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Abstract 
In this paper a new approach to generic theorem prov
ing is introduced. We present a set 01 techniques to 
guide prool search in framework theories that works with 
different object theories encoded. The techniques are 
based on the principIe 01 Difference Reduction and pro
grammed in a Proof Plans environment. We use pre
sentations ollogics in natural deduction style to test our 
techniques. Two example theorem prools are included to 
show how the whole setting works. 

Keywords: 
Framework theories, proof search, rewrite rules, unifica
tion, natural deduction. 

1 Introduction 
Logic has proven to be of prime importance in many 
are~ of Science and, in particular, in Al and Computer 
Science. Many logics have been developed to contend 
with the various kinds of reasoning required by a vast 
number of research areas. 

Automatic theorem proving techniques for these log
ics are often developed in an ad-hoc way for particular 
theories in which specific problems are representable. 
Framework theories (Harper et al., 1992; Constable et 
al., 1986; Coquand and Huet, 1988), have been pro
posed as meta-mathematical theories in which other the
ories may be represented and reasoned with uniformly. 
Hence, automating proof search in a framework theory 
gives the possibility of abstracting the proof process and 
make it applicable to a larger number of logics. 

In this work, we introduce an approach to proof search 
in the Edinburgh Logical Framework (Harper et al., 
1992) that is not hard-wired to a particular object logic. 
The design is based on guiding proof search through 
constrained rewriting. The rewriting technique is called 
Rippling (Bundy et al., 1993) and it has been previously 
applied to the domain of inductive proofs. 

Rippling is implemented within the framework of 
Proof Plans (Bundy et al., 1991). This framework con
sists of building proof plans for theorems from abstract 
specifications of proof techniques called M ethods. Meth
ods correspond to tactics progra,rnmed in a Proof Editor 
where the theorem can be represented and where a proof 
plan can be realized to construct the actual proof for the 
theorem. 

Our work is focussed on logic presentations. These 
are logics encoded in framework theories. We use logics 
in natural deduction style because their presentations 
share a common structure and are particularly suitable 
to extract rewrite rules from their inference rules. 

We have extended the Rippling technique in various 
ways to handIe this more general case. A feature of our 
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approach is that, since the rewrite rules used in Rippling 
are extracted from the logic presentation in the frame
work theory, the proof mechanisms are independent of 
the logic at hand. 

We present an example proof where all our techniques 
are used. Examples in other logics and a more technical 
exposition of the techniques described here can be found 
in (Negrete, 1996). 

2 The Edinburgh Logical Framework 

The Edinburgh Logical Fmmework (LF) (Harper et al., 
1992) is a formal system spedfically designed as a frame
work theory. It is a typed lambda calculus with depen
dent function types whích capture the notion of infer
ence rule in a natural way. Object theories are repre
sented in LF by spedfying signatures. These are sets 
of typed identifiers whích define ter m and formula con
structors of the theory (e.g. connectives, operations, 
constant terms, etc.) and constants whose types repre
sent the inference rules of the object theory. It is par
ticularIy useful to represent logics in natural deduction 
and Hilbert. styles (Avron et al., 1987). In our particu
lar case, we call1ogic presentations those signatures that 
represent logics. In Figure1 there is an LF signature for 
intuitionistic propositional logic: 

2.1 Judgements as Types 

Logics are represented in LF by exploiting the 
judgements-as-types paradigm whereby judgements are 
assodated with the type of their proofs (Harper et al., 
1992). In order to represent theories in LF, types of the 
framework are associated to each syntactic category of 
the language being represented (object language); then 
constants are declared to each expression-forming con
struct of the object language in such a way that a bijec
tive correspondence between expressions of the object 
language and canonical forms of the right type is estab
lished. 

In Figure 1, the syntactic category represented as LF 
type o corresponds to the type of propositions. The 
signature also contains types for the connectives ::J, 1\, 

V and constant .l. 
LF has only one type constructor: II. It is a depen

dent function type constructor abbreviated as -+ when 
the range is independent of the domain. II is used to 
express univers,al quantification and implication. 

In LF, types are used to represent judgements and 
their inhabitants correspond to their proofs. So, rather 
than using the type system to represent formulae under 
the propositions-as-types paradigm (Martin-Lof, 1980), 
a judgement constructing function is declared in order to 
build basic judgements (called atomic). In the signature 
in Figure 1, the constant true is such a function. An 
atomic judgement corresponding to that signature is for 

o Type 

true o --T Type 

J./\,V o-to-+o 
J. o 

UA.B,o(true(A) --T tru.(B» --T trueCA J B) 

UA,B,otrue(A J B) --T trueCA) --T tru«B) 

UA B'otrue(A) true(B) --T trueCA /\ B) 

UA:B:otrue(A /\ B) --T trueCA) 

UA,B,otrue(A /\ B) --T true(B) 

UA,B,,,true(A) --T trueCA v B) 

U A B'otrue(B) --T trueCA V B) 

IlA:s:"true(A v B) --T IlC:o«true(A) --T true(O» 

--T (true(B) --T true(O» --T true(O» 


/lbs IlA,otrue(l.) --T trueCA) 

Figure 1: An LF signature for intuitionistic logic 

example: 
true(a ::J (a ::J b))) 

The type constructor of LF aIlows us to specify two 
more kinds of judgement: hypothetical (e.g, P -+ Q 
with P and Q judgements) or schematíc (e.g. IIx:oP(x) 
with o a type and P a judgement). Type constructors 
associate to the rightj for example, IIa:oIIb:oP -+ Q is 
equivalent to (IIa:o(IIb:o(P -+ Q))). 

Judgements may represent theorems of the logic such 
as: 

IIA:oIIB:otrue(A ::J (A ::J B) ::J B) (1) 

where A and B are abstractions in type o which is de
fined to be the type of propositions. 'true is a judgement 
valued function from o into Type, the kind that contains 
all types. Schematic judgement 1 states that it is true 
that 

A::J (A ::J B) ::J B 

for all propositions A and B. It can be read as an ax
iom schema. Judgements may also be used to represent 
inference rules like: 

IIA:oIIB:otrue(A) -+ trueCA ::J B) -+ true(B) 

which states that if A and A ::J B are true, then B 
will also be true for all propositions A and B. The usual 
format of inference rules is: 

TIA,,"'" TlAn,oh(A ... ,An ) -f 

" 
--T Jm(A" ... ,A,,) --T K(A" ...• A n ) 

where Ji and K are judgement functions. We 
call IIAi the quantification part of the rule; we call 
Ji (Al, ... ,An ) the judgements in the body of the rule 
and K(A1 , •.. , An) the head of the rule. 

