area, where the teach-
ing and learning process should not rely on the single automatic
repetition of concepts or theoretical case studies, but should also
involve activities that present scenarios to students to generate
their own knowledge from new experiences.

Revista_Innovacion_73.indd 99 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]100

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

Earlier studies
Agile development has been a topic of interest in several studies
conducted in business and industrial scenarios during the last
five years. For instance, Yetunde & Kolade (2015) studied col-
laboration and strategies used to integrate usability activities into
a big scale agile project ; they found that some tactics like nego-
tiating inclusion and establishing credibility were useful in suc-
ceeding in this process. On the other hand, Serrador & Pinto
(2015) studied efficiency and user satisfaction in several indus-
trial projects , and a positive effect of agile software method-
ologies was observed. Papatheocharus & Andreou (2014) used a
questionnaire to study communication, management and quality
assurance, aspects of agile teams. The results showed that agil-
ity improved the development process. McHugh, Conboy, & Lang
(2012) analyzed several case studies in which the importance of
human aspects in software development was highlighted. Their
study observed that agile practices increased trust among pro-
grammers. In a previous work by McHugh, Conboy, & Lang
(2011), a study involving three agile practices was conducted, and
it was found that motivation was recognized to be highly impor-
tant for the project and its leaders. In that research, it was also
stressed that motivation is not addressed as much as other topics
in the context of agile practices.

Agile software practices in the teaching field have also caught
the attention of some researchers. For example, Salleh, Mendes,
& Grundy (2014) studied the personality of students in pair pro-
gramming practices; they found that openness was a significant
factor to differentiate academic performance in students and that
Pair Programming caused increased satisfaction, confidence and
motivation in the class. Additionally, von Wangenheim, Savi, &
Ferreti Borgatto (2013) and Rodriguez, Soria, & Ocampo (2015),
studied the educational resources needed to teach SCRUM; they
presented inexpensive games to reinforce the application of
SCRUM. They reported that their approaches engaged students
in the SCRUM activities inside the classroom; good motivation
and good user experiences were described as well. Additional-
ly, Devedzic & Milenkovic (2011) analyzed the experiences and
problems encountered when teaching agile software develop-
ment with SCRUM and XP in different scenarios and cultures; they
learned that iterations should be short, that pairing up students
helps them increase their motivation levels, that practices are
useful to increase commitment among students, and that teams
should be small and self-organized. Schroeder, Klarl, Mayer, &
Kroiss (2012) studied the importance of lab practices when teach-
ing agile approaches; they discovered that SCRUM was suitable
to introduce students to software processes and that it motivat-
ed students by posing fun challenges to them. Kropp & Meier
(2013), Kofune & Koita (2014), Soria, Campo, & Rodríguez (2012),

Revista_Innovacion_73.indd 100 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 101

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

J. Faria, Yamanaka, & Tavares, (2012) presented their experiences
in the teaching of agility and offered models to successfully ad-
dress these types of courses. For example, Kofuna & Koita (2014)
derived an approach to teach programming based on agile prac-
tices; they promoted critical thinking and communication among
students using the trial and error practice. It was found that stu-
dents were very motivated to learn. Moreover, in the work of En-
ríquez & Gómez (2015), a model for improving agile software
development training in small companies is described; the model
is based on SCRUM and consists on meetings, tasks, practices and
steps. In the work of Kropp & Meier (2014), the pyramid of agile
competencies that represents the different levels of competence
needed for agility is derived; three levels are identified: Agile val-
ues, Management practices, and Engineering practices. They rec-
ommend practical approaches to acquire these competencies in
the classroom.

The many reasons to teach agile software development in uni-
versities are discussed by Hazzan & Dubinsky, (2007). The most
relevant are: Agility comes from and is used in the industry, it
educates for teamwork, deals with human aspects, encourages di-
versity and supports the learning process. Nowadays, companies
increasingly implement agile practices and experience the lack
of skilled personnel (Kropp & Meier, 2013). Universities haven’t
been able to produce the appropriately skilled professionals
(Kropp & Meier, 2014), and a gap exists between what is taught
in the classroom and what is required by industry (Rodriguez, So-
ria, & Ocampo, 2015). This is why courses should be re-designed
in order to teach students according to the demands of the soft-
ware industry (Soria, Campo, & Rodríguez, 2012). In this process,
the human side of software development should be taken seri-
ously by academia because it is a field in which students have
to make progress to benefit their transition to job market; this
includes the organization of a development process, work coor-
dination, and dealing with people with different skills, points of
view, and motivations (Schroeder, Klarl, Mayer, & Kroiss, 2012).
In the private sector, agility has surpassed the software develop-
ment activities and is identified as a valuable tool for other fields
such as management. Nevertheless, the lack of training is still a
limitation that leads to misunderstands and undermines the ben-
efits of agile work (Rigby, Sutherland, & Takeuchi, 2016).

