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Abstract 

We introduce the general notion 01 a Confluent LP
System, which is a rewriting system on the set 01 all 
logic pmgrams over a signature L. Such a system is 
based on certain translormation rules and induces a se
mantics SEM in a natural way. We show that most 01 
the well-known semantics for normal logic programs are 
induced by confiuent LP-systems. Moreover, we show 
by intmducing several new translormation rules that the 
corresponding LP-systems induce interesting semantics 
which are polynomial time computable and extend WFS. 
Moreover we use our appmach to define new semantics 
for disjunctive pmgrams. 

Keywords: 
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gramming, non-monotonic reasoning, rewriting systems, 
negation as failure. 

104 

1 Introduction 

In this paper we try to combine methods from rewriting 
with logic programming technology to get a framework 
for considering semantics of logic programs. 

The main idea (already introduced in [Brass and Dix, 
1998] for disjunctive logic programs) is to determine a 
set of rewriting rules that is confluent. These rules trans
form programs into simpler programs. Confluence and 
termination guarantees that every program is associated 
a normal formo This normal form then induces a seman
tics and a simple and efficient method to answer queries 
with respect to this semantics. 

In this paper we do not stick to a particular semantics 
but we develop the beginnings of a general theory of 
confluent LP systems and investigate which semantics 
can be represented as such systems. 

We also extend the confluent system which corre
sponds to the wellfounded semantics WFS by new 
rewriting rules. These rules are motivated by the use 
of aggregates in logic programming and the problems 
of modelling aggregates in semantics such as WFS (see 
[Osorio and Jayaraman, 1997; Dix and Osorio, 1997]). 

An advantage of our approach is its declarative na
ture. The transformation rules express natural condi
tions and different applications might ask for different 
selections of such rules. We show that the naturally in
duced semantics of a confluent LP-system is in fact the 
weakest semantics satisfying all our transformations. 

The first proposal to provide a convincing declara
tive semantics to NAF was given in [Clark, 1978] and 
it is called the Clark's completion. The main idea is 
that, to deduce negative information from a normal 
program, we could "complete" the program by adding 
the only-if halves of the definitions of the predicate 
symbols1 . Clark's completion is obtained as our weakest 
LP-system eso 

1 For the details we refer to [Lloyd, 1987] . 
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However, it is now accepted that Clark's completion is 
often too weak and does not always capture the intended 
meaning of logic programs necessary for e.g Knowl
edge Representation tasks [Baral and Gelfond, 1994; 
Brewka and Dix, 1996]. Therefore stronger semantics 
are needed. 

The two main competing approaches are the well 
lounded [Gelder et al. , 1988, and 1991] and the sta
ble semantics [Gelfond and Lifschitz, 1988, and 1990]. 
WFS has received great interest since its introduction , 
because it has several desirable properties: it is always 
consistent and every program possesses exactly one 3-
valued model. In addition, this model is computable in 
polynomial time. 

In contrast to this, the stable semantics is not always 
consistent and answering a query do es not depend on 
the call-graph below that query. This implies that there 
is no goal-directed computation possible. In addition, 
computing stable models is NP-hard and can therefore 
not be done in polynomial time (unless the polynomial 
hierarchy collapses). 

One of the problems of WFS is that it is overly scepti
cal: clauses of the form a f- ,a are treated as undefined. 
This is particurlarly bad when aggregate predicates are 
considered (where a should be treated as true). We in
troduce in this paper several confluent LP-systems to 
sol ve the problems related with a f- ,a clauses. Sorne 
of them are polynomial time computable and satisfy also 
rationality [Dix, 1995a] . 

Our definitions and results are given for propositional 
programs only, to ensure termination. But we believe 
that if we drop termination and only retain confluence, 
we can get similar results for general programs with vari
ables (under the assumption that the normal form ex
ists) . We also apply our approach to define new seman
tics for disjunctive programs. 

Our paper is structured as follows. After giving sorne 
background information on the concepts involved (sec
tion 2) , we introduce in section 3 our new notion of a 
Non-monotonic confiuent LP-system. Our main result 
in this section is that parlial distribution implies ratio
nality. Section 4 shows that most of the well known 
semantics can be defined in a natural way via conflu
ent LP-systems. Section 5 introduces several confluent 
LP-systems that define new rational and polynomial
time computable semantics. Section 6 introduces new 
semantics for disjunctive programs. 

2 Background 
We first collect sorne general results about rewriting sys
tems that are needed later. We then define the notion of 
SEMmin , stating the minimal requirements any seman
tics should have. 