In Figure 1, there are inference rules for implica
tion elimination and introduction. Notice that inference 
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rules depend on other type definitions in the signature. 
Given a signature for a specific logic, LF can be used 
as a meta theory to set up theorems of the logic and 
verify them by testing the corresponding judgement, as 
a type, for inhabitance. 

3 Proof Plans 
We use Proo/ Plans as a paradigm to develop proof
automation techniques. Proof Plans consists of using a 
planner to build a proof plan out of methods. Meth
ods allow us to separate the proof building procedure 
from the reasoning required to select a proof technique. 
Writing methods amounts to specifying when a proof 
technique should be used as opposed to verifying if the 
technique is applicable, whích is what a proof editor 
does when it tries to apply a tactic to the current proof 
state. 

Building proof plans from methods has the advantage 
of not having to do all the operations needed to apply 
the tactics. The architecture of the methods enables a 
declarative specification of the heuristics for the tactics 
while doing heuristic reasoning. This way, it is easy 
to edit and experiment with the heuristic information 
without altering the tactics themselves. 

The methods we present in this work are designed for 
proof planner called MiniClam which is related to Clam 
(van Harmelen et al., 1993). The proof plans built by 
MiniClam are applicable in a version of the Edinburgh 
Logícal Framework programmed in the Mollusc proof 
editor (Richards et al., 1994). 

We present a setup whereby using proof plans we can 
reason about proofs in a framework theory by interpret
ing inference rules as rewrite rules and using rippling 
and other techniques to automate the process of isolat
ing connecting expressions1 (see Section 4 below). 

This approach is based on the principIe of difference 
reduction described in Section 5. Difference reduction 
provides a pattern to develop different search strate
gies. By alternating difference unification and control 
techniques (such as rippling) to reduce differences, we 
can build general methods to plan proofs in frameworks 
theories. A Proof Plan in our setting will be composed 
mainly of methods that apply various difference reduc
t.-.g techniques based on rewriting. These methods will 
use rewrite rules extracted from the inference rules of 
the particular logic represented in the framework. 

We take a n.ew approach to generic proof search. We 
develop a system that obtains guidance from the object 
level logic by extrading rewrite rules from each logic 
presentation. The rewriting process is guided by a gen
eral strategy based on a special type of unification caBed 
polarised coloured dífference unification (see Section 8). 

lThe notion of connecting expressions ís taken in the 
sense of the Connection Method by Bibel (Bibel, 1982) 

The system obtained is parameterised by the logic pre
sentations of the framework theory and is therefore able 
to do a more specialised search guidance in each logíc 
than a system based on uniform search. 

In our system, the techniques used and the rewrite 
rules extracted define a different (but related) search 
space than the one induced by the original problem. 
Search in the new space is more tractable and proofs 
are easier to find. 

4 Connecting Expressions 
\Vhen doing search in framework theories, we often find 
that we want to produce connections between hypothe
ses and conclusions (Le. identical expressions on both 
sides of the sequent) to obtain axioms. The word con
nection here is taken by analogy to the Connection 
Method (Bibel, 1982). In this method, complementary 
formulae (connection) are identified in a matrix-based 
description of the conjecture. Theoremhood there is de
fined in terms of paths of connecting formulae through 
the matrix. In order to obtain such complementary ex
pressions in our work, we first look for them as subex
pressions of the current hypotheses and goals at sorne 
step of a proof. Once we have located the two expres
sions that might make a connection, we start applying 
inference rules that isolate the desired formulae in the 
appropriate side of the sequent. 

Connecting formulae are identified by a polarity value 
assigned to each expression. Polarity values can be +,
and ± and are assigned by a special algorithm (see Sec
tion 7). Only unifying expressions with different polarity 
values constitute a potential connection. 

5 Difference Reduction 
Logics are usually represented in proof editors as a set of 
axioms and inference rules. Inference rules are the tools 
to convert one proof state into another and axioms just 
tell us when to stop -when building a proof backwards 
(from theorem to axioms)- or where to start -when 
building it forwards (from axioms to theorem). 

In our system, proofs are built backwards from con
jectures to axioms (Le. sequents -in the sense of the 
Sequent Calculus- where the formula on the right-hand 
side (i.e. the goal) occurs in the left-hand si de (i.e. the 
context)). To obtain axioms from the conjecture, one 
must decompose it by applying inference rules back
wards. Each inference rule application transforms one 
proof state into another 'and expands the proof tree. 
Guiding search in a proof consists of deciding what in
ference rule is the most appropriate to transform every 
state into another one closer to an axiom. 

The proof plans built by our method are based on 
rewriting operations as well as single inference rule ap
plications. The operations are tactics that apply the 
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appropriate inference rules to produce the desired effect 
in the proof. 

In order to select each rewriting operation the system 
uses the principIe of Difference Reduction (Basin and 
Walsh, 1996b) which consists of two steps: 

1. 	 Compare two expressions using a special unifier 
called difference unifier (Basin and Walsh, 1993) to 
obtain annotations over the expressions. These an
notations indicate the parts of the expressions that 
would have to be removed (the difference) in order 
to unify them. 

2. 	 Use rewrite rules to successively rewrite the differ
ing expressions in such a way that the difference 
between the two is reduced at each step. 

Annotations consist of boxes which mark the differ
ring parts and underlining that marks unifying subex
pressions. The boxed expressions that are not under
lined are called wave fronts; the underlined expressions 
that are not boxed form the skeleton seto These anno
tations may be combined to stress the unifying as well 
as the differring substructures between two terms. For 
example, the following are two difference-unified terms: 

true (\ @JJ A ~ 1) 
(2) 

true (~) 

In these two expressions, the skeleton set is 
{true(a),true(c)}. We can also separate the two terms 
in the skeleton set and consider them as part of two 
separate skeleton sets: {trueCa)} {true(c)}. In order to 
represent this on the expressions themselves, we imag
ine the skeletons to have colours and we annotate colour 
sets next to the wave fronts: 

true 

(3) 

true 

Rere, CI and C2 are meant to be colours. The unifi
cation algorithm that produces coloured (and polarity) 
annotations is called Polarised Coloured Difference Uni
fication. It is d~scribed in Section 8. 

6 Rippling 
To monitor the movement of the difference, indicated 
in the original expression by the annotations, we an
notate the rewrites as well. The annotations in the 
rewrites describe how the difference moves through the 
rule and help us to select the rules that will move the 
difference in the right direction. This kind of rewrite 

rule is caBed wave rules and the rewriting process in
volving wave rules is caBed rippling. The process con
tinues until no more difference reduction can be done. 
Annotations also permit the definition of a measure of 
annotated terms. Wave rules are aB by construction 
measure-decreasing rewrite rules and hence rippling is 
guaranteed to terminate (Basin and Walsh, 1996a). 