Theory

Extreme Programming
Extreme Programming (XP or eXtreme Programming) is one of
the most widely used agile methodologies (Rizwan, & Qureshi,
2011). It is an efficient, low risk, flexible, predictable, scientific,

Revista_Innovacion_73.indd 101 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]102

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

and fun method for developing software (Beck & Andres, 2005).
For example, XP encourages quick iterations for product delivery
consisting of one to two weeks. XP requires the client and the
team working together in the same place where the development
takes place, and that the programming take place in groups of
two people sharing the same computer (pair programming). XP
also states that the size of the releases should be small but with
a complete sense of value; in addition, it recommends the design
of the system to be as simple as possible, the tests written before
programming, and developers not to work overtime or take work
home with them, and to participate in a symbolic ceremony at
the end of each iteration.

Instead of creating long documents with functional require-
ments, an XP project starts making end users create software
“user stories” that describe what new applications need to do.
The requirements’ test is done before coding and automated code
testing is performed throughout the project. “Refactoring”, fre-
quent-design simplification, and improvement of the code, is also
a basic tenet (Copeland, 2001). Devotees say the XP methodology
helps generate code faster and with fewer errors.

SCRUM

SCRUM (Pressman, 2014) is an agile methodology that encom-
passes a series of iterative practices for developers to work as a
team, contributing their individual skills to develop quality soft-
ware. In SCRUM, software is incrementally developed, generating
different versions, and at the end of each iteration, a functional
end product is delivered. The customer can make changes or
continue with development as was originally planned. The Sprint
is the fundamental cycle or iteration of the SCRUM process. It is
considered that two to four weeks is the most common amount
of time for a Sprint.

In SCRUM there are meetings where the feedback process and
the collection and clarification of requirements take place. These
meetings are the daily Scrum, the sprint planning meeting, the
review meeting and the sprint retrospective. The daily Scrum con-
sists of a meeting at the beginning of each work session where
each participant discloses what has been completed, what they
expect to complete and any impediments found. The Sprint plan-
ning meeting is held at the beginning of iterations and consists of
two parts: in the first part, the team commits to a set of goals; in
the second, the team identifies specific tasks. The Sprint review
meeting is where the team presents the completed requirements
and the ones yet to be completed. The Sprint retrospective is a
meeting that takes place at the end of each Sprint, where the
team focuses on the lessons learned during the work accom-
plished in that iteration.

Revista_Innovacion_73.indd 102 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 103

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

Pair Programming and Mob Programming
Pair Programming is one of the core practices of XP method-
ology. In Pair Programming, two people use a single computer
to write and test computer programs. Since only one keyboard
is available, the programmers change roles often. Globalization
has introduced some new ways to do Pair Programming through
technological platforms (da Silva Estácio & Prikladnicki, 2015);
for example, when a team is scattered across different countries,
they can use specialized software to implement the pair pro-
gramming practice remotely. Another phenomenon studied with
regards to Pair Programming is the knowledge transfer between
programmers, and at least six different types of transference
have been identified (Plonka, Sharp, van der Linden, & Dittrich,
2015). In research, Pair Programming in the academic field has
not been addressed as much as in the industry (Prabu & Duraisa-
mi, 2015), and there is still a lack of consensus about its best use
and its benefits (Coman, Robillard, Silliti, & Succi, 2014).

Mob Programming (Zuill, 2014) is a concept that recently
emerged from practice as an evolution of pair programming. It
consists of a whole team working on the same project, at the
same time/space allocation, and using a single computer for cod-
ing. A projector or big screen is needed to amplify the image
coming from the computer where the coding is performed. Some
practices that have been reported in the implementation of Mob
programming are: 1) treating each other with respect, 2) the driv-
er and navigators roles when programming–the driver types the
code, the navigators discuss and guide the driver, 3) frequent ro-
tation of drivers, 4) communication is made as a team, and 5) in-
volves periodical reflection on how to improve as a team.

The implementation of agile methodologies in the development of
mobile applications
While software development in general can be more efficient with
agile methodologies, software development for mobile devices, spe-
cifically, is an area that should be obligated to consider using agil-
ity because of the possible direct benefits from its implementation.
For example, in the literature there are studies that suggest that
the development of mobile applications should not be accomplished
with a traditional methodology based on documentation or time-
consuming processes, but should pursue the rapid attainment of a
functional product considering the features of mobile applications.