Definition 2.1 (Rewriting System) 

A n abstract rewriting system is a pair (S, ~) where ~ 
is a binary relation on S. Let ~ * be the refiexive, and 
transitive closure 01 ~. When x ~. y we say that x 
reduces to y. An irreducible element is said to be in 
normal form o 

We say that a rewriting system is 

noetherian: il there is no infinite chain Xl ~ X2 ~ 

... ~ Xi ~ Xi+l ~ ... 

confluent: il whenever u ~. X and u ~. y then there 
is a z such that X ~. z and y ~ * z. 

locally confluent: il whenever u ~ X and u ~ y then 
there is a z such that ,e ~. z and y ~. z . 

In a noetherian and conflueLt rewriting system, every 
element X reduces to a unique normal form that we de
note by norm(x). 

A signature L is a finite set of elements that we call 
atoms. A literal is an atom or the negation of an atom a 
that we denote by ,a. Given a set of atoms {al, ... ,an } 

, we write ,{al, .. . ,an } to denote {,al, . .. "an }. We 
may denote a normal clause C as usual [Lloyd, 1987] : a 
:- ll , . . . , ln , where a is an ato m and each li is a literal; 
or by a f- B+, ,B-, where B+ contains all the posi
tive body atoms and B- contains all the negative body 
atoms. We also use body(C) to denote B+ U ,B- . A 
program is a finite set of clauses. Sometimes we will con
sider the logical constants t and f with their intended in
terpretation. Let Progc be the set of all normal propo
sitional programs with atoms from L. By Lp we under
stand the signature of P, i.e. the set of atoms that occur 
in P. A (partial) interpretation based on a signature L 
is a disjoint pair of sets (l¡ , h) such that l¡ U h <:;;; L . 
A partial interpretation is total if l¡ U 12 = L. Given 
two interpretations 1 = (11 ,12 ), J = (JI , J2 ), we define 
1 "5:.k J iff l i <:;;; Ji, i = 1,2. Clearly "5:.k is a partial order. 
We may also see an interpretation (l¡ , 12 ) as the set of 
literals l¡ U'h· When we look at interpretations as sets 
of literal s then "5:.k corresponds to <:;;;. 

A general semantics SEM is a function on Progc 
which associates to every program a partial interpre
tation. 

What are the minimal requirements we want to im
pose on a semantics? Certainly we want that facts, 
i,e. rules with empty bodies are true. Dually, if an atom 
do es not occur in any head, then its negation should be 
true. This gives rise to the following definition (given by 
Brass and Dix) , which will play an important role later. 

Definition 2.2 (SEMmin ) 

For any program P we de
fine HEAD(P) = {al a f- B+, ,B- E P} - the set 
01 all head-atoms 01 P . W e also define 

SEMmin(P) = (ptrue, pfalse ) , where 
ptrue := {pi p f- E P}, and 
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plalse := {pi pE .cp\HEAD(P)} 

3 Non-monotonic confluent 
LP-Systems 

The main concept our notion of a LP system is based 
upon, is the concept of a tmnsformation rule, see [Brass 
and Dix, 1997]. 

Definition 3.1 (Basic Transformation Rules) 
A tmnsformation rule is a binary relation on Proge. 
The following tmnsformation rules are called basic. Let 
a progmm P E Proge be given. 

RED+: This tmnsformation can be applied to P, if 
there is an ato m a which does not occur in 
HEAD(P). RED+ tmnsforms P to the progmm 
where all ocurrences of -,a are removed. 

RED-: This tmnsformation can be applied to P, if 
there is a rule a *- E P. RED- tmnsforms P 
to the progmm where all clauses that contain -,a in 
their bodies are deleted. 

SUB: This tmnsformation can be applied to P, if 
P contains two clauses a *- bodYl, and a *- bodY2, 
where bodYl <;;; bodY2. SUB tmnsforms P to the pro
gmm where the clause a*- bodY2 has been removed. 

Although these rules are not really functions on Proge 
(e.g. RED- is only determined if an occurrence of a 
certain rule is distinguished), we usually write them as 
opemtors on Prog e when it is understood by context how 
they are uniquely determined. 

Obviously, the just mentioned transformations are 
among the minimal requirements a well-behaved seman
tics should have (see [Dix, 1995b]). From now on, when 
we speak of a semantics SEM, we understand that SEM 
is invariant under the transformations RED+, RED
and SUB. 

