
--
Computación y Sistemas Vol. 2 Nos.2-3 pp.l26-139
© 1999, CIC - IPN. ISSN 1405-5546 Impreso en México

Using Difference Reduction for Generic Proof Search

Santiago Negrete

Departamento de Computación

ITESM-Morelos

Paseo de la Reforma 182-A

Col. Lomas de Cuernavaca

Cuernavaca, Morelos 62050

santiago@campus.mor.itesm.mx

Article received on September 2, 1998; accepted on February 22, 1999

Abstract
In this paper a new approach to generic theorem prov
ing is introduced. We present a set 01 techniques to
guide prool search in framework theories that works with
different object theories encoded. The techniques are
based on the principIe 01 Difference Reduction and pro
grammed in a Proof Plans environment. We use pre
sentations ollogics in natural deduction style to test our
techniques. Two example theorem prools are included to
show how the whole setting works.

Keywords:
Framework theories, proof search, rewrite rules, unifica
tion, natural deduction.

1 Introduction
Logic has proven to be of prime importance in many
are~ of Science and, in particular, in Al and Computer
Science. Many logics have been developed to contend
with the various kinds of reasoning required by a vast
number of research areas.

Automatic theorem proving techniques for these log
ics are often developed in an ad-hoc way for particular
theories in which specific problems are representable.
Framework theories (Harper et al., 1992; Constable et
al., 1986; Coquand and Huet, 1988), have been pro
posed as meta-mathematical theories in which other the
ories may be represented and reasoned with uniformly.
Hence, automating proof search in a framework theory
gives the possibility of abstracting the proof process and
make it applicable to a larger number of logics.

In this work, we introduce an approach to proof search
in the Edinburgh Logical Framework (Harper et al.,
1992) that is not hard-wired to a particular object logic.
The design is based on guiding proof search through
constrained rewriting. The rewriting technique is called
Rippling (Bundy et al., 1993) and it has been previously
applied to the domain of inductive proofs.

Rippling is implemented within the framework of
Proof Plans (Bundy et al., 1991). This framework con
sists of building proof plans for theorems from abstract
specifications of proof techniques called M ethods. Meth
ods correspond to tactics progra,rnmed in a Proof Editor
where the theorem can be represented and where a proof
plan can be realized to construct the actual proof for the
theorem.

Our work is focussed on logic presentations. These
are logics encoded in framework theories. We use logics
in natural deduction style because their presentations
share a common structure and are particularly suitable
to extract rewrite rules from their inference rules.

We have extended the Rippling technique in various
ways to handIe this more general case. A feature of our

a¡:
ar
w(

th

ar
e:x
in

2

Tl
H
w(

dE
en
se
of
st
ca
se
ti(
ar
la
re
m

2.

L<
ju

H
fr,
tb
ce
st
ti'
la
li!

tj

si
V

di
tI

tI
tI
tI
a
b
1I

a

126

mailto:santiago@campus.mor.itesm.mx

S. Negrete: Using Difference Reduction for Generic Proof Search

approach is that, since the rewrite rules used in Rippling
are extracted from the logic presentation in the frame
work theory, the proof mechanisms are independent of
the logic at hand.

We present an example proof where all our techniques
are used. Examples in other logics and a more technical
exposition of the techniques described here can be found
in (Negrete, 1996).

2 The Edinburgh Logical Framework

The Edinburgh Logical Fmmework (LF) (Harper et al.,
1992) is a formal system spedfically designed as a frame
work theory. It is a typed lambda calculus with depen
dent function types whích capture the notion of infer
ence rule in a natural way. Object theories are repre
sented in LF by spedfying signatures. These are sets
of typed identifiers whích define ter m and formula con
structors of the theory (e.g. connectives, operations,
constant terms, etc.) and constants whose types repre
sent the inference rules of the object theory. It is par
ticularIy useful to represent logics in natural deduction
and Hilbert. styles (Avron et al., 1987). In our particu
lar case, we call1ogic presentations those signatures that
represent logics. In Figure1 there is an LF signature for
intuitionistic propositional logic:

2.1 Judgements as Types

Logics are represented in LF by exploiting the
judgements-as-types paradigm whereby judgements are
assodated with the type of their proofs (Harper et al.,
1992). In order to represent theories in LF, types of the
framework are associated to each syntactic category of
the language being represented (object language); then
constants are declared to each expression-forming con
struct of the object language in such a way that a bijec
tive correspondence between expressions of the object
language and canonical forms of the right type is estab
lished.

In Figure 1, the syntactic category represented as LF
type o corresponds to the type of propositions. The
signature also contains types for the connectives ::J, 1\,

V and constant .l.
LF has only one type constructor: II. It is a depen

dent function type constructor abbreviated as -+ when
the range is independent of the domain. II is used to
express univers,al quantification and implication.

In LF, types are used to represent judgements and
their inhabitants correspond to their proofs. So, rather
than using the type system to represent formulae under
the propositions-as-types paradigm (Martin-Lof, 1980),
a judgement constructing function is declared in order to
build basic judgements (called atomic). In the signature
in Figure 1, the constant true is such a function. An
atomic judgement corresponding to that signature is for

o Type

true o --T Type

J./\,V o-to-+o
J. o

UA.B,o(true(A) --T tru.(B» --T trueCA J B)

UA,B,otrue(A J B) --T trueCA) --T tru«B)

UA B'otrue(A) true(B) --T trueCA /\ B)

UA:B:otrue(A /\ B) --T trueCA)

UA,B,otrue(A /\ B) --T true(B)

UA,B,,,true(A) --T trueCA v B)

U A B'otrue(B) --T trueCA V B)

IlA:s:"true(A v B) --T IlC:o«true(A) --T true(O»

--T (true(B) --T true(O» --T true(O»

/lbs IlA,otrue(l.) --T trueCA)

Figure 1: An LF signature for intuitionistic logic

example:
true(a ::J (a ::J b)))

The type constructor of LF aIlows us to specify two
more kinds of judgement: hypothetical (e.g, P -+ Q
with P and Q judgements) or schematíc (e.g. IIx:oP(x)
with o a type and P a judgement). Type constructors
associate to the rightj for example, IIa:oIIb:oP -+ Q is
equivalent to (IIa:o(IIb:o(P -+ Q))).

Judgements may represent theorems of the logic such
as:

IIA:oIIB:otrue(A ::J (A ::J B) ::J B) (1)

where A and B are abstractions in type o which is de
fined to be the type of propositions. 'true is a judgement
valued function from o into Type, the kind that contains
all types. Schematic judgement 1 states that it is true
that

A::J (A ::J B) ::J B

for all propositions A and B. It can be read as an ax
iom schema. Judgements may also be used to represent
inference rules like:

IIA:oIIB:otrue(A) -+ trueCA ::J B) -+ true(B)

which states that if A and A ::J B are true, then B
will also be true for all propositions A and B. The usual
format of inference rules is:

TIA,,"'" TlAn,oh(A ... ,An) -f

"
--T Jm(A" ... ,A,,) --T K(A" ...• A n)

where Ji and K are judgement functions. We
call IIAi the quantification part of the rule; we call
Ji (Al, ... ,An) the judgements in the body of the rule
and K(A1 , •.. , An) the head of the rule.