 (Blanco, Camarero, Fumero, Werterski, & Rodríguez, 2009;
Abrahamsson, Ihme, Kolehmainen, Kyllönen, & Salo, 2005; Gasca
Mantilla, Cmargo Ariza, & Medina Delgado, 2014; Ávila Domenech
& Meneses Abad, 2013) Although agile software development
emerged long before the mobile software development with its
actual platforms, its principles can be implemented easily in the
development of this particular type of software.

Revista_Innovacion_73.indd 103 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]104

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

Methodology

A scenario was established in which several students would joint-
ly build a fully functional, ready for delivery mobile application
using an agile methodology that was assigned to them. None of
the participants had any knowledge of the agile methodologies,
and their experience with the tools used was scarce or nonexis-
tent. Students had twenty effective hours to learn and develop
the required application. The research questions that guided this
process were: Can agile methodologies (XP, Scrum) really gen-
erate good quality working mobile applications in a short time
with teams of university students? Is it possible that the members
of these teams learn the basics of agile development methodolo-
gies and mobile software while producing functioning software
in a short time? What is their perception of work relationship,
methodology used, and motivation during this development pro-
cess? How do they perceive the changing nature of the require-
ments, which represents a basic principle of agility? What are the
differences between XP and Scrum in the software development
that is conducted inside the classroom?

Sample
Work was performed separately with two groups of students.
Each developed its own version of the same Android application
using Java with Eclipse (Eclipse, 2015; Vogel, 2013). One team
with seven students followed the agile methodology called Ex-
treme Programming, and the other, with eight participants used
SCRUM. They were university students from two different under-
graduate programs related to computer systems that offer pro-
gramming courses as part of their curricula.

The invitation to take part in a course outside the regular class
schedule was extended to programming students who: 1) were
close to graduating from undergraduate studies in computer sci-
ence, 2) had a beginner or intermediate level of programming
experience, 3) were able to code using at least one language,
preferably Java or C, and 4) had enough knowledge about soft-
ware design to work on the project.

Once the students responded to the invitation, they answered a
questionnaire and a knowledge test of programming; it served for
the selection of participants. Both the questionnaire and knowl-
edge test gave an overview of the aptitudes and attitudes of the
participants. Selection criteria for this study included good theo-
retical knowledge, ability to propose a design, and basic to inter-
mediate coding skills. Both teams were randomly chosen from
the selected participants. Prior to selection, participants did not
know that this study was taking place. They were not given any
financial compensation, but they were offered a certificate of par-
ticipation, provided they had perfect attendance and punctuality.

Revista_Innovacion_73.indd 104 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 105

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

Instruments
In order to get an approximation to the answers of our research
questions, perceptions from participants and researchers were
studied. At the end of software development, a five point Lik-
ert scale-based questionnaire was answered by the students (see
Table 2), in which some statements were presented about team
dynamics, methodology used, learning and motivation, and the
personal perception of the development and changing require-
ments. The scale was numerically coded as follows: strongly dis-
agree (0), disagree (1), neutral position (2), agree (3), strongly
agree (4). Students were asked to provide responses about the
approach as a whole and not only about specific practices per-
formed during the development process.

Procedure
The process began with ten hours of training on Java for An-
droid and agile standards. Each team, separately, received spe-
cific training on the basics of the methodology they were to
use. The sessions were interactive and focused on this project’s
needs. After this training process, a second ten-hour period be-
gan during which the software was developed following the
methodology assigned to each team. Programmers took on their
specific roles. A member of the research team took on the role
of a client with the teams and remained with the developers at
their workplace.

The students listened to the client, who voiced the require-
ments as previously established by the research team (see Table 1).
The goal was the development of a mobile Android application
to help exercise mathematical reasoning. To get the final version
of the software, each team completed two iterations. In the first
iteration, the programmers were faced with a situation which had
the requirements of Table 1 with the following exceptions: only
two levels would be taken into account: beginner and advanced,
they were not asked to include a help function for using the pro-
gram and were asked that the program had a single screen to
interact with the user. In the second iteration, the requirements
were intentionally modified: now the app should show a different
menu screen; it should also include a help function to guide the
user, and it should have an intermediate level to generate arith-
metic problems.