Given a program P and a list of operators ops, we 
define the application of ops to P, denoted as pops, as 
follows: 

p[] .- P 
p[oplops] 

We define the size of ops as the number of elements of 
ops. We are now ready to introduce our main notion: 

Definition 3.2 (Confluent LP-system eS) 
A non-monotonic confluent LP-system es over the sig
nature .c is a pair 

( {OPi I i = 1, ... , n}, -+ ) 

that satisfies the following conditions: 
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1. {OPi I i = 1, ... , n} is a finite set of tmnsformation 
rules on Proge. By abuse of language we ofien view 
them as opemtors and we write pop to denote the 
result of the application of the given opemtor. We 
say that the opemtor is executed in this case. 

2. (Proge, -+), where -+ is the union of all the tmns
formation rules in es, is a noetherian and conflu
ent rewriting system. 

We denote the uniquely determined normal form of a 
progmm P with normcs(P). 

Every LP-system es induces a semantics SEMcs as 
follows: 

SEMcs(P) := SEMmin(normcs(P)) 

When there is no ambiguity about the given confluent 
LP-system we drop the subscripts. 

Sorne points are worth mentioning: 

l. Thanks to confluence and termination, our trans
formation rules have both a declarative and an op
erational meaning. From the declarative point of 
view, they tell us that our semantics is closed under 
the given transformation rule. From an operational 
point of view the transformations are computable 
functions that can be applied to simplify the pro
gramo When we arrive to the normal form, then 
computing its semantics is immediate. 

2. Rationality (introduced later) has been argued as 
a desirable property of semantics in logic program
mingo Confluence plus a simple property that we 
call partial distribution implies rationality. It is 
straightforward to see that all (but one) of our se
mantics satisfy partial distribution. Therefore we 
know that these semantics are rational. 

3. The nature of simple transformations, confluence 
and termination allow us to prove many properties 
by induction on the number of steps that we need 
to compute the normal formo 

3.1 Basic Results 

We omitt the proofs of most of our results but they can 
be found in the research report [Dix et al., 1997]. 

Lemma 3.1 For every confluent LP-system es and ev
ery progmm P such that every step in pops is executed 
we have: SEMmin(P) S,k SEMmin(POPS). 

Corollary 3.1 
For every progmm P of a confluent LP-system es: 
SEMmin(P) S,k SEMcs(P). 
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The following condition is also desirable in logic pro
gramming. 

Definition 3.3 (Three-valued Based) 
A semantics SEM is called a 3-valued based if for every 
program P the partial interpretation SEM(P) is a 3-
valued model 01 P. 

In 3-valued based semantics, it can not happen that the 
body of a rule evaluates to true in SEM(P) while the 
head of this rule evaluates to false or to undefined. For 
the details of 3-valued based semantics see [Dix, 1995a; 
Brass and Dix, 1997]. 

3.2 Rationality 
A semantics SEM is called rational, if for every atom a 
and program P the following holds 

-,a ~ SEM(P) implies SEM(P) 5.k SEM(P U {a +-}). 

Definition 3.4 (Partial distribution) 
A confluent LP-system es satisfies partial distribution 
il for every op, P and a su eh that a E HEAD(JX'P) and 
pop is exeeuted, the following holds: 

1. (P U {a} lP is exeeuted, 

Lemma 3.2 For every partial distributive confluent 
LP-system es the following is true. Let a E 
HEAD(JX'Ps J, where ops is any list 01 operators sueh 
that every step in pops is exeeuted. Then: 

1. every step in (P U {a} lPs is executed, 

2. (PU {a})OPS = pops U {a}. 

Rationality is a nice property for a semantics SEM, 
especially if we plan to use the system in logic program
mingo The following result is important because it shows 
that a relatively simple condition, namely partial distri
bution on es suffices to ensure rationality of the induced 
semantics. 

Theorem 3.1 (Rational semantics) 
Every partial distributive confluent LP-system es in
duces a rational semantics SEMcs. 

4 Clark's completion, WFS and WFS+ 

In this section we show that the 3-valued version of 
clark's completion semantics (introduced by Fitting in 
[Fitting, 1985, and 1986]), WFS ([Gelder et al., 1988, 
and 1991]) and an extension of WFS (introduced inde
pendently by [Dix, 1992] and [Schlipf, 1992]) are induced 
by confluent LP-system. 