Since we are interested in transforming a sequent into 
an axiom, we difference-unify the goal and the hypothe
ses of sequents. The rewriting operations selected by the 
planner are those that reduce the difference between the 
goal and the hypothesis closest to it in terms of similar
ity. 

Rippling selects wave rules by matching their left
hand sides with the target expression in the usual way 
for rewrite rules; however, matching with annotations 
guarantees that the appropriate structures of the tar
get expression will be shifted. Successive rewriting with 
wave rules may lead to the complete elimination of the 
difference between induction hypotheses and conclusion 
and hence to an axiom. This form of rewriting is more 
constrained than the unannotated kind and increases 
the chances of attaining a desired state. 

7 Polarity 
An important concept in our work is that of polarity. 
We use polarity annotations on framework theory ex
pressions to make sure that rewriting operations in the 
plan correspond to sound inference erule applications in 
the proof editor. We also annotate object-Iogic expres
sions with polarity annotations derived from the corre
sponding signature heuristic to restrict difference uni
fication to focus only on expressions that are likely to 
produce axioms. The use of polarity in this way is a 
novel technique. The algorithm that assigns polarity 
to subexpressions of formulas is described in detail in 
(Negrete, 1996). 

In Section 4 we mentioned that connecting expres
sions are identified by their polarities and the assign
ment of polarity also plays a role in the selection of 
wave rules. The assignment of polarity values to subex
pressions depends on the particular logic a formula cor
responds too 

Inference rules may be used' to refine the goal or may 
be applíed forward to hypotheses. For this reason, from 
each inference rule two rewrite rules may be extracted: 
one that corresponds to the applícation of the inference 
rule left-to-right (forwatd-chain) and one right-to-Ieft 
(refine). 

We require wave rules to rewrite subexpressions of 
goals or hypothesis. For this reason, we need to be able 
to foresee which side of the sequent a subexpression po
tentially belongs to in order to know what wave rules are 
applicable to it. The simplest cases are the constructors 
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of the framework theory. In LF, a goal is assigned a 
positive polarity; we mark this with a positive sign as a 
superscript as follows: 

1- ('- .+)+11 ~12 

Inference rules are applied to goal s right-to-Ieft, so 
rewrite rules obtained from them will have positive po
larity to match a goal. Since the constructor ~ can 
be introduced in such a goalleaving Ít to the left of 1
and therefore inference rules are applicable to it left-to
right, Ít is assigned negative polarity. When used as a 
hypothesis, the polarities are reversed: 

The cases for constructor II are similar: 

and 
II",:o+P(x)- 1- G 

The polarity values for o are added for completeness but 
are not used in practice, so we will not write them from 
now on. This way, an expression whose polarity is neg
ative can be rewritten by a wave rule that encodes a 
forward-chaining operation. Conversely, positive polar
ity allows rewriting that encodes backward-chaining. 

We also annotate expressions at the object level. This 
way, we can make a finer analysis to find connections 
at the object level. The potential connections can be 
simplified by rewriting until they become judgements of 
their own and are suitable for ferlilisation (simplification 
of a sequent) as described in Section 9. 

The assignment of polarity values depends on the 
encoding of the logic in the framework theory; differ
ent logics lead to different polarity assignments. We 
have developed an algorithm to assign polarity values 
to subexpressions of a formula with respect to a partic
ular signature. Since the computation of these values 
may be computationally expensive, we do the assign
ment of polarity at the comparison stage explained in 
Section 9. When wave rules are extracted from the sig
nature, they are also annotated to record the transition 
of polarities through rewriting. This means that rippling 
spreads both wave and polarity annotations through the 
planning proces's. 

Our polarity algorithm assigns three polarity values 
to object level expressions: and ±. The first two 
correspond to the ones described aboye for the frame
work level. The value ± means that the algorithm could 
not assign a definite value to the subexpression, either 
because the signature does not provide for it or because 
it has both positive and negative polarity. Two polarity 
values are compatible if they are not either two pluses 
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or two minuses. See (Negrete, 1996) for a more detailed 
discussion of polarity and its properties. 

Terms with polarity annotations are said to be po
larised. Polarity values at the object level are used by 
the PCDU algorithm (described in the following section) 
to identify potential connections between two polarised 
terms. Two polarised terms with this property are said 
to be compatible modulo polarity. 

8 	 Polarised Coloured Difference 
U nification 

In this section we define formally the concepts of po
larised annotated term and the algorithm for polarised 
coloured difference unification (PCDU) mentioned in 
Section 5. We first define what an annotated term 
is. Then, the concept of difference-unifiability is intro
duced. Finally, the full algorithm for PCDU is given. 
Again, to see the properties of the algorithm, the reader 
is referred to (Negrete, 1996). 

8.1 Coloured-Annotated Terms 
A polarised term is a term that has been assigned a po
larity value; this is represented by a term of the form: 
r, t+, t± where t is a regular termo We call a term 
algebra with polarity values assigned to all terms and 
subterms, a free polarised term algebra. We will use the 
function pol (P) to refer to the polarity of the polarised 
term p and function term(p) to refer to the term re
sulting from removing the polarity value from polarised 

r 

term p. 
The following is a definition of the set of polarised 

coloured annotated terms (pcats). We define the syntax 
of polarised terms with wave annotations: 

Definition 1 Let:E be a signature; let P == PTerm(:E) 
be the free polarised term algebra over :E, V P a set of 
variables and p a polarity sign; COL a set of colours. 
We inductively define a hierarchy of sets of coloured
annotated terms, ATe, indexed by colour sets e ~ 
COL. 

• if Xv E VP then E ATe. 

• if tP E P then E ATe· 

• if ati E ATe then f(at I , ... , atn)P e E ATe 

e, then 

• Nothing else is in ATe. 

Definition 2 Given an annotated term as above, we 
can define what its skeleton is. The skeletons of a term 
are parameterised by colours. Jf c is a colour, we define: 
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• skel(~,c) = {} if e fj. e 

• skel(X!..c,c) = {XP} if e E e,xP E VP. 

• skel(~,e) = {tP} if e E e,tP E P. 

• 	 skel(f(atl, ... ,atn)Pe,C) 

skel(at i , en if e E e. 


• skel(1 f(atI, ... ,atn)P I ,e) skel(atl,c) U ... U 
,=======:::::!(C 

skel(atn,e) if e E e. 

Definition 3 The fu,nction erase removes all annota
tion from an annotated term: 

• erase(XPd XP 

tP• erase(~) = 
....... 	 1 


• erase(f(tn)Pe) = f(erase(tn))P 

• erase([2Q~~2t) = f(erase(tn))P 

The set ATelt = {s E ATe I erase(s) = t} is the set 
of all annotated terms with the given erasure. 