Students had to get the user stories and estimate times, dis-
cuss with the client the stories that would be implemented in
each iteration, divide the stories into specific tasks, assign re-
sponsibilities and make adjustments, all the while adhering to the
principles of the assigned methodology. XP team worked in pairs
the entire time; they coded with a pair programming approach.
SCRUM team worked in a self-organized way using an approach in-
spired by Mob Programming.

Revista_Innovacion_73.indd 105 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]106

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

At the end of software development, the questionnaire pre-
sented in Table 2 was answered by the students. Subsequently,
these responses were entered and analyzed in SPSS (Field, 2013),
in which a nonparametric Mann-Whitney test (Kuanli, Pavur, &
Keeling, 2006) was performed for the difference between the re-
sponses of both teams. For this test, the following hypotheses
were proposed for the responses to the 18 questions:

H
0
: There is no significant difference between the perception

 of XP team and SCRUM team regarding the ith sentence.
H

a
: There is significant difference between the perception of

 XP team and SCRUM team regarding the ith sentence.

A confidence level of 95 % was used. If the PValue shown in Table
2 was less than .05, H

0
 was rejected and a significant difference

between the responses of both teams was assumed. Distributions
of the scores for both groups were not assumed to be similar;
therefore, mean ranks are presented in Table 2. A methodology
having higher mean ranks in a statement exhibits a team with
an attitude closer to the “strongly agree” value in regards to that
sentence.

Unstructured interviews were also conducted with both stu-
dents and researchers. Finally, the researcher who had adopted
the role of client evaluated the final version of the software. An-
other user who was completely oblivious to the project team per-

Table 1. Overview of App Requirements

1. It will have three levels of difficulty: beginner, intermediate and advanced.
2. The beginner level will generate numbers between 1 and 200
3. The intermediate level will generate numbers between 1 and 600
4. The advanced level will generate numbers between 1 and 1000
5. For each problem, users can select from one of three operations: addition, subtraction or

multiplication
6. With the selected operation, the application will generate two numbers (operands).
7. The application will tell the users if they answer correctly.
8. When answering correctly, the application will emit a distinctive sound of success and display a

suitable image.
9. If the user answers incorrectly, the application will tell the user that a mistake was made.
10. When the user makes a mistake, the application emits a distinctive error sound and display a

suitable image.
11. The application must validate empty inputs by the user.
12. The application should count and display the number of attempts.
13. The application must allow the user to generate a new problem at any time.
14. The application must allow the user the ability to surrender to the problem posed.
15. If the user gives up, the application should display the correct result of the current operation.
16. The application should allow the user to start a new game at any time. Note: Start a new game

means starting from scratch and resetting the current values of the correct answers and mistakes.
17. The application must give information about its programmers and date of development.
18. The application should have a help feature on how to use the program.

Source: Prepared by the authors, 2015.

Revista_Innovacion_73.indd 106 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 107

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

Table 2. Survey results.

Statement
XP Scrum MW Test

Mean
rank

Mean
rank PValue

Team dynamics

1. Problems were caused by the relationship between team
members

2. There was poor communication between project members
3. We had difficulty making decisions
4. We had trouble organizing

7.79

6.79
8.07
8.86

8.19

9.06
7.94
7.25

.843

.282

.951

.471

Methodology

5. The methodology favored the participation of all its members
6. The methodology certainly favors the rapid development of

mobile applications
7. The methodology contributed to achieving a good quality

program

9.93
6.86

8.14

6.31
9.00

7.88

.066

.118

.889

Learning and motivation

8. I learned new things in the development of this software
9. I’m motivated to keep learning more about this methodology
10. I will use this methodology in future projects
11. I was motivated at all time during the development

8.50
9.00
9.00
6.79

7.56
7.13
7.13
9.06

.350

.170

.171

.200

Changing requirements

12. When changing the requirements, I felt I had much work to redo.
13. I would have preferred that the requirements didn´t change
14. It is discouraging that the work has to be modified per a

customer´s request

5.64
5.71
7.14

10.06
10.00
8.75

.041

.042

.428

Quantitative evaluation

15. Team members motivation
16. Communication among members
17. Organization to work
18. Methodology’s general efficiency

8.50
8.50
8.00
8.50

7.56
7.56
8.00
7.56

.562

.625
1.0

.625

Source: Prepared by the authors, 2015.

formed a usability test to the final version of the teams’ software
and shared his views on the app.

Results

Quantitative results
The Mann Whitney test that was run to determine differences in
responses between XP and Scrum participants revealed a differ-
ence of opinion and feelings when it comes to having to revise
work by modifying the requirements.