To this end, we introduce the following transformation 
rules: 

GPPE: (Generalized Principle 01 Partial Evaluation) 
Suppose P contains a +- 8+, -,8- and we fix an 
occurrence of an atom 9 E 8+ different from a. 
Then we can replace a +- 8+, -,8- by the n clauses 
(i=l, ... ,n) 

a+-( B+ \ {g }) U Bi +, -,8- U -,Bi -

where 9 +-Bi +, -,Bi - E P, (for i = 1, ... ,n) are 
all clauses with 9 in their heads. If no such clauses 
exist, we simply delete the former clause. 

TAUT: (Tautology) Suppose P contains a rule e which 
has the same atom in its head and in its body. Then 
we can remove this rule. 

LC: (Logieal Consequenee) Suppose P F a for an atom 
a. Then we can add the rule a +- to P. 

Let eso be the LP-system which contains, besides the 
basic transformation rules, the rule GPPE. Let eSl be 
eso enlarged by TAUT. Finally, let eS2 be eS l plus the 
rule Le. By using results of [Dix, 1995a; Brass and Dix, 
1998] we get 

Theorem 4.1 (Classifying comp3, WFS) 

1. Fitting 's semanties eomp3 is the weakest 3-valued 
based semantics satislying GPPE. It is induced by 
the confluent LP-system eso. 

2. The welllounded semanties is the weakest 3-valued 
based semantics satislying GPPE and TA UT. It is 
indueed by the confluent LP-system esl . 

Let us note that although the eSl system has the nice 
property of confluence (and termination), its computa
tional properties are not that efficient. In fact, comput
ing the normal form is exponential, whereas it is known 
that the WFS can be computed in quadratic time. It 
turned out that recently an equivalent confluent LP
system was defined, where the normal form can be com
puted in quadratic time (see [Brass et al., 1997]). The 
idea is to restrict the GPPE rule and to replace it by 
two simple instances plus an additional check for an un
founded set (Loop detection): 

Success (8): Suppose that P includes a fact a and a 
clause q +- Body such that q E Body. Then we 
replace the clause q +- B ody by q +- B ody \ {a}. 

Failure (F): Suppose that P includes an atom a and 
a clause q +- Body such that a 1:. H EAD(P) and 
a is a positive literal in Body. Then we erase the 
given clause. 

Loop Detection (Loop): We say that P2 results from 
PI by Loop A iff there is a set A oí- atoms such that 
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1. for each rule a +-- Body E P l , if a E A, then 
Body n A f:. 0, 

2. P2 := {a: -Body E PI : Body n A = 0}, 

3. PI i P2 . 

We call the resulting system esl " i.e. 
RED++RED-+S+F+Loop. We now show that F 
is redundant, for that we need the following lemma. 

Lemma 4.1 (Zepeda, 1997) 
Let f-t x denotes the reduction relation 01 the es l' sys
temo Let f-t x _ F be as f-t x without F . For all pmgrams 
P, P', PI , P2 , where, 

there is a program P" such that 

Proof: If P' f-t'F P l , where a is the atom resposible of 
this failure reduction. Let A={a}. Suppose that there 
are exactly k clauses in P' such that a occurs positively 
in them. Starting with P' we can apply a sequence of k 
Failure steps (over the same positive literal) leading to 
sorne program P" where a no longer occurs positively. 
And by confluence we get that, 

Moreover: There is no rule A +-- B in p' such that 
A ti. A. P" := {A +-- B E p' I B n A = 0}, and 
p' i P" . For hence P" also results from p' by applying 
the Loop Detection, so 

as desired. 

The following theorem is a direct consequence of the 
aboye lemma. 

Theorem 4.2 (Elimination of Failure, Zepeda,97) 

Let P be a programo Then p' the normallorm of P 
w.r.t. the es l , system, iff P' is the normal form of P 
W. r. t the same system but without F. 

Theorem 4.3 (Classifying WFS+) 
The WFst- semantics is the weakest 3-valued based se
mantics satisfying S, F, Loop, TA UT and LC. Jt is in
duced by the confluent LP-system consisting of exactly 
these transformations (plus the basic ones). 

The reason we gave up GPPE is not only for computa
tional purposes. As has been shown in [Dix and Müller, 
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1994] GPPE do es not hold for WFS+ . Let us consider 
the programs: 

P : a +-- ,b P': a +-- ,b 
b +-- ,a b +-- ,a 
:1; +-- el X +-- ,a 
x +-- b x +-- ,b 

By applying GPPE twice, we get P'. But WFS+(P) = 
{x} while WFS+(P I

) = 0. We point out that the WFS 
for both P ancl P' is 0, considered as a shortcoming of 
WFS. 

5 N ew Semantics extending WFS 
In this section we show how our transformation rules 
can be extended by new rules that still define confluent 
LP-systems. 