In Figure 1, there are inference rules for implica
tion elimination and introduction. Notice that inference

127

S. Negrete: Using Difference Reduction for Generic Proof Search

rules depend on other type definitions in the signature.
Given a signature for a specific logic, LF can be used
as a meta theory to set up theorems of the logic and
verify them by testing the corresponding judgement, as
a type, for inhabitance.

3 Proof Plans
We use Proo/ Plans as a paradigm to develop proof
automation techniques. Proof Plans consists of using a
planner to build a proof plan out of methods. Meth
ods allow us to separate the proof building procedure
from the reasoning required to select a proof technique.
Writing methods amounts to specifying when a proof
technique should be used as opposed to verifying if the
technique is applicable, whích is what a proof editor
does when it tries to apply a tactic to the current proof
state.

Building proof plans from methods has the advantage
of not having to do all the operations needed to apply
the tactics. The architecture of the methods enables a
declarative specification of the heuristics for the tactics
while doing heuristic reasoning. This way, it is easy
to edit and experiment with the heuristic information
without altering the tactics themselves.

The methods we present in this work are designed for
proof planner called MiniClam which is related to Clam
(van Harmelen et al., 1993). The proof plans built by
MiniClam are applicable in a version of the Edinburgh
Logícal Framework programmed in the Mollusc proof
editor (Richards et al., 1994).

We present a setup whereby using proof plans we can
reason about proofs in a framework theory by interpret
ing inference rules as rewrite rules and using rippling
and other techniques to automate the process of isolat
ing connecting expressions1 (see Section 4 below).

This approach is based on the principIe of difference
reduction described in Section 5. Difference reduction
provides a pattern to develop different search strate
gies. By alternating difference unification and control
techniques (such as rippling) to reduce differences, we
can build general methods to plan proofs in frameworks
theories. A Proof Plan in our setting will be composed
mainly of methods that apply various difference reduc
t.-.g techniques based on rewriting. These methods will
use rewrite rules extracted from the inference rules of
the particular logic represented in the framework.

We take a n.ew approach to generic proof search. We
develop a system that obtains guidance from the object
level logic by extrading rewrite rules from each logic
presentation. The rewriting process is guided by a gen
eral strategy based on a special type of unification caBed
polarised coloured dífference unification (see Section 8).

lThe notion of connecting expressions ís taken in the
sense of the Connection Method by Bibel (Bibel, 1982)

The system obtained is parameterised by the logic pre
sentations of the framework theory and is therefore able
to do a more specialised search guidance in each logíc
than a system based on uniform search.

In our system, the techniques used and the rewrite
rules extracted define a different (but related) search
space than the one induced by the original problem.
Search in the new space is more tractable and proofs
are easier to find.

4 Connecting Expressions
\Vhen doing search in framework theories, we often find
that we want to produce connections between hypothe
ses and conclusions (Le. identical expressions on both
sides of the sequent) to obtain axioms. The word con
nection here is taken by analogy to the Connection
Method (Bibel, 1982). In this method, complementary
formulae (connection) are identified in a matrix-based
description of the conjecture. Theoremhood there is de
fined in terms of paths of connecting formulae through
the matrix. In order to obtain such complementary ex
pressions in our work, we first look for them as subex
pressions of the current hypotheses and goals at sorne
step of a proof. Once we have located the two expres
sions that might make a connection, we start applying
inference rules that isolate the desired formulae in the
appropriate side of the sequent.

Connecting formulae are identified by a polarity value
assigned to each expression. Polarity values can be +,
and ± and are assigned by a special algorithm (see Sec
tion 7). Only unifying expressions with different polarity
values constitute a potential connection.

5 Difference Reduction
Logics are usually represented in proof editors as a set of
axioms and inference rules. Inference rules are the tools
to convert one proof state into another and axioms just
tell us when to stop -when building a proof backwards
(from theorem to axioms)- or where to start -when
building it forwards (from axioms to theorem).

In our system, proofs are built backwards from con
jectures to axioms (Le. sequents -in the sense of the
Sequent Calculus- where the formula on the right-hand
side (i.e. the goal) occurs in the left-hand si de (i.e. the
context)). To obtain axioms from the conjecture, one
must decompose it by applying inference rules back
wards. Each inference rule application transforms one
proof state into another 'and expands the proof tree.
Guiding search in a proof consists of deciding what in
ference rule is the most appropriate to transform every
state into another one closer to an axiom.

The proof plans built by our method are based on
rewriting operations as well as single inference rule ap
plications. The operations are tactics that apply the

S. Negrete: Uslng Differenee Reduetlon far Generle Proa' Search

appropriate inference rules to produce the desired effect
in the proof.

In order to select each rewriting operation the system
uses the principIe of Difference Reduction (Basin and
Walsh, 1996b) which consists of two steps:

1. 	 Compare two expressions using a special unifier
called difference unifier (Basin and Walsh, 1993) to
obtain annotations over the expressions. These an
notations indicate the parts of the expressions that
would have to be removed (the difference) in order
to unify them.

2. 	 Use rewrite rules to successively rewrite the differ
ing expressions in such a way that the difference
between the two is reduced at each step.

Annotations consist of boxes which mark the differ
ring parts and underlining that marks unifying subex
pressions. The boxed expressions that are not under
lined are called wave fronts; the underlined expressions
that are not boxed form the skeleton seto These anno
tations may be combined to stress the unifying as well
as the differring substructures between two terms. For
example, the following are two difference-unified terms:

true (\ @JJ A ~ 1)
(2)

true (~)

In these two expressions, the skeleton set is
{true(a),true(c)}. We can also separate the two terms
in the skeleton set and consider them as part of two
separate skeleton sets: {trueCa)} {true(c)}. In order to
represent this on the expressions themselves, we imag
ine the skeletons to have colours and we annotate colour
sets next to the wave fronts:

true

(3)

true

Rere, CI and C2 are meant to be colours. The unifi
cation algorithm that produces coloured (and polarity)
annotations is called Polarised Coloured Difference Uni
fication. It is d~scribed in Section 8.

6 Rippling
To monitor the movement of the difference, indicated
in the original expression by the annotations, we an
notate the rewrites as well. The annotations in the
rewrites describe how the difference moves through the
rule and help us to select the rules that will move the
difference in the right direction. This kind of rewrite

rule is caBed wave rules and the rewriting process in
volving wave rules is caBed rippling. The process con
tinues until no more difference reduction can be done.
Annotations also permit the definition of a measure of
annotated terms. Wave rules are aB by construction
measure-decreasing rewrite rules and hence rippling is
guaranteed to terminate (Basin and Walsh, 1996a).

Since we are interested in transforming a sequent into
an axiom, we difference-unify the goal and the hypothe
ses of sequents. The rewriting operations selected by the
planner are those that reduce the difference between the
goal and the hypothesis closest to it in terms of similar
ity.

Rippling selects wave rules by matching their left
hand sides with the target expression in the usual way
for rewrite rules; however, matching with annotations
guarantees that the appropriate structures of the tar
get expression will be shifted. Successive rewriting with
wave rules may lead to the complete elimination of the
difference between induction hypotheses and conclusion
and hence to an axiom. This form of rewriting is more
constrained than the unannotated kind and increases
the chances of attaining a desired state.

7 Polarity
An important concept in our work is that of polarity.
We use polarity annotations on framework theory ex
pressions to make sure that rewriting operations in the
plan correspond to sound inference erule applications in
the proof editor. We also annotate object-Iogic expres
sions with polarity annotations derived from the corre
sponding signature heuristic to restrict difference uni
fication to focus only on expressions that are likely to
produce axioms. The use of polarity in this way is a
novel technique. The algorithm that assigns polarity
to subexpressions of formulas is described in detail in
(Negrete, 1996).