8.2 	 Polarised Coloured Difference 
U nifiability 

As we saw in Section 5, polarised annotated terms are 
used to express differences in structure and proof-role of 
two terms. The wave annotations highlight the struc
tural variance between them while the polarity values 
indicate the proof context in which they occur. 

For our work, we need to identify terms which consti
tute potential connections. We therefore need to define 
our difference unification algorithm to unify terms which 
are structurally similar as in standard difference unifi
cation, but also whose skeletons have compatible polar
ities. We express this more formally in the definitions 
below. 

The symbols o and • represent compatible polarities: 
{+,-},{+,±},{-,±} and {±,±}. 

Definition 4 The relation tI == t2 over polarised terms 
is true if tI and tz are equal modulo polarity compatibil
ity. That is: 

2. f(a;)O == f(b;.)· Vi.ai == bi. 

This definition is now extended to sets of polarised 
terms as follows: 

Definition 5 Two sets of polarised terms P and Q are 
compatible modulo polarity, expressed as P ~ Q, if: 

P ~ Q if (Vp E P.3q E Q.p == q)I\(Vq E Q.3p E P.p q) 

The following definition states when two polarised 
terms are pcd-unifiable. 

Definition 6 Two polarised terms tI and tz are pcd
unifiable if there are two annotated terms atI E ATeItI 
and atz E ATeltz for some set of colours e and a sub
stitution r such that for all e E e 

skel(atI,e)r ~ skel(at2,e)r 

There may be more than one way in which terms may 
be pcd-unifiable. Just as in difference unification, there 
may be severa! pair of annotated terms which fulfill the 
requirements of Definition 6. 

The algorithm presented in the next section com
putes, for any two terms tI and t2, all variable sub
stitutions that fulfill Definition 6. It has been adapted 
from the description of the algorithm for difference uni
fication presented in (Basini and Walsh, 1993). 

8.3 	 PCDU Algorithm 
The following definition gives the rules for polarised 
coloured difference unification. The algorithm is defined 
as a non-deterministic set of transformation rules appli
cable tú triples (a, S, r). a is a substitution of anno
tated terms for variables; we call it an annotated substi
tution. S is a sequence of tuples (a, b, A, B), called pcdu
problems. a,b are terms and A,B are variables where 
annotated terms will be incrementally instantiated (i.e. 
partial annotated terms with variables will be instan
tiated in them as new tuples are gqnerated). We call 
sequence S the problem sequence of the triple. r is a 
variable substitution of plain terms. We call r the term 
substitution of the triple. 

Given a colour set e, the algorithm starts with 
({},{(a,b,A,B)},{}) and ends with (a, {},r). Aa and 
Ba will be the annotated terms corresponding to a 
and b and r will be the term substitution of the pcd
unification. 

The algorithm always gives an answer. If two terms 
tI and t2 don't difference-unify, the resulting annotated 
terms are: !!0 and~. This algorithm finds all common 
skeletons to the two terms and assigns them a colour; 
therefore, if no colour is assigned the terms are not dif
ference unifiable. 

The following definition gives a set of transformation 
rules. They take a triple --as defined above- and pro
duce another one. The rules have the form: 

TI ::::} T2 cOl1straints: CONS 

, and denote the transformation of a triple matching TI 
into triple Tz provided that eoN S hold. Constraints of
ten rely on variables being instantiated in a state ahead 
of the present one, therefore, they have to be verified 
post-hoc when the information is available. They are 
only well-formedness constraints. 
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When the rules are applied exhaustively to a triple 
({}, { (a, b, A, B)}, {}) the final triple will contain the 
variable substitutions necessary to make a and b pcd
unifiable according to Definition 6. These rules are non
deterministic; the final triples given by all possible se
quences of applications correspond to all possible pcd
unifications of a and b. 

Definition 7 Jf at l , at2 E ATc jt for some t, then 
the function superpose(at l , at2) is defined by pattem
matching: 

1. superpose(~l' tPc 2 ) = ~1 UC2 

2. superpose(~c¡' f(b;')P c)= 

f(superpose(an , bn))P 
~--~~--~~~~-C1UC2 

3. superpose(lf(~)pl ,lf(~)pl )= 
C 1 C 2 

superpose(f(~)P,f(~)P) 

4· superpose(ti, t~) = erase(tf)0 

Definition 8 Jn the' following COL is a given set of 
colours, e E COL, C ~ COL; PI and P2 are atomic 

--+ --+
polarised terms, f is a function. A,B ,An and Bn are 
annotated-term variables symbol. X and X

--+ 
n are term 

variables. The symbols o and • represent compati
ble polarities as above. The notation S {PI, ... ,Pn} is 
used to represent the result of appending pcdu-problems 
PI, ... ,Pn at the end of sequence S. We define the tmns
fonnation rules for the algorithm as follows: 

• 	 DELETE 

(a,S{(aO,a·,A 1 ,A2 )},T) ~ 


(a{!L{e} / Al, !L{e} / A 2 }, s, T) 

constraints: constant(a), selecLcolour(c, COL). 


• 	 DECOMPOSE 
(a, S{(f(a,;)O, j(~)., A, B)}, T) ~ 

(a{f(x,:)O /A,f(-¡¡;')· /B},S{(ctn,bn,An,Bnh,T) 
--e~e 

constraints: e = coL CAn ), e = colCBn) 

• 	 ELIMINATE-L 

(a,S{(XO,b·,A,B)},T) ~ 


(a {XC {e} / A, ~{e} / B}, S, T{ b/ X}) 
constraints: either {bjX} E 'T 01' X ~ dum('),selec1....colou,r(c,COL) 

• 	 ELIMINATE-R 

(a,S{(aO,X·,A,B)},T) ~ 


(a{!L{e}/ A, X· {e} / B}, S, T{a/ X}) 
constraints: either {a/X} E T 01' X é rl()mfT),~f'If'cI rnlo'p'(c. COI,', , 

• 	 IMITATE-L 
(a,S{(XO,j(~)·.A,B)},T) ~ 

(a{XO e/A, j(-¡¡;'). / B}, S{(X n , bn , i;;',-B;;)}, T{f(A~ J/ X}) 

constraints: e = colCAnl. e = ~-~I(B:) and 


either {f(;;¡-;;)/X} E T 01" X i dom(T). 