The motivation of these rules is the overly sceptical 
approach of WFS. In particular for aggregation predi
cates, rules of the form a +-- ,a should be considered as 
being equivalent to a. However, incorporating this into 
a well-behavcd semantics is in general ver y difficult. 

Of course the WFS+ semantics has this property. But 
again it can be shown that WFS+ is on the second level 
of the polynomial hierarchy (due to the LC-rule) and 
thus most probably not polynomial. We therefore intro
duce a weaker form of LC: 

Definition 5.1 (Local Logical Consequence) 
By the application of LLC (locallogical con sequen ce) to 
a pmgram P that only contains one clause with head a, 
namely a LC-cla'use a +-- ,a E P, we mean the trans
lormation 01 P which simply r'emoves every occurrence 
of ,a in P. 

We define eS3 as LP-system eS l plus the rule LLC. 
Here is one of our main theorems. 

Theorem 5.1 ( eS3 is a confluent LP-System) 
eS3 is a confiuent LP-System, Jts induced semantics, 
called WFSO, is 3-valued based, but not rational, 

Here are stronger versions of LLC. 

Definition 5.2 (LLC*) 
Let B be an ordered set {ao, ... , an }, where n 2: O 
. Suppose in addition that the set of clauses LLCB:= 
{al +-- ,ao} U {aHI +-- ai : 1 ::; i ::; n - 1} U {ao +-- an} 
is a subset of a program P. Jf n = O we assume that 
the set reduces to ao +-- 'ao. Then the transformation 
(LLC*, B) substitutes the clause ao +-- an by the fact ao . 

Note that by transitivity of +-- we get ao +-- ,ao. More
over (,a --+ a) --+ a is a theorem in propositional classi
callogic and by Modus Ponens we can infer a. So, this 
rule is sound in propositional classical logic. In [Oso
rio et al., 1995] it is defined a language that allows to 
model aggregation in a natural way via POL programs. 
In [Osorio and Jayaraman, 1997] we showed that this 
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POL programs can be translated to normal programs 
such that the declarat.ive semantics of a POL program 
corresponds to the WFS+ of the translated normal pro
gramo But we have recently noted, [Dix amI Osorio, 
1997), that not always we needed the full power of WFSo 

but a restricted form that corresponds to LLC* . 
Let eS4 be the LP-system es!, plus the rule LLC*. 

Theorem 5.2 (WFS + LLC*) 
eS4 is a confiuent LP-System. ¡ts induced semantics is 
3-valued based and rational. 

Definition 5.3 (Contra) 
Let C a clause of the form a f- Body, where both b E 

Body and .b E Body. We define the transformation 
Contra as the one that deletes the clause C from the 
program P. 

At this point we are really not sure about the poten
cial uses of Contra. The motivation for Contra comes 
from the following observations. Clearly the rule is a 
theorem in intuitionistic propositional logic and so is in 
classical logic. The power of a theory should not be 
affected if we add or dele te theorems from the proper 
axioms of the theory (the proper axioms correspond t.o 
our programs). 

Theorem 5.3 (WFS + Contra) 
The LP-system given by es l , plus the rule Contra ís 
confiuent. In addition its induced semantics is rational 
but not 3-valued based. 

It has been criticized the WFS for its inability to do 
reasoning by cases and this is one reason to prefer in 
several cases STABLE over WFS , see for instance [naral 
and Gelfond, 1994J. The following rule allows to add a 
weak form of this kind of reasoning to WFS, still pre
serving the polynomial-time computability property of 
the semantics. 

Definition 5.4 (Weak-Cases) 
Let CI be of the form a f- b and C2 be of the form a f

.b, where a :j; b are any pair of atoms of the signature. 
We define the transjormatíon (Weak - Cases, C) as the 
one that snbstitutes the pairo oj clauses C l , C2 by the fa ct 
a in the program P. 

Theorem 5.4 (WFS + Weak-Cases) 
The LP-system given byeS l , plus the rule Weak-Cases 
is confiuent. In addition its induced semantics is ratio
nal and 3-valued based. 