In Section 4 we mentioned that connecting expres
sions are identified by their polarities and the assign
ment of polarity also plays a role in the selection of
wave rules. The assignment of polarity values to subex
pressions depends on the particular logic a formula cor
responds too

Inference rules may be used' to refine the goal or may
be applíed forward to hypotheses. For this reason, from
each inference rule two rewrite rules may be extracted:
one that corresponds to the applícation of the inference
rule left-to-right (forwatd-chain) and one right-to-Ieft
(refine).

We require wave rules to rewrite subexpressions of
goals or hypothesis. For this reason, we need to be able
to foresee which side of the sequent a subexpression po
tentially belongs to in order to know what wave rules are
applicable to it. The simplest cases are the constructors

129

S. Negrete: Using Dif(erence Reduction far Generlc Proof Search

of the framework theory. In LF, a goal is assigned a
positive polarity; we mark this with a positive sign as a
superscript as follows:

1- ('- .+)+11 ~12

Inference rules are applied to goal s right-to-Ieft, so
rewrite rules obtained from them will have positive po
larity to match a goal. Since the constructor ~ can
be introduced in such a goalleaving Ít to the left of 1
and therefore inference rules are applicable to it left-to
right, Ít is assigned negative polarity. When used as a
hypothesis, the polarities are reversed:

The cases for constructor II are similar:

and
II",:o+P(x)- 1- G

The polarity values for o are added for completeness but
are not used in practice, so we will not write them from
now on. This way, an expression whose polarity is neg
ative can be rewritten by a wave rule that encodes a
forward-chaining operation. Conversely, positive polar
ity allows rewriting that encodes backward-chaining.

We also annotate expressions at the object level. This
way, we can make a finer analysis to find connections
at the object level. The potential connections can be
simplified by rewriting until they become judgements of
their own and are suitable for ferlilisation (simplification
of a sequent) as described in Section 9.

The assignment of polarity values depends on the
encoding of the logic in the framework theory; differ
ent logics lead to different polarity assignments. We
have developed an algorithm to assign polarity values
to subexpressions of a formula with respect to a partic
ular signature. Since the computation of these values
may be computationally expensive, we do the assign
ment of polarity at the comparison stage explained in
Section 9. When wave rules are extracted from the sig
nature, they are also annotated to record the transition
of polarities through rewriting. This means that rippling
spreads both wave and polarity annotations through the
planning proces's.

Our polarity algorithm assigns three polarity values
to object level expressions: and ±. The first two
correspond to the ones described aboye for the frame
work level. The value ± means that the algorithm could
not assign a definite value to the subexpression, either
because the signature does not provide for it or because
it has both positive and negative polarity. Two polarity
values are compatible if they are not either two pluses

130

or two minuses. See (Negrete, 1996) for a more detailed
discussion of polarity and its properties.

Terms with polarity annotations are said to be po
larised. Polarity values at the object level are used by
the PCDU algorithm (described in the following section)
to identify potential connections between two polarised
terms. Two polarised terms with this property are said
to be compatible modulo polarity.

8 	 Polarised Coloured Difference
U nification

In this section we define formally the concepts of po
larised annotated term and the algorithm for polarised
coloured difference unification (PCDU) mentioned in
Section 5. We first define what an annotated term
is. Then, the concept of difference-unifiability is intro
duced. Finally, the full algorithm for PCDU is given.
Again, to see the properties of the algorithm, the reader
is referred to (Negrete, 1996).

8.1 Coloured-Annotated Terms
A polarised term is a term that has been assigned a po
larity value; this is represented by a term of the form:
r, t+, t± where t is a regular termo We call a term
algebra with polarity values assigned to all terms and
subterms, a free polarised term algebra. We will use the
function pol (P) to refer to the polarity of the polarised
term p and function term(p) to refer to the term re
sulting from removing the polarity value from polarised

r

term p.
The following is a definition of the set of polarised

coloured annotated terms (pcats). We define the syntax
of polarised terms with wave annotations:

Definition 1 Let:E be a signature; let P == PTerm(:E)
be the free polarised term algebra over :E, V P a set of
variables and p a polarity sign; COL a set of colours.
We inductively define a hierarchy of sets of coloured
annotated terms, ATe, indexed by colour sets e ~
COL.

• if Xv E VP then E ATe.

• if tP E P then E ATe·

• if ati E ATe then f(at I , ... , atn)P e E ATe

e, then

• Nothing else is in ATe.

Definition 2 Given an annotated term as above, we
can define what its skeleton is. The skeletons of a term
are parameterised by colours. Jf c is a colour, we define:

S. Negrete: Using Differenee Reduetion for Generle Proof Seareh

• skel(~,c) = {} if e fj. e

• skel(X!..c,c) = {XP} if e E e,xP E VP.

• skel(~,e) = {tP} if e E e,tP E P.

• 	 skel(f(atl, ... ,atn)Pe,C)

skel(at i , en if e E e.

• skel(1 f(atI, ... ,atn)P I ,e) skel(atl,c) U ... U
,=======:::::!(C

skel(atn,e) if e E e.

Definition 3 The fu,nction erase removes all annota
tion from an annotated term:

• erase(XPd XP

tP• erase(~) =
....... 	 1

• erase(f(tn)Pe) = f(erase(tn))P

• erase([2Q~~2t) = f(erase(tn))P

The set ATelt = {s E ATe I erase(s) = t} is the set
of all annotated terms with the given erasure.

8.2 	 Polarised Coloured Difference
U nifiability

As we saw in Section 5, polarised annotated terms are
used to express differences in structure and proof-role of
two terms. The wave annotations highlight the struc
tural variance between them while the polarity values
indicate the proof context in which they occur.

For our work, we need to identify terms which consti
tute potential connections. We therefore need to define
our difference unification algorithm to unify terms which
are structurally similar as in standard difference unifi
cation, but also whose skeletons have compatible polar
ities. We express this more formally in the definitions
below.

The symbols o and • represent compatible polarities:
{+,-},{+,±},{-,±} and {±,±}.

Definition 4 The relation tI == t2 over polarised terms
is true if tI and tz are equal modulo polarity compatibil
ity. That is:

2. f(a;)O == f(b;.)· Vi.ai == bi.

This definition is now extended to sets of polarised
terms as follows:

Definition 5 Two sets of polarised terms P and Q are
compatible modulo polarity, expressed as P ~ Q, if:

P ~ Q if (Vp E P.3q E Q.p == q)I\(Vq E Q.3p E P.p q)

The following definition states when two polarised
terms are pcd-unifiable.

Definition 6 Two polarised terms tI and tz are pcd
unifiable if there are two annotated terms atI E ATeItI
and atz E ATeltz for some set of colours e and a sub
stitution r such that for all e E e

skel(atI,e)r ~ skel(at2,e)r

There may be more than one way in which terms may
be pcd-unifiable. Just as in difference unification, there
may be severa! pair of annotated terms which fulfill the
requirements of Definition 6.

The algorithm presented in the next section com
putes, for any two terms tI and t2, all variable sub
stitutions that fulfill Definition 6. It has been adapted
from the description of the algorithm for difference uni
fication presented in (Basini and Walsh, 1993).