Scores for question 12 (“When changing the requirements, I
felt I had much work to redo”) in Scrum team (mean rank=10.06)
were statistically significantly higher than in XP team (mean

Revista_Innovacion_73.indd 107 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]108

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

rank=5.64), U=11.50, z=-2.04, p=.041. Also, scores for question
13 (“I would have rather that the requirements didn’t change”)
in Scrum team (mean rank=10.00) were statistically significant-
ly higher than in XP team (mean rank=5.71), U=12.00, z=-2.03,
p=.042.

Some other important facts derived from survey results are:

a. The members of both teams unanimously agreed that
they learned new things in the project, and that they
were motivated to continue learning more about their ag-
ile methodology. They also agreed to continue using this
methodology in future projects and to having felt moti-
vated during the development process.

b. The minimum scores registered for communication, mo-
tivation, organization and overall efficiency of working
with the SCRUM methodology were lower than with the
XP methodology.

c. All XP team members disagreed with the raised statement
that changes in the requirements involve too much re-
work for them.

d. Although SCRUM team members manifested more an op-
position to the change in the requirements, both they
and the members of the XP group expressed not feeling
discouraged because users asked for changes in software
development.

e. SCRUM team did not accept having difficulty organizing.
f. Contrary to the XP team, SCRUM team members agreed

that the methodology contributed to developing a good
quality software.

Qualitative results
During interviews, XP team members reported having worked in
an agreeable atmosphere and being highly motivated to continue
learning about XP. The celebrations held by the team at the end of
iterations were very important, for it allowed them to relax and rec-
ognize their effort. The practice of not taking work home with them
seemed very convenient, attractive and contrasting to the work re-
quirements of many domestic software development companies to-
day. The coding practices were perceived by the team as convenient
and relevant to the app development. Pair programming made them
feel very confident throughout the process. Nevertheless, they per-
ceived that the different approaches to design and programming of
each participant could have been a problem meeting the deadlines.

On the other hand, SCRUM participants mentioned that new
aspects of software development were acquired by them in an
interactive way. They felt that the project was completed quickly
because of their joint participation that allowed them to do sev-
eral activities simultaneously. SCRUM team also reported the lack

Revista_Innovacion_73.indd 108 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 109

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

of patience of some members, and the different levels of partici-
pation among them.

While recognizing that this development was their first en-
counter with agile methodologies and mobile development, XP
and SCRUM members were open to work with these methodolo-
gies in the future. They also reported not having troubles when
managing the artifacts or activities related to their methodology.

The researchers reported that the implementation of XP and
SCRUM managed to timely produce software that met the speci-
fied requirements. They realized that participants were involved
in their work and that they were committed to meet the specified
requirements of the software being developed. The researchers
perceived that the SCRUM team was concerned with managing
carefully method, tools and artifacts while the XP team had a
more relaxed attitude about the process. On the other hand, al-
though both teams assigned the complex programming tasks to
their most proficient members, XP participants were more in-
volved in every programming task due to the interaction promot-
ed by the pair programming practice.

The final programs delivered by both teams were approved
by the client. In addition, an outsider conducted a usability test
to both applications and reported no trouble in using them. He
referred that the software developed with XP was intuitive and
easy to use, but the app developed with SCRUM was not very user
friendly and could have been more intuitive.

Discussion

In this study, a comparison between SCRUM and XP development
approaches was sought in a university scenario. The responses
provided by the participants through the questionnaire showed
that the SCRUM team had a higher preference for permanent re-
quirements than the XP team. They also felt that they would have
to redo much work to comply with the changes in requirements
to a greater extent than the XP team. There were no statistically
significant differences in the rest of the research aspects.

The observed differences may be influenced by the coding
practices (pair programing, test first, refactoring, small deliveries,
continuous integration, collective code ownership, simple design,
and coding conventions) which are emphasized in XP, but not in
SCRUM. XP team may have perceived that implementing changing
requirements in the application was easier because of the ben-
efits provided by these practices. Differences may also be due to
the way in which the SCRUM methodology is organized. Meetings
are held and artifacts have to be administered and monitored.
SCRUM team with a tight deadline to meet may have perceived
that changing requirements would need extra time to organize

Revista_Innovacion_73.indd 109 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]110

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

the process. It is important to highlight that XP team reported
having perceived the coding practices as convenient and relevant,
and researchers reported having perceived that methodology,
tools and artifacts were matters of concern for the SCRUM team.