6 Disjunctive programs 

We may denote a (general) clause C as: al V . .. V am :

ll, ... ,In, where m > 0, n 2: 0, each ai is an atom, and 
each li is a literal. When n = O the clause is considered 
as al V ... V am f- true, where tTue is a constant atom 
with its intended interpretation. Sometimes, is better 

to denote a clause by A f- 8+, .8- , where A contains 
all the head atorns, 8+ contains all the positive body 
atoms and 8- contains al! the negative body atoms . 
We also use body( C) to denote 8+ U .8- . When A is a 
singleton set., the clause reduces to a normal clause. A 
definite clause ([Lloyd, 1987J is a normal clause lacking 
of negative literals, that is 8 - = 0. Apure disjunction 
is a disjunction consisting solely of positive or solely of 
negative literals. A (general) program is a finite set of 
clauses. As in normal programs , H EAD(P) to denote 
the set of atoms ocurring in heads in P. We use F to 
denote the consequence relatíon for classical first-order 
logic. It will be useful to map a program to a normal 
programo Given a clause C := A f- 8+, .8-, we write 
dis-nor"(C) to denote the set of normal clauses: 

{a f- 8 +, .(8- U (A \ {a}lla E A}. 
We extend this definition to programs as follows. If P is 
a program , let dis-nor(P) denotes the normal program: 
U c EPdis - nor(C). Given a normal program P, we 
write Dejin'ite(P) to denote the Definite program that 
we obtain frorn P just by removing every negative literal 
in P. Given a Definite program, by M M(P) we mean 
the unique mínimal model of P (that always exists for 
definite programs, see [Lloyd, 1987]). 

D efinition 6.1 (Definition of dej and sup) 
Let P be a nor'mal programo Let a be an atom in a given 
signatuTe [ (such that [p ~ [), by the definition of a 
in P, we mean the set of clanses: {a f- body E P}, that 
we denote by dej(a). We define 

sup(a) := { 
faZs e 

bodYl V ... V bodYn 
ij dej(a) = 0 
otherwise 

where dej(a) = {a f- budYI, ... ,a f- bodYn} 

Definition 6.2 (comp(P) (Clark,1978» 
Fo1' any normal program P, we define comp(P) over a 
given signatu1'e [ (wheTe [p ~ [) as the classical theory 
{a t-t sup(a) : a E [F. 
WC use an example to illustrate the above definitions. 
Let P be the program: 

p V q f- .1' 

pf-S,.t 

Then HEAD(P) = {p,q}, and dis - nOT(P) consists of 
the clauses: 

p f- 'T,'q 
q f- 'T,'P 
P f- s , .t 

Dejinite(dis - nor(P» consists on the clauses: 
p f- t1'ue 
q f- true 
pf-S 

2In the standard definition L is LP. Our paper requires 
this more general uefinition 
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MM (Definite( dis-nor(P)) )={p, q}. Finally, comp (dis
nor(P)) over .cp consists on the formulas 

p ++ true V s 
q ++ true 
l' ++ false 
s ++ false 
What are the minimal requirements we want to im

pose on a semantics for disjunctive programs? Certainly 
we want that disjunctive facts, i.e. clauses in the pro
gram with empty bodies to be true. Dually, if an atom 
do es not occur in any head, then its negation should be 
true. These ideas are straightforward generalizations of 
the case on normal programs. 

Definition 6.3 (Semantics (Brass and Dix,97) 
A semantics over a given signature .c, is a binary re
lation 1- s between logic progmms and pure disjunctions 
which satisfies the following conditions: 

1. Jf P 1-s a and a ~ al, then P 1- s al. 

2. Jf A +--- true E P for a disjunction A, then P 1- s A. 

3. Jf a f/. H EAD(P) for some ato m a, then P 1- s ,a. 

Jt is an implicit assumption that every ato m that oc
curs in P, a, al, A, 01' a must belong to .c. 
For any progmm P we define its minimal semantics as: 

SEMmin(p,.c) := {Al A is apure disjunetion that 
belongs to every semanties over .c of P} 

This means that the minimal semantics of a program 
is defined only by the rules 1,2 and 3 just defined. For 
normal programs we defined a semantics as a binary 
relation between normal programs and literals that sat
isfies rules 2 and 3 given aboye, that is, we get rid of 
rule l. For rule 2 note that of course A reduces to an 
atom. 

Again, the key coneept of this approaeh is the idea of 
a tmnsformation rule. 

The following transformations are defined in [Brass 
and Dix, 1997; Brewka and Dix, 1996] and generalize 
the corresponding definitions for normal programs. 

Definition 6.4 (Basic Transformation Rules) 
A tmnsformation rule is a binary relation 071, ProgL. 
The following tmnsformation rules are called basie . Let 
a progmm P E ProgL be given. 

RED+: Replaee a rule A +--- B+, ,B- by A +--
B+, -,(B- n HEAD(P». 