8.3 	 PCDU Algorithm
The following definition gives the rules for polarised
coloured difference unification. The algorithm is defined
as a non-deterministic set of transformation rules appli
cable tú triples (a, S, r). a is a substitution of anno
tated terms for variables; we call it an annotated substi
tution. S is a sequence of tuples (a, b, A, B), called pcdu
problems. a,b are terms and A,B are variables where
annotated terms will be incrementally instantiated (i.e.
partial annotated terms with variables will be instan
tiated in them as new tuples are gqnerated). We call
sequence S the problem sequence of the triple. r is a
variable substitution of plain terms. We call r the term
substitution of the triple.

Given a colour set e, the algorithm starts with
({},{(a,b,A,B)},{}) and ends with (a, {},r). Aa and
Ba will be the annotated terms corresponding to a
and b and r will be the term substitution of the pcd
unification.

The algorithm always gives an answer. If two terms
tI and t2 don't difference-unify, the resulting annotated
terms are: !!0 and~. This algorithm finds all common
skeletons to the two terms and assigns them a colour;
therefore, if no colour is assigned the terms are not dif
ference unifiable.

The following definition gives a set of transformation
rules. They take a triple --as defined above- and pro
duce another one. The rules have the form:

TI ::::} T2 cOl1straints: CONS

, and denote the transformation of a triple matching TI
into triple Tz provided that eoN S hold. Constraints of
ten rely on variables being instantiated in a state ahead
of the present one, therefore, they have to be verified
post-hoc when the information is available. They are
only well-formedness constraints.

131

S. Negrete: Using Difference Reduction for Generic Proof Search

When the rules are applied exhaustively to a triple
({}, { (a, b, A, B)}, {}) the final triple will contain the
variable substitutions necessary to make a and b pcd
unifiable according to Definition 6. These rules are non
deterministic; the final triples given by all possible se
quences of applications correspond to all possible pcd
unifications of a and b.

Definition 7 Jf at l , at2 E ATc jt for some t, then
the function superpose(at l , at2) is defined by pattem
matching:

1. superpose(~l' tPc 2) = ~1 UC2

2. superpose(~c¡' f(b;')P c)=

f(superpose(an , bn))P
~--~~--~~~~-C1UC2

3. superpose(lf(~)pl ,lf(~)pl)=
C 1 C 2

superpose(f(~)P,f(~)P)

4· superpose(ti, t~) = erase(tf)0

Definition 8 Jn the' following COL is a given set of
colours, e E COL, C ~ COL; PI and P2 are atomic

--+ --+
polarised terms, f is a function. A,B ,An and Bn are
annotated-term variables symbol. X and X

--+
n are term

variables. The symbols o and • represent compati
ble polarities as above. The notation S {PI, ... ,Pn} is
used to represent the result of appending pcdu-problems
PI, ... ,Pn at the end of sequence S. We define the tmns
fonnation rules for the algorithm as follows:

• 	 DELETE

(a,S{(aO,a·,A 1 ,A2)},T) ~

(a{!L{e} / Al, !L{e} / A 2 }, s, T)

constraints: constant(a), selecLcolour(c, COL).

• 	 DECOMPOSE
(a, S{(f(a,;)O, j(~)., A, B)}, T) ~

(a{f(x,:)O /A,f(-¡¡;')· /B},S{(ctn,bn,An,Bnh,T)
--e~e

constraints: e = coL CAn), e = colCBn)

• 	 ELIMINATE-L

(a,S{(XO,b·,A,B)},T) ~

(a {XC {e} / A, ~{e} / B}, S, T{ b/ X})
constraints: either {bjX} E 'T 01' X ~ dum('),selec1....colou,r(c,COL)

• 	 ELIMINATE-R

(a,S{(aO,X·,A,B)},T) ~

(a{!L{e}/ A, X· {e} / B}, S, T{a/ X})
constraints: either {a/X} E T 01' X é rl()mfT),~f'If'cI rnlo'p'(c. COI,', ,

• 	 IMITATE-L
(a,S{(XO,j(~)·.A,B)},T) ~

(a{XO e/A, j(-¡¡;'). / B}, S{(X n , bn , i;;',-B;;)}, T{f(A~ J/ X})

constraints: e = colCAnl. e = ~-~I(B:) and

either {f(;;¡-;;)/X} E T 01" X i dom(T).

• 	 IMITATE-R

(O",S{(f(a,;)O X·.A,B)},T)-':

(a{f(x,:)O e/A, x· e / B}, S{ (~-;;-:X-~413;:)}. T{f(H:)/ X})

constraints: e = ~(An), C' = ,-ol"(B:) and

c]ther {f(H,;J/Xj E T 'll" X ~ dom(T)

132

bl
• 	 HIDE-L

(a,S{(f(a,;)O,b,A,B)},T) ~ bl
(a{1 j(x,:)O I /A,Sup/B},S{(an,b,An,Bn)},T) 	 ce

e
constraints: Sup = superpose(B¡), e = col(Sup) i: 0 	 is

n
• 	 HIDE-R

(a,S{(a,j(~)O,A,B ,T) ~ tl
/B}. Sira, bn , An, B n)}, T) 	 tl

!======!e
constraints: Sup = superpose(Ad, e = col(Sup) i: 0 	 fr

d
p

The function col returns the set of colours of an an
notated term and is defined as:

col(tc) = C (

In the selecLcolour relation, the first argument is a u

member of the set of colours in the second argumento
The functíon dom returns the domain of a substitu

tion, that is, the set of variables to which terms are
oassigned.

9 Description of the Overall
Methodology 	 g

t
Difference reduction provides a pattern to develop dif a
ferent search strategies. By alternating difference unifi a
cation and control techniques to reduce differences, we t

can build general methods to plan proofs in frameworks t

theories. The preferred control technique is rippling be

cause it is the most constrained. After rippling, unanno

tated rewriting is attempted. Finally, if the two previous

options are not successful, inference rules are applied di

rectly.

This hierarchy means that in the best cases, when
only rippling steps are used, the search required to prove
a theorem will be ver y small. In the places where rip
pling does not apply, the system may resort to more
expensive steps to continue with the proof and try to re
sume rippling. This way, our system applies a well con
strained methodology, like rippling, to produce proofs
without much search but, when the methodology is not
appropriate to a particular case, it gmcefully degener
ates into unconstrained search. From this point of view,
our system i¡,; a hyhrid approach to generic proof search
guidance between specific systems with little search and
scope, and uniforIll proof search methuds which are ver)
general hut produce big "earel! spaces.

As we said bdore, we use prr¡of plalls as a framcwork
to implement nur tcchniqucs. In the implemelJtatíClll
in (Negrete, 1996), roughly eac:h stagp ck:-;criht~d lwlow
corresponds to a method for the Clam proof planning
system (van Hannelen et al., 1993):

Balancing Whf'Il a proof is !wglil¡ norTllal1 y r!WTr,

ale !lO hypotheses. fhey aIJpear ;tS the pruof procef~Js
thruugb appltcatioIls of Íntn,duct,iO!l n de') [Il ur¡]l'l iO

I

S. Negrete: Us;ng Difference Reduction for Gener;c Proof Search

be able to obtain connections across the sequent sym
bol through Rippling, we need to justify the number of
connections befo re starting the rewriting process. This
is achieved by combining the application of introduction
rules from the object logic and the framework theory to
the conjecture. The object logic introduction rules cause
the goal to fragment into sma11er judgements linked by
framework connectives and the framework rules intro
duce the new judgements ¡nto the hypothesis listo The
process continues until a maximum number of potential
connections is reached. This maximisation of potential
connections is called balancing a sequent.