• 	 IMITATE-R 

(O",S{(f(a,;)O X·.A,B)},T)-':

(a{f(x,:)O e/A, x· e / B}, S{ (~-;;-:X-~413;:)}. T{f(H:)/ X}) 

constraints: e = ~(An ), C' = ,-ol"(B:) and 


c]ther {f(H,;J/Xj E T 'll" X ~ dom(T) 
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bl 
• 	 HIDE-L 

(a,S{(f(a,;)O,b,A,B)},T) ~ bl 
(a{1 j(x,:)O I /A,Sup/B},S{(an,b,An,Bn)},T) 	 ce 

e 
constraints: Sup = superpose(B¡), e = col(Sup) i: 0 	 is 

n
• 	 HIDE-R 

(a,S{(a,j(~)O,A,B ,T) ~ tl 
/B}. Sira, bn , An, B n )}, T) 	 tl 

!======!e 
constraints: Sup = superpose(Ad, e = col(Sup) i: 0 	 fr 

d 
p 

The function col returns the set of colours of an an
notated term and is defined as: 

col(tc) = C ( 

In the selecLcolour relation, the first argument is a u 

member of the set of colours in the second argumento 
The functíon dom returns the domain of a substitu

tion, that is, the set of variables to which terms are 
oassigned. 

9 Description of the Overall 
Methodology 	 g 

t 
Difference reduction provides a pattern to develop dif a 
ferent search strategies. By alternating difference unifi a 
cation and control techniques to reduce differences, we t 

can build general methods to plan proofs in frameworks t 

theories. The preferred control technique is rippling be

cause it is the most constrained. After rippling, unanno

tated rewriting is attempted. Finally, if the two previous 

options are not successful, inference rules are applied di

rectly. 


This hierarchy means that in the best cases, when 
only rippling steps are used, the search required to prove 
a theorem will be ver y small. In the places where rip
pling does not apply, the system may resort to more 
expensive steps to continue with the proof and try to re
sume rippling. This way, our system applies a well con
strained methodology, like rippling, to produce proofs 
without much search but, when the methodology is not 
appropriate to a particular case, it gmcefully degener
ates into unconstrained search. From this point of view, 
our system i¡,; a hyhrid approach to generic proof search 
guidance between specific systems with little search and 
scope, and uniforIll proof search methuds which are ver) 
general hut produce big "earel! spaces. 

As we said bdore, we use prr¡of plalls as a framcwork 
to implement nur tcchniqucs. In the implemelJtatíClll 
in (Negrete, 1996), roughly eac:h stagp ck:-;criht~d lwlow 
corresponds to a method for the Clam proof planning 
system (van Hannelen et al., 1993): 

Balancing Whf'Il a proof is !wglil¡ norTllal1 y r!WTr, 

ale !lO hypotheses. fhey aIJpear ;tS the pruof procef~Js 
thruugb appltcatioIls of Íntn,duct,iO!l n de') [Il ur¡]l'l iO 

I 
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be able to obtain connections across the sequent sym
bol through Rippling, we need to justify the number of 
connections befo re starting the rewriting process. This 
is achieved by combining the application of introduction 
rules from the object logic and the framework theory to 
the conjecture. The object logic introduction rules cause 
the goal to fragment into sma11er judgements linked by 
framework connectives and the framework rules intro
duce the new judgements ¡nto the hypothesis listo The 
process continues until a maximum number of potential 
connections is reached. This maximisation of potential 
connections is called balancing a sequent. 

Comparison The second stage consists of difference 
unifying the goal and the hypotheses and ordering the 
set of annotated goal-hypothesis pairs. The order given 
to the set is induced by a measure of the difference be
tween the members of the pairo This way, the members 
of the set of pairs will be selected in order. 

Rippling The third stage consists of rippling both the 
goal and the selected hypothesis using wave rules ex
tracted from the signature. Each time a wave rule is 
applied to the hypothesis the rewriting of it is reflected 
as a new hypothesis. The annotations are only kept on 
the last hypothesis so that a new rule may be applied 
to it. 

Fertilisation The fourth stage consists of fertilising, 
that is, making a connection. The process consists of 
identifying connecting expressions in the sequent and 
reducing the sequent by making the connection. Fer
tilisation is usually possible after a successful rippling 
runo We have two ways of fertilising: backwards and 
forwards. 

If one expression is the goal or is the head of the goal 
and the corresponding connecting expressions in the hy
pothesis is a hypothesis or the head of a hypothesis, thell 
the connectíon can be made by backward-chaining the 
goal ¡¡nd the corresponding hypothesis. 

For example, if the connection in the context is a hy
[)ot.hesis on its own, the sequent is trivial: 

. , , ,j r- k¡ --t ., , --t J 

,[ '.b· 11\ i)O; lw::;i" culltdlItiug the l.oHIlCCti\;lJ i" d ('om11
", h " • 1 k 1''¡nflal j IHlg"lIwnt., ti!"!l thp hypot P:-;l" 1:-; \1·'(1 ),le ",',J,l ( S 

lS h dt'ri vuJ il¡ference rulp to m;lli:e t hp ('(¡fHiedioll \Vp 

~o from: 

, , ' . l J -t .. -'t j 1- k, -'t ' . . -t ) 

'" 	 ,il --t." --t j,k¡,'" ,kn r- in 

If one of the connecting expressions is part of the body 
of a hypothesis and the complementary expression is 
a hypothesis, then the connection is made by forward 
chaining, We go from: 

hyp¡ j 

hYP2 II --t ... j --t .. ·in 

r- k 

to: 

hYPl J 

hYP2 l¡ --t ' .. --t j --t ... ln 

hYP3 II --t ... --t ln 

r- k 

hypothesis detail 
After fertilisation, the branch of the plan is either 

complete or there are new sequents to solve. In the 
latter case the whole process is repeated, 

Unblocking The system's strategy is to first reduce 
differences with wave rules because it is the most con
strained way of reasoning about inference rule applica
tion. Not all rewrite rules parse into wave rules however. 
For this reason, if the application of wave rules fails, the 
unblocking stage tries to apply rewrite rules to unblock 
the rewriting process and go back to rippling. As be
fore not a11 inference rules translate into rewrite rules 
so, ir also rewrite rule application fails, unblock tries the 
direct application of inference rules. 

9.1 Analysing Logic Presentations 

Logícs can be represented in framework theories by 
defining tite signature of a logic with the varíous COIl

structors of the framework. In our system, \ve anal
yse logk presentations to extract rewrite rules and wave 
rules from them as was mentioned carlier. 

The rewrite rules are extracted from the :'lgllature dS 

fullt,ws: 

1. 	 For f'ach inferpnce rule, add rewrite rules corre
sponding w aH the possible ways the ínferencf' rule 
i ,Jll be appÍleci iorwards (called left-to-right rule or 
l'.. ni/e) aud ¡';,,¡'kwanls (called right-to-1Ct't tille ur 
: l .. nl.le) , ¡¡,i" poce",; i1li1y produce twin .. n¡,[c,'i is('(' 
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2. 	Discard the rewrite rules whose Jeft hand side is 
unconstrained. 