RED-: Delete a clause A +--- B+, ,B- if there zs a 
clause A' +--- true sueh that A' ~ B-. 

SUB: Delete a clause A +--- B+ , ,B- if there is another 
clause Al +--- Bi, ,B1 sueh that Al ~ A, Bt ~ 
B+ , B1 ~ B-. 
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Example 6.1 (Transformation) 
Let P be the progmm: 

a V b +--- e, ,e, ,d 
aVef---b 
e Vd+--- ,e 
b +--- ,e, ,d, ,e 

then H EAD(P) = {a, b, e, d}, and 
SEMmin(P,.c p ) = 0. 
We can apply RED+ to get the progmm Pi: 

a V b f- e, ,e, ,d 
aVe+---b 
e vd+--- true 
b +--- ,e, ,d, ,e 

Jf we apply RED+ again, we get progmm P2: 
a V b +--- e, ,e, -,d 

aVe+---b 
e vd+--- true 
b +--- ,e, ,d 

SEMmin (P2, .cp ) 

{{e,d},{e,d,a},{e,d,b},{e,d,a,b},{,e}, ... , 
{ ,a, ,b, ,e, ,d, -,e} }. 

Clearly {e,d,a} E SEMmin (P2,.c p ) means that eV 
d Vais a consequenee in SEMmin (P2, .cp ). Now, we 
can apply SUB to get progmm P3 : 

aVe+---b 
e Vd+--- true 
b +--- ,e, -,d 

We will refer to this example again, that we will start 
ealling our basie example. 

Obviously, the just mentioned transformations are 
among the minimal requirements a well-behaved seman
ties should have (see [Dix, 1995b]). For this reason, ev
ery semantics presented in this paper will be invariant 
under the transformations RED+, RED - and SUB. 

The fol!owing transformations are defined in [Brass 
and Dix, 1997; Brewka and Dix, 1996]. 

GPPE: (Genemlized Prineiple of Partial Evaluation) 
Suppose P contains A +--- B+ , -,B- and we fix an 
oceurrenee of an atom 9 E B+ . Then we replaee 
A f--- B+, ,B- by the n clauses (i = 1, ... ,71,) 

where Ai f--- Bi +, ,Bi - E P, (for i = 1, .. . ,71,) are 
al! clauses with 9 E Ai . If no sueh clauses exist, we 
simply delete the former clause. 

TAUT: (Tautology) same as for normal programs. 

Let CS5 be the rewriting system which eontains, be
sides the basic transformation rules, the rules GPPE 
and TAUT. This system is introduced in [Brass and 
Dix, 1997] and is eonfiuent and terminating as shown 
in [Brass and Dix, 1998]. 
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Definition 6.5 (D-WFS) 
The disjunctive welllounded semantics D- WFS is de

fined as the weakest semantics satislying SUB, RED+, 
RED-, GPPE and TAUT. 

Let us note that although the C55 system has the ni ce 
property of conftuence (and termination) , its computa
tional properties are not that efficient. In fact, comput
ing the normal form of a program is exponential (even 
for normal programs , whereas it is known that the WFS 
can be computed in quadratic time). 

We introduce our proposed semantics D1-WFS and 
D1-WFS-COMP and give sorne important results about 
them. Unless stated otherwise we assume that every 
program is a disjunctive programo 

Definition 6.6 (Dloop) 
For a program 
P, let unf(P) := Lp \ M M(Definite(dis - nor(P». 
The transformation Dloop reduces a program P to P i := 

{A f-- B+,-,B-I B+nunf(P) = 0}. We assume that 
the given translormation takes place only il P =j:. PI. 

Let Dsuc be the natural generalization of suc to dis
junctive programs, formally: 

Definition 6.7 (Dsuc) 
Suppose that P is a program that ine/udes a lact a f-
true and a e/ause Q f-- Body such that a E Body. Thcn 
we replace this e/ause by the e/ause Q f-- B ody \ {a} . 

Definition 6.8 (C56 ) 

Given a relation R , we define R' as lollows: 

o.w. 

Given two relations Rl and R 2 , we define R 2 o Rl as: 
R 2 oR1 U {(x,y)l(x,y) E R 1 ,-,3(y,z) E R 2 }, where o 

denotes the standard composition 01 relations. 
Let REDUCE be the binary relation on programs de
fined by: 

Dloop' o (Dsuc' o(SU BURED+ URED-)') \J, where 
J denotes the identity relation. 
Finally, let C56 be the rewriting system based on the 
basic transformation REDUCE . 