Comparison The second stage consists of difference
unifying the goal and the hypotheses and ordering the
set of annotated goal-hypothesis pairs. The order given
to the set is induced by a measure of the difference be
tween the members of the pairo This way, the members
of the set of pairs will be selected in order.

Rippling The third stage consists of rippling both the
goal and the selected hypothesis using wave rules ex
tracted from the signature. Each time a wave rule is
applied to the hypothesis the rewriting of it is reflected
as a new hypothesis. The annotations are only kept on
the last hypothesis so that a new rule may be applied
to it.

Fertilisation The fourth stage consists of fertilising,
that is, making a connection. The process consists of
identifying connecting expressions in the sequent and
reducing the sequent by making the connection. Fer
tilisation is usually possible after a successful rippling
runo We have two ways of fertilising: backwards and
forwards.

If one expression is the goal or is the head of the goal
and the corresponding connecting expressions in the hy
pothesis is a hypothesis or the head of a hypothesis, thell
the connectíon can be made by backward-chaining the
goal ¡¡nd the corresponding hypothesis.

For example, if the connection in the context is a hy
[)ot.hesis on its own, the sequent is trivial:

. , , ,j r- k¡ --t ., , --t J

,['.b· 11\ i)O; lw::;i" culltdlItiug the l.oHIlCCti\;lJ i" d ('om11
", h " • 1 k 1''¡nflal j IHlg"lIwnt., ti!"!l thp hypot P:-;l" 1:-; \1·'(1),le ",',J,l (S

lS h dt'ri vuJ il¡ference rulp to m;lli:e t hp ('(¡fHiedioll \Vp

~o from:

, , ' . l J -t .. -'t j 1- k, -'t ' . . -t)

'" 	 ,il --t." --t j,k¡,'" ,kn r- in

If one of the connecting expressions is part of the body
of a hypothesis and the complementary expression is
a hypothesis, then the connection is made by forward
chaining, We go from:

hyp¡ j

hYP2 II --t ... j --t .. ·in

r- k

to:

hYPl J

hYP2 l¡ --t ' .. --t j --t ... ln

hYP3 II --t ... --t ln

r- k

hypothesis detail
After fertilisation, the branch of the plan is either

complete or there are new sequents to solve. In the
latter case the whole process is repeated,

Unblocking The system's strategy is to first reduce
differences with wave rules because it is the most con
strained way of reasoning about inference rule applica
tion. Not all rewrite rules parse into wave rules however.
For this reason, if the application of wave rules fails, the
unblocking stage tries to apply rewrite rules to unblock
the rewriting process and go back to rippling. As be
fore not a11 inference rules translate into rewrite rules
so, ir also rewrite rule application fails, unblock tries the
direct application of inference rules.

9.1 Analysing Logic Presentations

Logícs can be represented in framework theories by
defining tite signature of a logic with the varíous COIl

structors of the framework. In our system, \ve anal
yse logk presentations to extract rewrite rules and wave
rules from them as was mentioned carlier.

The rewrite rules are extracted from the :'lgllature dS

fullt,ws:

1. 	 For f'ach inferpnce rule, add rewrite rules corre
sponding w aH the possible ways the ínferencf' rule
i ,Jll be appÍleci iorwards (called left-to-right rule or
l'.. ni/e) aud ¡';,,¡'kwanls (called right-to-1Ct't tille ur
: l .. nl.le) , ¡¡,i" poce",; i1li1y produce twin .. n¡,[c,'i is('('

S. Negrete: Uslng Dlfference Reductlon for Generic Proof Search

2. 	Discard the rewrite rules whose Jeft hand side is
unconstrained.

3. 	Simplify the remaining rewrite rules where possible.

4. 	 Assign positive polarity to both sides of rl-rules and
negative polarity to both sides of Ir-rules.

5. 	Polarise (Le. add polarity annotations) to aH subex
pressions on both sides of the rewrite rules using the
polarity algorithm.

Unconstrained rewrite rules are those whose left
hand-side is applicable to any or almost any expression.
One of the usual constraints for rewrite rules in the lit
erature is that their left hand sides are not variables. In
the method we use to extract rewrites, there will never
be variables in the left-hand sides of the rewrite rules.
However, we still put a constraint on rewrite rules to
avoid rewrites that are practically unconstrained. Those
rules are the rewrite rules whose judgement in the left
hand side has a variable as argumento For example, after
step 1 aboye we obtain rules like:

true(A) => (true(A => B) -+ true(B»

We avoid this kind of rule because they are too uncon
strained.

The simplification of rewrite rules in Step 3 consists of
transforming the rewrites obtained in the previous steps.
This simplification step uses predetermined procedures
to obtain optimised versions of rewrite rules that are
more suitable for rippling. In the next section, when we
introduce non-standard rules, we will see an example of
such an optimisation for the Ve rule.

From the inference rules of 1 we obtain the foHowing
set of rewrite rules2 :

tru.(A- ::> B+)+ (tru.(A)- -t tru.(B)+)+ (rw-::>¡)

true(A+ ::> B-)- (tru.(A)+ -t true(B)-)- (rw-::>.)

tru.(A- A B-) tru.(B) (rw-I\.r)

true(A+ V true(A)+ (rw-Vi/)

2It is also possible to obtain rewrite rules from lemmata
proved by the user. These could also produce useful wave
rules. For example:

true(a => b) -+ true(b => e) -+ true(a => e)

produces twin wave rule (wr-trans):

+

9.
true(A+ v B+)+ ==- tru.(B)+ W

true(.L)- ==- tru.(A)- (rw-.L) di:
th
thThey correspond to =>i, =>e, Áel, Áer,vil,Vir and..Le in

that order. The versions of these rewrite rules in the op ru
posite direction are unconstrained so they are discarded. or
Inference rules Ái and Ve also produce rewrite rules but m

they are non-standard. We discuss these in the next
section. b

From the rewrite rules obtained we can now obtain rE

wave rules as follows: r€
ri

1. 	 Use Polarised Coloured Difference Unification to si
annotate both sides of the rewrite. ((

2. 	 Discard those wave rules which are not measure de v¡

dicreasing.

Following these steps we obtain fram the rewrites 1
aboye the following wave rules: ri

f1

'1true(1 ~¡ ::> Ir:...c21)- ==	 d
Cs

t
(wr-A.d p

(
(wr-A. r) s

d
(wr-V¡¡) e

~

(wr-virl t

The rule rw-..L cannot be converted into a wave rule
because its two sides are not d-unifiable.

Weakening Coloured Wave Rules
The wave rules aboye are all coloured wave rules. They
are used to ripple one or more colours (skeletons) at the
same time. When two wave rules are equal as rewrite
rules but the set of skeletons of one of them is a subset
of the set of skeletons of the other one, we say that the
wave rule with fewer skeletons is a weakened version (or
a weakening) of the other one. 'There are cases where
weaker versions of the wave rules originally computed
from a signature are needed. These can be obtained by
removing annotation corresponding to sorne skeletons
from the wave rules as nee"ded, with the condition that
at least one skeleton remains. For example, a weakening
of wave rule wr-=>i is:

-t true(B)+true(I.1..:.c¡ ::> B+ I 1+
C1

S. Negrete: Using Difference Reduction for Generic Proo' Search

9.2 Non-Standard Rules
We use sorne special kinds of rewríte rules which are
different from the usual definitíon of rewrite rules. In
this section we describe the characteristics which make
them non-standard. We will only talk about rewrite
rules but the same concepts extend to wave rules. AIso,
one rule can have more than one or all of the following
non-standard characteristics.