XP teams work in pairs because pair programming is a core
practice of this methodology; SCRUM methodology allows teams
to choose their own organization for coding. In this study, SCRUM
team decided to use an approach influenced by “Mob Program-
ming”, and XP team used the pair programming practice. Never-
theless, it is important to note that Scrum and Mob Programming
are not attached to each other. In this study, the Mob Program-
ming influenced approach was used as a result of SCRUM team’s
decision. To prevent confusion in the SCRUM team, participants
were instructed to focus their answers on the SCRUM approach
instead of on Mob Programming practices. Differences and
boundaries were specifically stated before they provided their re-
sponses. XP team was also instructed to report on the complete
methodology and not on isolated practices.

According to researcher’s perceptions, XP participants were
more relaxed about the development process than SCRUM partici-
pants. This attitude could have been promoted by the practices
of not taking work home, working in pairs most of the time, and
holding celebrations after each iteration. XP team members pro-
vided feedback and explanations to each other as often as it was
necessary. This collaborative work led to embrace the change with
the confidence that the rest of the team was available to implement
any changes or to provide useful information to update the code.

It must be taken into consideration that not all participants
knew each other, and they each had a particular way of con-
ceptualizing the collaborative software development. This is a
common situation in regular programming courses; nevertheless,
students still need to communicate with others when dealing
with changing requirements in order to modify the application.
The methodology could help them in this process by promoting
their participation. Although it was not a statistically significant
result, SCRUM received the lowest scores when participants rated
the level of participation that the methodology favored.

This study focused on a preliminary comparison between
XP and SCRUM approaches with regular university students who
were available and willing to be trained outside their regular
class schedule. Participants had standardized skills in software
development, and were able to attend four hour sessions daily. It
is also important to point out that this was a small project with
few participants and a short development time. Further research
should be conducted to replicate this study; also, students, ses-
sions, and projects with different attributes should be analyzed.

From the findings derived from this study, we believe that XP
was the most appropriate methodology for promoting participation

Revista_Innovacion_73.indd 110 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 111

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

among students. Nevertheless, SCRUM proved to be an effective
and easy-to-follow methodology as well. XP may be suitable for
shorter course sessions, and SCRUM may be suitable for longer
sessions. XP can be used in pure programming courses; mean-
while SCRUM can be used in courses focused on methodological
approaches. If changing requirements are expected, XP could be
a better approach for students to accept and update their applica-
tions easily; this empirical evidence supports the claim “XP adapts
to vague or rapidly changing requirements” in the work of Beck
& Andres (2004). In using both methodologies in the classroom,
scope of projects, number of students, type of course, session
schedules, and available facilities should be considered. For exam-
ple, as stated in the work of Rodriguez, Soria, & Ocampo (2015),
we identified that using a single room for several teams working
with SCRUM at the same time in a face-to-face course may not be
feasible if the room is not properly equipped. On the other hand,
from these empirical findings we also confirmed that expected
competencies in students can be met through team projects based
on real scenarios that stimulate technical and human aspects of
software development. A holistic approach including theory, prac-
tice, content, methodology, and experiences should be used in the
learning of agility. This will promote the skills and values needed
to complete software projects and will help students to take an ac-
tive role in their education. Teamwork and commitment from stu-
dents were relevant elements that were brought to our attention
during this study. These views are consistent with those derived
by Kropp & Meier (2014), Sancho-Thomas, Fuentes-Fernández &
Fernández-Manjón (2009), Hazzan & Dubinsky (2007).

Conclusions

This article reported on a case study in which XP and SCRUM
were evaluated from educational perspectives in a university set-
ting. Two groups of students developed their own version of the
same mobile application in Java for Android; one group used XP,
and the other group implemented SCRUM.

Results revealed that both Extreme Programming and SCRUM
can produce good quality software in a short period of time and can
be implemented easily with university students with little expe-
rience in mobile application development. Students learned the
basics of agile development and mobile programming and built a
useful application for a client; they were motivated to use these
methodologies in future projects. They perceived a pleasant re-
lationship among the team members and reported a good per-
ception towards both methodologies. In regards to the changing
of requirements, XP team accepted the changes easier than the
SCRUM team.

Revista_Innovacion_73.indd 111 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]112

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

In university courses, students need to develop working
software without disregarding good practices; they also need to
be exposed to experiences that lead them to pertinent learning
experiences for present and future challenges. Students should
be helped by their teachers in achieving these goals. Since agile
software development is extensively used in industry, it needs to
be addressed in university courses, and teachers should evaluate
different approaches to present the most suitable scenarios for
learning agile practices during the course. This evaluation must
be based on empirical evidence and the concrete attributes of
the learning environment in which agility will be taught. These
evaluations will help to succeed in the teaching and learning pro-
cesses of software development, a field that has been identified
as complex because of the several competencies students have to
develop.