3. 	Simplify the remaining rewrite rules where possible. 

4. 	 Assign positive polarity to both sides of rl-rules and 
negative polarity to both sides of Ir-rules. 

5. 	Polarise (Le. add polarity annotations) to aH subex
pressions on both sides of the rewrite rules using the 
polarity algorithm. 

Unconstrained rewrite rules are those whose left
hand-side is applicable to any or almost any expression. 
One of the usual constraints for rewrite rules in the lit
erature is that their left hand sides are not variables. In 
the method we use to extract rewrites, there will never 
be variables in the left-hand sides of the rewrite rules. 
However, we still put a constraint on rewrite rules to 
avoid rewrites that are practically unconstrained. Those 
rules are the rewrite rules whose judgement in the left
hand side has a variable as argumento For example, after 
step 1 aboye we obtain rules like: 

true(A) => (true(A => B) -+ true(B» 

We avoid this kind of rule because they are too uncon
strained. 

The simplification of rewrite rules in Step 3 consists of 
transforming the rewrites obtained in the previous steps. 
This simplification step uses predetermined procedures 
to obtain optimised versions of rewrite rules that are 
more suitable for rippling. In the next section, when we 
introduce non-standard rules, we will see an example of 
such an optimisation for the Ve rule. 

From the inference rules of 1 we obtain the foHowing 
set of rewrite rules2 : 

tru.(A- ::> B+)+ (tru.(A)- -t tru.(B)+)+ (rw-::>¡) 

true(A+ ::> B-)- (tru.(A)+ -t true(B)-)- (rw-::>.) 

tru.(A- A B-) tru.(B) (rw-I\.r) 

true(A+ V true(A)+ (rw-Vi/) 

2It is also possible to obtain rewrite rules from lemmata 
proved by the user. These could also produce useful wave 
rules. For example: 

true(a => b) -+ true(b => e) -+ true(a => e) 

produces twin wave rule (wr-trans): 

+ 

9. 
true(A+ v B+)+ ==- tru.(B)+ W 

true(.L)- ==- tru.(A)- (rw-.L) di: 
th 
thThey correspond to =>i, =>e, Áel, Áer,vil,Vir and..Le in 

that order. The versions of these rewrite rules in the op ru 
posite direction are unconstrained so they are discarded. or 
Inference rules Ái and Ve also produce rewrite rules but m 

they are non-standard. We discuss these in the next 
section. b 

From the rewrite rules obtained we can now obtain rE 

wave rules as follows: r€ 
ri 

1. 	 Use Polarised Coloured Difference Unification to si 
annotate both sides of the rewrite. (( 

2. 	 Discard those wave rules which are not measure de v¡ 

dicreasing. 

Following these steps we obtain fram the rewrites 1 
aboye the following wave rules: ri 

f1 

'1true(1 ~¡ ::> Ir:...c21 )- ==	 d 
Cs 

t 
(wr-A.d p 

( 
(wr-A. r ) s 

d 
(wr-V¡¡) e 

~ 

(wr-virl t 

The rule rw-..L cannot be converted into a wave rule 
because its two sides are not d-unifiable. 

Weakening Coloured Wave Rules 
The wave rules aboye are all coloured wave rules. They 
are used to ripple one or more colours (skeletons) at the 
same time. When two wave rules are equal as rewrite 
rules but the set of skeletons of one of them is a subset 
of the set of skeletons of the other one, we say that the 
wave rule with fewer skeletons is a weakened version (or 
a weakening) of the other one. 'There are cases where 
weaker versions of the wave rules originally computed 
from a signature are needed. These can be obtained by 
removing annotation corresponding to sorne skeletons 
from the wave rules as nee"ded, with the condition that 
at least one skeleton remains. For example, a weakening 
of wave rule wr-=>i is: 

-t true(B)+true(I.1..:.c¡ ::> B+ I 1+ 
C1 
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9.2 Non-Standard Rules 
We use sorne special kinds of rewríte rules which are 
different from the usual definitíon of rewrite rules. In 
this section we describe the characteristics which make 
them non-standard. We will only talk about rewrite 
rules but the same concepts extend to wave rules. AIso, 
one rule can have more than one or all of the following 
non-standard characteristics. 

Improper Rewrite Rules The first non standard 
rewrite rule that appears already in the list aboye, is 
rewrite rule rw-J... This rule has a variable in the 
right-hand side which does not appear in thf! left hand 
side. We call this kind of rule a improper rewrite rule 
(c.f. (Klop, 1992)). These rewrite rules introduce meta
variables in the proofs whose instantiation has to be 
deferred. 

Twin Rewrite Rules Rule I\i, when interpreted 
right-to-Ieft in Step 1, is transformed into the rewrite 
rule: 

(true(B) -+ trueCA 1\ B)) ===} trueCA) 

This rule does not convey the meaning of the intro
duction of a conjunction, that is, "to prove a conjunc
tion, it is necessary to prove each conjunct". We sim
plify this kind of rule in step 3 by creating a twin-rule 
(twin rewrite rule, twin wave rule). Twin-rules are non
standard rewrite rules that rewrite an expression in two 
different ways. The two ways are reflected in two copies 
of the original expression. We represent them using a 
key. For example, the twin rewrite rule corresponding 
to I\iis: 

I + + I + { true(A)+e
true( Acl 1\ l1c2 ) ===} t (B)+ 1 (4) 

! ea rue e2 

This rule rewrites a goal of the form trueCA 1\ B) into 
two subgoals trueCA) and true(B). This is exactly the 
effect produced by the original inference rule if used to 
refine a conjunction-goal. 

The rule for Veis one of the rewrite rules that can 
be simplified in Step 3. This rule has a place-holder ex
pression (true(C)) to match and preserve the goal while 
sorne hypothesis is eliminated. This type of rule is com
mon in natural deduction style presentations of logics. 
The simplificatibn of the rule consists of identifying this 
fact and converting the rule into one where the disjunc
tion (true(A V B)) in a hypothesis (negative polarity) 
is rewritten into trueCA) and true(B) as in the rule I\í 
mentioned aboye. Again we obtain a twin-rule: 

true(A)~ el 
(5)

true(B)-e2 

Context Rewrite Rules 
GQntext rules (rewrite or wave) are rules where a new 
fresh variable is introduced in the rewritten termo The 
name of the variable depends on the context where the 
rewriting takes place. For example, the rule for exis
tential elimination in natural deduction style predicate 
logic, encoded in LF as: 

I1 p ,i ...."l1 q ,,,tru.(3(p)) -+ (11,,;tru.(p(t)) -+ true(q)) -+ true(q) 

can be simplified as we did in the last section with 
rule Veto obtain the following rewrite rule: 

The expression i stands for a new variable fresh in 
the context at the time of the application of the rule. 
Variable i is generated when the rule is applied. 