Improper Rewrite Rules The first non standard
rewrite rule that appears already in the list aboye, is
rewrite rule rw-J... This rule has a variable in the
right-hand side which does not appear in thf! left hand
side. We call this kind of rule a improper rewrite rule
(c.f. (Klop, 1992)). These rewrite rules introduce meta
variables in the proofs whose instantiation has to be
deferred.

Twin Rewrite Rules Rule I\i, when interpreted
right-to-Ieft in Step 1, is transformed into the rewrite
rule:

(true(B) -+ trueCA 1\ B)) ===} trueCA)

This rule does not convey the meaning of the intro
duction of a conjunction, that is, "to prove a conjunc
tion, it is necessary to prove each conjunct". We sim
plify this kind of rule in step 3 by creating a twin-rule
(twin rewrite rule, twin wave rule). Twin-rules are non
standard rewrite rules that rewrite an expression in two
different ways. The two ways are reflected in two copies
of the original expression. We represent them using a
key. For example, the twin rewrite rule corresponding
to I\iis:

I + + I + { true(A)+e
true(Acl 1\ l1c2) ===} t (B)+ 1 (4)

! ea rue e2

This rule rewrites a goal of the form trueCA 1\ B) into
two subgoals trueCA) and true(B). This is exactly the
effect produced by the original inference rule if used to
refine a conjunction-goal.

The rule for Veis one of the rewrite rules that can
be simplified in Step 3. This rule has a place-holder ex
pression (true(C)) to match and preserve the goal while
sorne hypothesis is eliminated. This type of rule is com
mon in natural deduction style presentations of logics.
The simplificatibn of the rule consists of identifying this
fact and converting the rule into one where the disjunc
tion (true(A V B)) in a hypothesis (negative polarity)
is rewritten into trueCA) and true(B) as in the rule I\í
mentioned aboye. Again we obtain a twin-rule:

true(A)~ el
(5)

true(B)-e2

Context Rewrite Rules
GQntext rules (rewrite or wave) are rules where a new
fresh variable is introduced in the rewritten termo The
name of the variable depends on the context where the
rewriting takes place. For example, the rule for exis
tential elimination in natural deduction style predicate
logic, encoded in LF as:

I1 p ,i"l1 q ,,,tru.(3(p)) -+ (11,,;tru.(p(t)) -+ true(q)) -+ true(q)

can be simplified as we did in the last section with
rule Veto obtain the following rewrite rule:

The expression i stands for a new variable fresh in
the context at the time of the application of the rule.
Variable i is generated when the rule is applied.

To see why this is needed we need to look at how
the inference rule is applied. First, the inference rule
ís forward-chained with sorne hypothesis involving 3,
3r sayo This will generate a new hypothesis h1 :

(TIt:;true(r(t)) -+ true(q)) -+ true(q). Then this hy
pothesis is used to refine the goal, true(z) say, and we
obtain a new goal: (TIt:;true(r(t)) -+ true(z)). Finally,
introducing TI and -+ we obtain the original goal true(z)
and a new hypothesis true(r(t)) where t is a new vari
able of type i in the contexto

Now, we will see two example th,eorems of how the
whole system works. .

10 Example Tbeorems and Proofs

This example is from propositionallogic. We will use in
the proof sorne of the wave rules introduced in the last
section. The statement is:

Example 1 true«a::::> b) 1\ (b ::::> e) ::::> (a ::::> e))

After providing polarity values, the system balances
the sequent. Constants a and e make connections across
the sequent symbol. Difference unification of goal and
hypothesis gives us the wave annotation that mark the
two skeletons (colours el and e2) that need to be rippled
to make the connections:

hYPl

(6)

The next step is to ripple the hypotheses. First, Rule
wr-I\el is applied:

S. Negrete: Uslng Difference Reduction for Generic Proof Search

) hYPI

(7)

The annotations corresponding to the colour just rip
pled are removed from hYPl. Now rule wr-Aer is applied
to hYPl to ripple C2:

(8)

Rippling continues using a weakened version of Rule
wr-Je on hYP2:

(9)

and then on hYP3:

hYPl true((a+ J b-)- Á (0+ J C-)-)
hYP2 true(a+ J b-)
hYP3 true(b+ .J:.-=-~),--___,

hYP4

;::::======::;{

)+

el} (10)

At this point there is no more rippling possible in
the hypotheses so rippling starts in the goal. The rule
applied is wr-Ji:

(11)

Now both colours are fully rippled and fertilisation is
possible with hYP5 leaving the following goal:

136

true(a)+ -> true(b)

true(b)+ -> true(c)

true(a)- (12)

f- true(b)+

Fertilisation is again possible using hypothesis hYP4:

true(a)+ -t true(b)

true(b)+ -t true(e)

true(a)- (13)
 o,

f- true(a)+

h

This sequent is an axiom and the proof is finished. h

We present now one more example. This time from h

a different logic, in order to show how our techniques
apply in other logics.

The modallogic system K from (Simpson, 1994) en
coded in LF is:

o, W Type

tr1Le W -+ o ~ Type

.L <>

Á,V,J 0--+0-+0

0,0 0->0

llA,B,oll%,wtrue(x,A) -> tTue(x, Bl -> tTue(x, A Á Bl

TlA,B,ollz,wtrue(x, A Á Bl -> true(x, Al

llA.B,oTl.,wtrue(x, A Á B) tTue(x, B)

llA,B,oTlz,wtrue(x, A) -> true(x, A V B)

llA B·allz·wtrue(x, B) -> true(x, A V B)

llA:B:allz:y,wtrue(x, A v Bl -> lle,o«true(x, A) -+

true(y,G)) -t (true(x,B) -+ true(y,G) -> true(y,G))

llA,B,ollz,w(true(x,A) -> true(x, Bl) -> true(x,A J B)

llA,B,ollz,wtrue(x, A J B) -> true(x, A) -> true(x, B)

llkoll.,W(true(x, A) -> true(x, .L» -+ true(x, ~A)

I1 ko ll z ,w(fI y ,w xRy -> true(y,A)) -+ true(x,DA)

llkollz,W true(x,DA) -+ xRy -+ true(y,A)

llA,ofIz,y,w true(y, A) -> xRy -+ true(x, oA)

fIA.B,ofI z . zow true(x, DA) -+ (fI/w true(y, A) -+ xRy ->

true(z, B)) -> trueCz, Bl
 t

The judgement true(x, A) in this signature means
"proposition A is true in world x". The wave rules ex
tracted from this signature are the following:

true(x,1 DA+ el I)+ ==>

======~el ~========================01

(wr-o¡)

(wr-Oe)

The symbols y ami x raye the same roles they had
in the rewrite rules we described in the previous sec
tion. We can now move on to the proof of the following
theorem:

Example 2 true(x, D(a J b) J (Da JOb))

As usual Balance is the first step:

S. Negrete: Using Difference Reducfion for Generic Proo' Search

)+1

rippling all skeletons first in the hypotheses (rules wr
De and wr-::J e) and then in the goal (rules wr-::Ji, wr

and wr-Di) we get:

tru e (x. O (a + :J b -) -)
II .w(xRy!l+ -; true(y¡,a+ :J b-)

fIU, ;w (XRY1)+ -; tTue(Yl, a)+ { 1 -; true(l/l, b)

f:-=====;;;;;:-;;;;;:-;;;;;:""""';;;;;:"-';;;;;:'-'-;;;;;:'-'=-;;;;;:::::"1:;..====:::;:;.{c;2;..1L ..