Theorem 6.1 (Confl. and termination of C56 ) 

The system C56 is confluent and terminating. Jt induces 
a semantics that we call Dl- WFS. JI we consider only 
normal programs then its induced semantics corresponds 
to the well-founded semantics. 

Proof: Conftuence is immediate since REDUCE be
haves as a partial function. Moreover, REDUCES al
ways deletes something in the program and so this rela
tion is terminating. For normal programs, the system is 
clearly equivalent to RED+ + RED- + S + Loop 
+ SUB (that is, both systems define the same normal 
form) which in tums defines the well-founded semantics. 

Consider again P from our basic example introduced 
before. As we noticed before, program P reduces to 
P3 · But P3 still reduces (by RED - ) to P4 , which is as 
P3 but the third clause is removed. ¿From P4 we can 
apply a Dloop reduction to get P5 : the single clause 
c vd f-- true. So, REDUCES (which can be seen as 
a macro reduction) transforms P (in one step) to P5 • 

Since REDUCES can not be applied again, P5 is the 
normal form of the C56 system. 

For this example it tums out that D-WFS is equiv
alent to D1-WFS, but this is false in general. However 
for normal programs both systems are equivalent since 
they define WFS, but note that the normal forms for 
C55 and C56 are not necessarily the same. An advan
tage of C56 over C55 (again for normal programs) is that 
the normal form of C56 is polynomial-time computable, 
while computing the normal form of C55 is in general 
exponential as it is shown in [Brass et al., 1997]. 

We now define a very strong semantics that includes 
the power of comp. 

Definition 6.9 (Dl-WFS-COMP) 
For every program P, we define DCOM P(P) 
comp( dis - nor( normalcss (P») over Lp. We define 
Dl- WFS-COMP(P) as the set 01 pure disjunctions that 
are logical consequences of DCOMP(P). 

It is immediate to see that D1-WFS-COMP is more 
powerful than DI-WFS. Take for instance the program 
P: 

p V q f-- true 
r' f-- -'p 
r f-- -,q 

Then D-WFS(P) = {{p,q},{p,q,r}} =DI-WFS(P), 
however, D1-WFS-COMP(P) at least derives r. In this 
case D1-WFS-COMP corresponds to STABLE, but this 
is not always true. Sometimes STABLE is inconsistent, 
while DI-WFS-COMP is noto Consider P as: 

dVe 
c f--c 
bf--a 
af--b 

a f-- -,b,-'c 
Note that STABLE is inconsistent while D1-WFS
COMP is noto This is because DCOMP(P) is: 

d f-+ -,e 
e f-+ -,d 
a f-+ (b V -,b) 
c f-+ false 

Due to its construction, we see that D1-WFS-COMP is 
similar to STABLE. However, STABLE is inconsistent 
more often than DI-WFS-COMP (at least for normal 
programs) 

Our current research suggests that logic program
ming can be extended by adding both disjunctions and 

11 1 
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partial-orders as defined and studied in det.ail in [Oso
rio et al., 1995, and 1998; Osorio and Jayaraman , 1998; 
Osorio, 1998] arriving to a ver y powerful declarative pro
gramming language. This integration is one of our main 
lines of research. 

7 Conclusion 

We introduced the general notion of a confluent LP
system. Such a system is based on certain transforma
tion rules and induces a semantics SEM in a natural way. 
Thanks to confluence and termination, our transforma
tion rules have both a declarative and an operational 
meaning. From the declarative point of view, they tell 
us that our semantics is closed under the given trans
formation rule. From an operational point of view the 
transformations are computable functions that can be 
applied to simplily the programo 

When we arrive to the normalform, then comput ing 
its semantics is immediate. Rationality is a desirable 
property of semantics in logic programming. Confluence 
plus a simple property that we call partial distribution 
implies rationality. It is straightforward to see that all 
(but one) of our semant ics for normal programs satisfy 
partial distribution. Therefore we know that all but one 
of these semantics are rational. 

We showed that most of the well-known semantics 
for normallogic programs are induced by confluent LP
systems. Moreover, we showed by introducing several 
new transformation rules that the corresponding LP
systems induce interesting semantics which are polyno
mial time computable and extend WFS. We also showed 
how to apply our approach to disjunctive programs. 

It is quite surprising that the simple notion of a con
fluent LP-system that we introduced here , is so flexible 
that it allows us to extend recently defined calculi for 
WFS by new transformations in such a way, that the 
new system still is confluent . We have therefore shown 
that rewriting methods can be successfully applied in 
the realm of logic programming semantics. 
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