To see why this is needed we need to look at how 
the inference rule is applied. First, the inference rule 
ís forward-chained with sorne hypothesis involving 3, 
3r sayo This will generate a new hypothesis h1 : 

(TIt:;true(r(t)) -+ true(q)) -+ true(q). Then this hy
pothesis is used to refine the goal, true(z) say, and we 
obtain a new goal: (TIt:;true(r(t)) -+ true(z)). Finally, 
introducing TI and -+ we obtain the original goal true(z) 
and a new hypothesis true(r(t)) where t is a new vari
able of type i in the contexto 

Now, we will see two example th,eorems of how the 
whole system works. . 

10 Example Tbeorems and Proofs 

This example is from propositionallogic. We will use in 
the proof sorne of the wave rules introduced in the last 
section. The statement is: 

Example 1 true«a::::> b) 1\ (b ::::> e) ::::> (a ::::> e)) 

After providing polarity values, the system balances 
the sequent. Constants a and e make connections across 
the sequent symbol. Difference unification of goal and 
hypothesis gives us the wave annotation that mark the 
two skeletons (colours el and e2) that need to be rippled 
to make the connections: 

hYPl 

(6) 

The next step is to ripple the hypotheses. First, Rule 
wr-I\el is applied: 
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) hYPI 

(7) 

The annotations corresponding to the colour just rip
pled are removed from hYPl. Now rule wr-Aer is applied 
to hYPl to ripple C2: 

(8) 

Rippling continues using a weakened version of Rule 
wr-Je on hYP2: 

(9) 

and then on hYP3: 

hYPl true((a+ J b-)- Á (0+ J C-)-)
hYP2 true(a+ J b-)
hYP3 true(b+ .J:.-=-~),--___, 

hYP4 

;::::======::;{ 

)+ 

el} (10) 

At this point there is no more rippling possible in 
the hypotheses so rippling starts in the goal. The rule 
applied is wr-Ji: 

(11 ) 

Now both colours are fully rippled and fertilisation is 
possible with hYP5 leaving the following goal: 
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true(a)+ -> true(b)

true(b)+ -> true(c)

true(a)- ( 12) 


f- true(b)+ 

Fertilisation is again possible using hypothesis hYP4: 

true(a)+ -t true(b)

true(b)+ -t true(e) 

true(a)- (13) 
 o, 

f- true(a)+ 

h 

This sequent is an axiom and the proof is finished. h 

We present now one more example. This time from h 

a different logic, in order to show how our techniques 
apply in other logics. 

The modallogic system K from (Simpson, 1994) en
coded in LF is: 

o, W Type 

tr1Le W -+ o ~ Type 


.L <> 

Á,V,J 0--+0-+0 


0,0 0->0 


llA,B,oll%,wtrue(x,A) -> tTue(x, Bl -> tTue(x, A Á Bl 

TlA,B,ollz,wtrue(x, A Á Bl -> true(x, Al 

llA.B,oTl.,wtrue(x, A Á B) tTue(x, B) 

llA,B,oTlz,wtrue(x, A) -> true(x, A V B) 

llA B·allz·wtrue(x, B) -> true(x, A V B) 

llA:B:allz:y,wtrue(x, A v Bl -> lle,o«true(x, A) -+ 

true(y,G)) -t (true(x,B) -+ true(y,G) -> true(y,G)) 

llA,B,ollz,w(true(x,A) -> true(x, Bl) -> true(x,A J B) 

llA,B,ollz,wtrue(x, A J B) -> true(x, A) -> true(x, B) 

llkoll.,W(true(x, A) -> true(x, .L» -+ true(x, ~A) 

I1 ko ll z ,w(fI y ,w xRy -> true(y,A)) -+ true(x,DA) 

llkollz,W true(x,DA) -+ xRy -+ true(y,A) 

llA,ofIz,y,w true(y, A) -> xRy -+ true(x, oA) 

fIA.B,ofI z . zow true(x, DA) -+ (fI/w true(y, A) -+ xRy -> 

true(z, B)) -> trueCz, Bl 
 t 

The judgement true(x, A) in this signature means 
"proposition A is true in world x". The wave rules ex
tracted from this signature are the following: 

true(x,1 DA+ el I )+ ==> 

======~el ~========================01 

(wr-o¡) 

(wr-Oe) 

The symbols y ami x raye the same roles they had 
in the rewrite rules we described in the previous sec
tion. We can now move on to the proof of the following 
theorem: 

Example 2 true(x, D(a J b) J (Da JOb)) 

As usual Balance is the first step: 
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)+1

rippling all skeletons first in the hypotheses (rules wr
De and wr-::J e ) and then in the goal (rules wr-::Ji, wr

and wr-Di ) we get: 

tru e (x. O (a + :J b - ) - ) 
II .w(xRy!l+ -; true(y¡,a+ :J b-)

fIU, ;w (XRY1)+ -; tTue(Yl, a)+ { 1 -; true(l/l, b)

f:-=====;;;;;:-;;;;;:-;;;;;:""""';;;;;:"-';;;;;:'-'-;;;;;:'-'=-;;;;;:::::"1:;..====:::;:;.{c;2;..1L .. 

At this point weak-fertilise applies (Ilsing hYP3): 

hYP3 fI YI ,w(xRYll+ -+ true(Y1,a)+ -; true(Yl,b)

hYP4 fI y2 ;w(xRY2)+ -; true(Y2,a)

hYP5 (XRY3)
(XRY3 )+ 

hYP3 llY1;W(xRll1)+ -; t1'Ue(Y1,a)+ -; true(Y1,b)
hYP4 fI y2 ;w(xRY2)+ -+ true(Y2,a)

hYP5 (XRY3)
1- tTue(n, a)+ 

The first sequent is an axiom so method axiom closes 
the branch. The second sequent can be weak-fertilised 
with hYP4 giving the following: 

hYP1 tTue(x,D(a+ :J b- )-) 
hYP2 fI y1 ;w(xRYl)+ -; t7-ue(Y1,a+::l b-)

hYP3 fI y1 ;w(xRY1)+ -; true(Y1,a)+ -+ true(Y1,b)

hyP4 llY2'W (xRY2)+ -; trudY2, a)
hYP5 (xRY3)

(xRYa)+ 

At this point, met.hod axiom closes the brand!. 
Using all possible rule applications generates a combi

natorial explosiono Our method reduces the number of 
rewrite rules applicable through the use of wave rules. 
Since potential connections are identified when hypothe
ses and conclusion are difference unified, rippling is 
likely to isolate them and close a branch. There is no 
absolute gua1'lantee that this will be the case though, 
sorne times the combination of wave rule applications 
does not lead to connecting forrnulae being isolated. In 
these cases, backtracking is needed and big search may 
noí be avoided with the current version of the methods. 