References

Abrahamsson, P., Ihme, T., Kolehmainen, K., Kyllönen, P., & Salo, O. (2005). Mobile-D
for Mobile Software: How to Use Agile Approaches for the Efficient Development of
Mobile Applications. Finland: VTT Technical Research Centre of Finland.

Arman, N., & Daghameen, K. (2007). Teaching Software Engineering Courses: When?
The International Conference on Information Technology .

Ávila Domenech, E., & Meneses Abad, A. (2013). DelfDroid y su comparación evaluativa
con XP y Scrum mediante el método 4-DAT. Revista Cubana de Ciencias Informáti-
cas, 16-23.

Beck, K., & Andres, C. (2005). eXtreme Programming explained. Embrace Change. Unit-
ed States: Addison Wesley.

Beck, K., & et., a. (2001). Manifesto for Agile Software Development. Retrieved on May
1st, 2016 from http://agilemanifesto.org/

Blanco, P., Camarero, J., Fumero, A., Werterski, A., & Rodríguez, P. (2009). Metodología
de desarrollo ágil para sistemas móviles. Introducción al desarrollo con Android y
el iPhone. Madrid: Universidad Politécnica de Madrid.

Coman, I. D., Robillard, P. N., Silliti, A., & Succi, G. (2014). Cooperation, collaboration
and pair-programming: Field studies on backup behavior. The Journal of Systems
and Software, 124-134.

Copeland, L. (2001). Extreme Programming. Retrieved on January 15th, 2016 from Com-
puter World: http://www.computerworld.com/s/article/66192/Extreme_Programming

da Silva Estácio, B. J., & Prikladnicki, R. (2015). Distributed Pair Programming: A Sys-
tematic Literature Review. Information and Software Technology, 1-10.

Devedzic, V., & Milenkovic, S. R. (2011). Teaching Agile Software Development: A Case
Study. IEEE Transactions on Education, 54(2), 273-278.

Eclipse. (2015). Eclipse. Retrieved on January 15th, 2016 from http://www.eclipse.org
Enríquez, C., & Gómez, P. (2015). A Model for Improving Training of Software Develop-

ers in Small Companies. IEEE Latin America Transactions, 13(5), 1454-1461.
Field, A. (2013). Discovering Statistics using IBM SPSS Statistics. SAGE Publications Ltd.
Friesen, J. (2014). Learn Java for Android Development. United States: Apress.

Revista_Innovacion_73.indd 112 25/04/17 12:54 p.m.

A
L

E
P

H

[pp. 97-114] A PRACTICAL APPROACH TO AGILE DEVELOPMENT… R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS 113

Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73 | enero-abril, 2017 |

Fuertes A., Y., & Sepúlveda C., J. (2016). Scrum, Kanban and Canvas in the commercial,
industrial and educational sector - A literature review. Revista Antioqueña De Las
Ciencias Computacionales, 6(1), 46-50.

Gasca Mantilla, M. C., Cmargo Ariza, L. L., & Medina Delgado, B. (2014). Metodología
para el desarrollo de aplicaciones móviles. Tecnura, 20-35.

Gironés, J. (2014). El gran libro de Android. España: Marcombo.
Hazzan, O., & Dubinsky, Y. (2007). Why Software Engineering Programs Should Teach

Agile Software Development. ACM SIGSOFT Software Engineering Notes, 32(2), 1-3.
J. Faria, E. S., Yamanaka, K., & Tavares, J. A. (2012). eXtreme Learning of Programming

- A Methodology Based in eXtreme Programming to Programming Learning. IEEE
Latin America Transactions, 10(2), 1589-1594.

Juristo, N., & M., A. (2001). Basics of Software Engineering Experimentation. Springer.
Kendall, &Kendall. (2013). Systems Analysis and Design. United States: Prentice Hall.
Kofune, Y., & Koita, T. (2014). Empirical Studies of Agile Software Development to Learn

Programming Skills. Systemics, Cybernetics and Informatics, 12(3), 34-37.
Kropp, M., & Meier, A. (2013). Teaching Agile Software Development at University Lev-

el. IMVS Fokus Report, 15-20.
Kropp, M., & Meier, A. (2014). New Sustainable Teaching Approaches in Software Engi-

neering Education. 2014 IEEE Global Engineering Education Conference (EDUCON).
Istanbul, Turkey.