At this point weak-fertilise applies (Ilsing hYP3):

hYP3 fI YI ,w(xRYll+ -+ true(Y1,a)+ -; true(Yl,b)

hYP4 fI y2 ;w(xRY2)+ -; true(Y2,a)

hYP5 (XRY3)
(XRY3)+

hYP3 llY1;W(xRll1)+ -; t1'Ue(Y1,a)+ -; true(Y1,b)
hYP4 fI y2 ;w(xRY2)+ -+ true(Y2,a)

hYP5 (XRY3)
1- tTue(n, a)+

The first sequent is an axiom so method axiom closes
the branch. The second sequent can be weak-fertilised
with hYP4 giving the following:

hYP1 tTue(x,D(a+ :J b-)-)
hYP2 fI y1 ;w(xRYl)+ -; t7-ue(Y1,a+::l b-)

hYP3 fI y1 ;w(xRY1)+ -; true(Y1,a)+ -+ true(Y1,b)

hyP4 llY2'W (xRY2)+ -; trudY2, a)
hYP5 (xRY3)

(xRYa)+

At this point, met.hod axiom closes the brand!.
Using all possible rule applications generates a combi

natorial explosiono Our method reduces the number of
rewrite rules applicable through the use of wave rules.
Since potential connections are identified when hypothe
ses and conclusion are difference unified, rippling is
likely to isolate them and close a branch. There is no
absolute gua1'lantee that this will be the case though,
sorne times the combination of wave rule applications
does not lead to connecting forrnulae being isolated. In
these cases, backtracking is needed and big search may
noí be avoided with the current version of the methods.

Our methods need to be constrained further to ac
r.ount for these cases. At the moment, we only have
experimental evidence that it is a good idea to use them
and to continue developing them. They are also useful in

that they show that it is possible to develop techniqlles
that work across theories that can control search. More
work needs to be done in the details of the methods to
constrain further the cases when they don't work.

11 Conclusion

The development of framework theories has opened the
possibility of representing formal systems in a uniform
way. In these formalisms we can generalise current
knowledge on proof automation to encompass a wide
range of object theories. The work presented in this pa
per is an initial step to develop robust proof automation
techniques applicable to as many theories as possible.

Effective proof search in framework theories is a hard
problem. It requires selecting appropriate rules from
the framework theory as well as the instantiations for
these corresponding to the object-level rules. The ap
plicability of framework rules is high because they im
plement abstract operations independent of the object
logic -like variable instantiation (e.g. -+ 1) or term
generalisation (e.g. -+ r)- and hence are applicable to
a large number of object rules. Object level rules change
from theory to theory and present different shapes and
uses. This makes it difficult to abstract a method to
account for the way they are all Ilsed.

In this paper we have introdlleed a new approach to
proof search in framework theories. The approarh is
based on difference reduction and proof plans. The con
tributions of our work stem from experience in designing
and analysing a proof planning system for natural de
duction style presentations of logics in the Edinburgh
Logical Framework. We show that:

• 	 Proof plans and difference reduction are promising
paradigms to develop heuristics for proof search in
framework theories.

• 	 The extensions to the techniques of difference re
duction we developed in this work improve the
power of the existing techniques and raise impor
tant issues for the development of the theory of dif
ference reduetion.

Research on proof search guidance in framework logics
has focused so far on uniform methods based on logic
programming ideas (Helmink, 1991; Pym, 1990; Felt.y
and Miller, 1991; Pfenning, 1991; Dowek, 1991). These
methods guide search by exploiting powerful unification
algorithrns suitable to, type and higher order theories
and extend resolution ideas to framework logics.

Goal directed approaches to using signatures are diffi
cult when these specify theories where introduction and
elimination rules are involved. The problem is that elim
ination rules contain information related to the hypothe
ses and not to the goal. Any heuristic to apply them

137

S. Negrete: Using Difference Reduction for Generic Proof Search

needs to analyse the hypothesis líst to select the right
elimination rule, even in a backwards proof. This makes
uniform search paradigms such as resolution difficult to
control.

Our approach is different. First, we constrain search
at the framework level by using tactics that implement
basic meta-Ievel operations (e.g. rewriting, refinement,
elimination and introduction). The methods that spec
ify these tactics contain declarative heuristics in their
preconditions that control their applicability. In this
setting, the number of choices for the system (i.e. the
planner) is far less than the free selection of meta-Ievel
rules. Another advantage of this approach, inherited
from proof planning, is that heuristics are localised, ex
plicit and declarative so they are easily understood and
modified.

In (Helmink, 1991), the rules ofboth the meta and ob
ject levels are transformed into Horn clauses to enable
a goal directed search. As the proof proceeds, new en
tries in the hypothesis list are dynamically transformed
into Horn clauses too. This method provides a uniform
treatment of framework and object-Iogic rules under a
single Prolog style goal directed search method but it
also requires sorne tactical assistance to control search.

This system shares with our the idea of compiling the
rules into a form more suitable to proof search than
the original presentation. Helmink's system, however,
is tied to backwards reasoning by the resolution mech
anism wherea..'l our system combines other mechanisms
like forward chaining, balance, etc. Our system, on the
other hand, lacks Helmink's system's abilíty to dynam
ically improve the rule data base. Our system could
benefit from a similar approach by forming new wave
rules as new objects enter the contexto

In (Felty, 1989) object level theories are encoded in a
subset of Higher Order Logic (hhW

) and various tacti
cal theorem provers based on AProlog (Miller and Na
dathur, 1988)) are proposed for sorne logics. In (Felty,
1991) LF signatures are translated into hhw to take ad
vantage of the goal directed search mechanism already
developed for that theory.

In the system Elf (Pfenning, 1991), LF constructors
are given a direct operational interpretation. An ex
tension of Higher Order Unification is given in order to
cope with dependent function types. Elf is a program
ming language where tactical theorem provers can also
be programmed.