Our methods need to be constrained further to ac
r.ount for these cases. At the moment, we only have 
experimental evidence that it is a good idea to use them 
and to continue developing them. They are also useful in 

that they show that it is possible to develop techniqlles 
that work across theories that can control search. More 
work needs to be done in the details of the methods to 
constrain further the cases when they don't work. 

11 Conclusion 

The development of framework theories has opened the 
possibility of representing formal systems in a uniform 
way. In these formalisms we can generalise current 
knowledge on proof automation to encompass a wide 
range of object theories. The work presented in this pa
per is an initial step to develop robust proof automation 
techniques applicable to as many theories as possible. 

Effective proof search in framework theories is a hard 
problem. It requires selecting appropriate rules from 
the framework theory as well as the instantiations for 
these corresponding to the object-level rules. The ap
plicability of framework rules is high because they im
plement abstract operations independent of the object 
logic -like variable instantiation (e.g. -+ 1) or term 
generalisation (e.g. -+ r)- and hence are applicable to 
a large number of object rules. Object level rules change 
from theory to theory and present different shapes and 
uses. This makes it difficult to abstract a method to 
account for the way they are all Ilsed. 

In this paper we have introdlleed a new approach to 
proof search in framework theories. The approarh is 
based on difference reduction and proof plans. The con
tributions of our work stem from experience in designing 
and analysing a proof planning system for natural de
duction style presentations of logics in the Edinburgh 
Logical Framework. We show that: 

• 	 Proof plans and difference reduction are promising 
paradigms to develop heuristics for proof search in 
framework theories. 

• 	 The extensions to the techniques of difference re
duction we developed in this work improve the 
power of the existing techniques and raise impor
tant issues for the development of the theory of dif
ference reduetion. 

Research on proof search guidance in framework logics 
has focused so far on uniform methods based on logic 
programming ideas (Helmink, 1991; Pym, 1990; Felt.y 
and Miller, 1991; Pfenning, 1991; Dowek, 1991). These 
methods guide search by exploiting powerful unification 
algorithrns suitable to, type and higher order theories 
and extend resolution ideas to framework logics. 

Goal directed approaches to using signatures are diffi
cult when these specify theories where introduction and 
elimination rules are involved. The problem is that elim
ination rules contain information related to the hypothe
ses and not to the goal. Any heuristic to apply them 
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needs to analyse the hypothesis líst to select the right 
elimination rule, even in a backwards proof. This makes 
uniform search paradigms such as resolution difficult to 
control. 

Our approach is different. First, we constrain search 
at the framework level by using tactics that implement 
basic meta-Ievel operations (e.g. rewriting, refinement, 
elimination and introduction). The methods that spec
ify these tactics contain declarative heuristics in their 
preconditions that control their applicability. In this 
setting, the number of choices for the system (i.e. the 
planner) is far less than the free selection of meta-Ievel 
rules. Another advantage of this approach, inherited 
from proof planning, is that heuristics are localised, ex
plicit and declarative so they are easily understood and 
modified. 

In (Helmink, 1991), the rules ofboth the meta and ob
ject levels are transformed into Horn clauses to enable 
a goal directed search. As the proof proceeds, new en
tries in the hypothesis list are dynamically transformed 
into Horn clauses too. This method provides a uniform 
treatment of framework and object-Iogic rules under a 
single Prolog style goal directed search method but it 
also requires sorne tactical assistance to control search. 

This system shares with our the idea of compiling the 
rules into a form more suitable to proof search than 
the original presentation. Helmink's system, however, 
is tied to backwards reasoning by the resolution mech
anism wherea..'l our system combines other mechanisms 
like forward chaining, balance, etc. Our system, on the 
other hand, lacks Helmink's system's abilíty to dynam
ically improve the rule data base. Our system could 
benefit from a similar approach by forming new wave 
rules as new objects enter the contexto 

In (Felty, 1989) object level theories are encoded in a 
subset of Higher Order Logic (hhW

) and various tacti
cal theorem provers based on AProlog (Miller and Na
dathur, 1988)) are proposed for sorne logics. In (Felty, 
1991) LF signatures are translated into hhw to take ad
vantage of the goal directed search mechanism already 
developed for that theory. 

In the system Elf (Pfenning, 1991), LF constructors 
are given a direct operational interpretation. An ex
tension of Higher Order Unification is given in order to 
cope with dependent function types. Elf is a program
ming language where tactical theorem provers can also 
be programmed. 

The resolution style mechanism in these systems is 
useful to develop tactics but it is not enough to guide 
proof search on its own. It is necessary to develop tac
tics to obtain a working theorem prover for a logic. It 
is possible to encode LF rules in A-Prolog, as proposed 
by Felty (1991), and set a theorem to be proven by the 
Prolog-style mechanism of A-Prolog using a logic vari
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able to leave the proof object uninstantiated. This ap B~ 

miproach would work only for a few examples but, even 
19!for simple theorems such as 3: 
Bi 
Vi,x: np,S:i-+otr11,e(V(Ax:i'P(X) 1\ S(x))) 
BI 

the number of definite clauses to use in backchain lal 
ing is too big or the depth-first search mechanism of in! 
the language loops and does not produce a proof of the 19 
theorem. Pa 

There are examples of interactive theorem provers Bl 
developed in AProlog in (Felty, 1989) but no generic SI 
automatic theorem prover has been reported in any Jo
resolution-style system where proof automation tech líe 
niques have been developed for many logics. p,

Elf and Felty's systems can be used as object level 
G

provers for a planning system developed in AProlog with 
et 

our methods. Our system puts emphasis on the plan
D

ning system and use an object level prover designed in e
Prolog. The initial version of the planner we imple
mented is also built in Prolog but with the new AProlog st 

H
it would be more nat.ural to implement the new version 

Dof the planner and methods in this language to exploit 
diits higher order syntax and unification capabilities. It 
7,is possible too, to use sorne of the ideas in (Felty, 1992) 
F,

to implement t.he rewriting system of our methods. 
ir.Pym (1990) and Dowek (1991) also develop unifi
Ucation algorithm for type t.heories as basis for logic 
~programming style search. Pym's work is on LF and 
leDowek's for the Calculus of Constructions. 
FThe work just described takes the 'first step towards 

endowing framework logics with an operational mech Ir 

anism to guide search. Helmink (1991) transforms the e; 

inference rules encoded in a framework logic to sl1it a Si 

i1Prolog style search mechanism; Felty (1989) proposes 
v'the Prolog style representation and mechanism as the 
Fframework itself; Pfenning (1991) adds a goal directed 
Amechanism to the type theory to preserve its declarative 
(properties. 
( 
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