Kuanli, Pavur, & Keeling. (2006). Introduction to Business Statistics.South-Western Col-
lege Pub.

Letelier, P., & Penadés, M. (2006). Metodologías ágiles para el desarrollo de software:
eXtreme Programming (XP). Técnica Administrativa, 5(26).

McHugh, O., Conboy, K., & Lang, M. (2011). Using Agile Practices to Influence Motiva-
tion within IT Project Teams. Scandinavian Journal of Information Systems, 85-110.

McHugh, O., Conboy, K., & Lang, M. (2012). Agile Practices: The Impact on Trust in
Software Project Teams. IEEE Software, 71-76.

Papatheocharus, E., & Andreou, A. S. (2014). Empirical evidence and state of practice of
software agile teams. Journal of Software: Evolution and Process, 855-866.

Plonka, L., Sharp, H., van der Linden, J., & Dittrich, Y. (2015). Knowledge transfer in
pair programming: An in-depth analysis. Int. J. Human-Computer Studies, 66-78.

Prabu, P., & Duraisami, S. (2015). Impact of Pair Programming for Effective Software
Development Process. International Journal of Applied Engineering Research,
10(8), 18969-18986.

Pressman, R. (2014). Software Engineering: A Practitioner’s approach (6 ed.). United
States: McGrawHill.

Rigby, D., Sutherland, J., & Takeuchi, H. (2016). Embracing Agile. Harvard Business
Review, 40-50.

Rizwan, M., & Qureshi, J. (2011). Agile software development methodology for medium
and large projects. IET Software, 6(4), 358-363.

Rodriguez, G., Soria, Á., & Ocampo, M. (2015). Virtual Scrum: A Teaching Aid to Intro-
duce Undergraduate Software Engineering Students to Scrum. Computer Applica-
tions in Engineering Education, 23(1), 147-156.

Salleh, N., Mendes, E., & Grundy, J. (2014). Investigating the effects of personality traits
on pair programming in a higher education setting through a family of experi-
ments. Empirical Software Engineering, 19(3), 714-752.

Sancho-Thomas, P., Fuentes-Fernández, R., & Fernández-Manjón, B. (2009). Learning
teamwork skills in university programming courses. Computers & Education, 53(2),
517-531.

Revista_Innovacion_73.indd 113 25/04/17 12:54 p.m.

R. V. ROQUE, J. A. HERRERA, A. LÓPEZ Y J. M. SALINAS A PRACTICAL APPROACH TO AGILE DEVELOPMENT… [pp. 97-114]114

A
L

E
P

H

| enero-abril, 2017 | Innovación Educativa, ISSN: 1665-2673 vol. 17, número 73

Schroeder, A., Klarl, A., Mayer, P., & Kroiss, C. (2012). Teaching agile software devel-
opment through lab courses. Global Engineering Education Conference (EDUCON),
2012 IEEE. Marrakech.

Serrador, P., & Pinto, J. K. (2015). Does Agile work? - A quantitative analysis of agile
project success. ScienceDirect, 1040-1051.

Sims, C., & Johnson, H. L. (2012). SCRUM: Abreathtakinly Brief and Agile Introduction.
Lexington, KY, EU: Dymaxicon.

Singh, G., Mishra, A., Singh, H., & Upadhyay, P. (2015). Empirical study of agile software
development methodologies: a comparative analysis. ACM SIGSOFT Software Engi-
neering Notes, 40(1).

Soria, Á., Campo, M. R., & Rodríguez, G. (2012). Improving Software Engineering Teach-
ing by Introducing Agile Management. 13th Argentine Symposium on Software En-
gineering.

Vogel, L. (2013). Eclipse 4 Application Development: The complete guide to Eclipse 4 RCP
development. Vogel.

von Wangenheim, C. G., Savi, R., & Ferreti Borgatto, A. (2013). SCRUMIA - An educational
game for teaching SCRUM in computing courses. The Journal of Systems and Soft-
ware, 2675-2687.

Yetunde, A., & Kolade, W. (2015). Integrating usability work into a large inter-organ-
isational agile development project: Tactics developed by usability designers. The
Journal of Systems and Software, 54-66.

Zuill, W. (2014). Mob Programming: A whole Team Approach. Retrieved on February
2nd, 2016 from http://www.agilealliance.org/files/6214/0509/9357/ExperienceRe-
port.2014.Zuill.pdf

Revista_Innovacion_73.indd 114 25/04/17 12:54 p.m.