The resolution style mechanism in these systems is
useful to develop tactics but it is not enough to guide
proof search on its own. It is necessary to develop tac
tics to obtain a working theorem prover for a logic. It
is possible to encode LF rules in A-Prolog, as proposed
by Felty (1991), and set a theorem to be proven by the
Prolog-style mechanism of A-Prolog using a logic vari

138

able to leave the proof object uninstantiated. This ap B~

miproach would work only for a few examples but, even
19!for simple theorems such as 3:
Bi
Vi,x: np,S:i-+otr11,e(V(Ax:i'P(X) 1\ S(x)))
BI

the number of definite clauses to use in backchain lal
ing is too big or the depth-first search mechanism of in!
the language loops and does not produce a proof of the 19
theorem. Pa

There are examples of interactive theorem provers Bl
developed in AProlog in (Felty, 1989) but no generic SI
automatic theorem prover has been reported in any Jo
resolution-style system where proof automation tech líe
niques have been developed for many logics. p,

Elf and Felty's systems can be used as object level
G

provers for a planning system developed in AProlog with
et

our methods. Our system puts emphasis on the plan
D

ning system and use an object level prover designed in e
Prolog. The initial version of the planner we imple
mented is also built in Prolog but with the new AProlog st

H
it would be more nat.ural to implement the new version

Dof the planner and methods in this language to exploit
diits higher order syntax and unification capabilities. It
7,is possible too, to use sorne of the ideas in (Felty, 1992)
F,

to implement t.he rewriting system of our methods.
ir.Pym (1990) and Dowek (1991) also develop unifi
Ucation algorithm for type t.heories as basis for logic
~programming style search. Pym's work is on LF and
leDowek's for the Calculus of Constructions.
FThe work just described takes the 'first step towards

endowing framework logics with an operational mech Ir

anism to guide search. Helmink (1991) transforms the e;

inference rules encoded in a framework logic to sl1it a Si

i1Prolog style search mechanism; Felty (1989) proposes
v'the Prolog style representation and mechanism as the
Fframework itself; Pfenning (1991) adds a goal directed
Amechanism to the type theory to preserve its declarative
(properties.
(

1References fl
Avron, F., and I. Mason, Using typed lambda cal 4
culus to implement formal systems on a machine, Re 1
port ECS-LFCS-87-31, Depart.ment of Computer Sci t
ence, University of Edimburgh, July, 1987. 1
Basin, D., and T. Walsh, "Difference unification", in
Proceedings of the 13th IJGAI, International Joint Con
ference on Artificial Intelligence, 1993. AIso available as
Technical Report MPI-I-92-247, Max-Planck-Institute
für Informatik.
Basin, D., and T. Walsh, "Annotated rewriting in
inductive theorem proving", Journal of Automated Rea
soning, 16(1-2):147-180, 1996.

3We use standard notation instead of >.-Prolog's

S. Negrete: Using Difference Reduclion for Generic Proof Search

Basin, D., and T. Walsh, "A calculus for and ter

mination of rippling", Journal of Automated Reasoning,

1996. To appear 16(2-3), 1996.

Bibel, W., Automated Theorem Proving, Friedr.

Vieweg & Sohn, Braunschweig/Wiesbaden, 1992.

Bundy, A., A. Stevens, F. van Harmelen, A. Ire

land, and A. Smaill, "llippling: A heuristic for guid

ing inductive proofs", Artificial Intelligence, 62:185-253,

1993. Also available from Edinburgh as DAI Research

Papel' No. 567.

Bundy, A., F. van Harmelen, J. Hesketh, and A.

Smaill, "Experiments with proof plans for induction" ,

Journal of Automated Reasoning, 7:303-324, 1991. Ear

líer version available from Edinburgh as DAI Research

Paper No. 413.

Constable, R. L., S. F. Allen, H. M. Bromley

et al.) Implementing Mathematics with the Nuprl Proo!
Development System, Prentice Hall, 1986.
Coquard, Th., and G. Huet, "The calculus of con
structions", Information and Computation, 76:95-120,
1988.
Dowek, G., Démonstration Automatique dans le Calcul
des Constructions, These de doctorat, Universíté París
7, décembre, 1991.
Felty, A., Specifying and implementing theorem provers
in Higher Order Programming Language, PhD thesis,
University of Pennsylvania, 1989.
Felty, A., Encoding dependant types in an intuítíonístic
logíc, Technical Report 1521, INRIA, 1991.
Felty, A., "A logic programming approach to imple
menting higher-order term rewriting", in Eriksson, L-H
et al., editors, Second International Workshop on E.-rten
síons to Logic programming, Vol. 596 of Lecture Notes
in Artificial Intelligence, pp. 135-161, Cambridge Uni
versity Press, 1992.
Felty, A., and D. Miller, "Encoding dependent type
Á-calculus in an intuitionistic logic", in Huet, G., and
G. plotkin, editors, Logical Frameworks, pp. 215-251,

Cambridge University Press, 1992.

Harper, R., F. Honsell, and G. Plotkin, "A

framework for defining logics", Journal of the ACM,

40(1):143-84, 1992. Preliminary version in LICS'87.

Helmink, L., "Goal directed proof construction in type

ceedíngs of the Fifih Internat·io.'lal Logic Programmíng
Conference/ Fifih Symposium on Logic programming,
MIT Press, 1988.

Negrete, S., Proof planning with logic pre,~entations,

PhD thesis, Department of Artificial Intelligence, Uni

versity of Edinburgh, May, 1996.

Pfenning, F., "Logic programming in the LF logical

framework", in Logical Frameworks, pp. 149-182, Cam

bridge University Press, 1991.

Pym, D. J., Proofs, search and computation in gen

eral logic, PhD thesis, universíty of Edinburgh, 1990,

Available as LFCS report ECS-LFCS-90-125.

Richards, B. L., l. Kraan, A. Smaill, and G.

A. Wiggins, "Mollusc: A general proof development
shell for sequent-based logics", in Bundy, A., editor,
12th Conference on Automated Deduction, pp. 826-830,
Springer-Verlag, 1994. Lecture Notes in Artificial Intel
ligence. Vol. 814. Also available from Edinburgh as
DAI Research paper 723.
Simpson, A. K., The Proof Theory and Semantics of
Intuitionistic Modal Logic, PhD thesis, Department ol
Computer Science, University of Edinburgh, 1994.
van Harmelen, F., A. Ireland, A. Stevens, S. Ne
grete, and A. Smaill, The Clam proo! planner, u.~er

manual and programmer manual (version 2.2), technical
report, DAI, 1993.

...--------.	Santiago Negrete was awarded a BSc by
Mexico's National University (UNAA1) in
1990 and a PhD by the Department ofArti
ficiallntelligence, University ofEdinburgh
in 1997. He worked in industry as research
assistant in an Artificial Intelligence project
in !BM-México (1988-90); he currently lec
tures at Instituto Tecnológico y de Estudios

L-_____---J Superiores de Monterrey in Morelos and

works as consultant for Infomedia SAo de e V. !lis research in ter
ests include formal methods, computational aspects ofrepresenta
/ion and reasoning with mathematical concepts, type theory and
practical applications ofthem al!.

theory", in Huet, G" and G. Plotkin, editors, Logícal
Frameworks, CUP, 1991.
Klop, J. W., "T(¡!rm rewriting systems", in Abramsky,
S., D. Gabbay, and T.S.E. Maibaum, editors, Handbook
of Logic in Computer Science, Volume 2, Vr>l 2, pp.
1-116. Claredon Press, Oxford, 1992.
Martin-Lof, P., Intuitionistic T,'lJpe Theory, Bibliopo
lis, Naples, 1984. Notes by Giovanni Sambin of a series
of lectures given in Padua, June, 1980.
Miller, D., and G. Nadathur, "An overview of
ÁProlog", in Bowen, R., and K. Kowalski, editors, Pro

~.~~~~"..~-J
~.~j

<'::;;;,4-0-~

139

	126_ART. 1
	127_ART. 1
	128_ART. 1
	129_ART. 1
	130_ART. 1
	131_ART. 1
	132_ART. 1
	133_ART. 1
	134_ART. 1
	135_ART. 1
	136_ART. 1
	137_ART. 1
	138_ART. 1
	139_ART. 1

