
Computación y Sistemas Vol. 2 Nos. 2-3 pp. 104-113
© 1999, CIC -IPN. /SSN /405-5546 Impreso en México --

Confluent Rewriting Systems in Non-Monotonic Reasoning

J ose Arrazola
Benemerita Universidad

Autonoma de Puebla
Facultad de Ciencias
Fisico Matematicas

75579 Puebla, Mexico

Jürgen Dix
University of Koblenz

Department of
Computer Science

Rheinau 1, D-56075
Koblenz , Germany

dix@informatik. uni-koblenz. de

Mauricio Osorio
Universidad de las Americas

Ing. en Sist. Computacionales
Sta. Catarina Martir,

Cholula, Puebla
72820 Mexico

josorio@mail.udlap.mx

Article received on October 12, 1998; accepted on February 25, 1999

Abstract

We introduce the general notion 01 a Confluent LP
System, which is a rewriting system on the set 01 all
logic pmgrams over a signature L. Such a system is
based on certain translormation rules and induces a se
mantics SEM in a natural way. We show that most 01
the well-known semantics for normal logic programs are
induced by confiuent LP-systems. Moreover, we show
by intmducing several new translormation rules that the
corresponding LP-systems induce interesting semantics
which are polynomial time computable and extend WFS.
Moreover we use our appmach to define new semantics
for disjunctive pmgrams.

Keywords:

Well-founded semantics, stable semantics, logic pro
gramming, non-monotonic reasoning, rewriting systems,
negation as failure.

104

1 Introduction

In this paper we try to combine methods from rewriting
with logic programming technology to get a framework
for considering semantics of logic programs.

The main idea (already introduced in [Brass and Dix,
1998] for disjunctive logic programs) is to determine a
set of rewriting rules that is confluent. These rules trans
form programs into simpler programs. Confluence and
termination guarantees that every program is associated
a normal formo This normal form then induces a seman
tics and a simple and efficient method to answer queries
with respect to this semantics.

In this paper we do not stick to a particular semantics
but we develop the beginnings of a general theory of
confluent LP systems and investigate which semantics
can be represented as such systems.

We also extend the confluent system which corre
sponds to the wellfounded semantics WFS by new
rewriting rules. These rules are motivated by the use
of aggregates in logic programming and the problems
of modelling aggregates in semantics such as WFS (see
[Osorio and Jayaraman, 1997; Dix and Osorio, 1997]).

An advantage of our approach is its declarative na
ture. The transformation rules express natural condi
tions and different applications might ask for different
selections of such rules. We show that the naturally in
duced semantics of a confluent LP-system is in fact the
weakest semantics satisfying all our transformations.

The first proposal to provide a convincing declara
tive semantics to NAF was given in [Clark, 1978] and
it is called the Clark's completion. The main idea is
that, to deduce negative information from a normal
program, we could "complete" the program by adding
the only-if halves of the definitions of the predicate
symbols1 . Clark's completion is obtained as our weakest
LP-system eso

1 For the details we refer to [Lloyd, 1987] .

J. Arrazola, J. Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

However, it is now accepted that Clark's completion is
often too weak and does not always capture the intended
meaning of logic programs necessary for e.g Knowl
edge Representation tasks [Baral and Gelfond, 1994;
Brewka and Dix, 1996]. Therefore stronger semantics
are needed.

The two main competing approaches are the well
lounded [Gelder et al. , 1988, and 1991] and the sta
ble semantics [Gelfond and Lifschitz, 1988, and 1990].
WFS has received great interest since its introduction ,
because it has several desirable properties: it is always
consistent and every program possesses exactly one 3-
valued model. In addition, this model is computable in
polynomial time.

In contrast to this, the stable semantics is not always
consistent and answering a query do es not depend on
the call-graph below that query. This implies that there
is no goal-directed computation possible. In addition,
computing stable models is NP-hard and can therefore
not be done in polynomial time (unless the polynomial
hierarchy collapses).

One of the problems of WFS is that it is overly scepti
cal: clauses of the form a f- ,a are treated as undefined.
This is particurlarly bad when aggregate predicates are
considered (where a should be treated as true). We in
troduce in this paper several confluent LP-systems to
sol ve the problems related with a f- ,a clauses. Sorne
of them are polynomial time computable and satisfy also
rationality [Dix, 1995a] .

Our definitions and results are given for propositional
programs only, to ensure termination. But we believe
that if we drop termination and only retain confluence,
we can get similar results for general programs with vari
ables (under the assumption that the normal form ex
ists) . We also apply our approach to define new seman
tics for disjunctive programs.

Our paper is structured as follows. After giving sorne
background information on the concepts involved (sec
tion 2) , we introduce in section 3 our new notion of a
Non-monotonic confiuent LP-system. Our main result
in this section is that parlial distribution implies ratio
nality. Section 4 shows that most of the well known
semantics can be defined in a natural way via conflu
ent LP-systems. Section 5 introduces several confluent
LP-systems that define new rational and polynomial
time computable semantics. Section 6 introduces new
semantics for disjunctive programs.

2 Background
We first collect sorne general results about rewriting sys
tems that are needed later. We then define the notion of
SEMmin , stating the minimal requirements any seman
tics should have.

Definition 2.1 (Rewriting System)

A n abstract rewriting system is a pair (S, ~) where ~
is a binary relation on S. Let ~ * be the refiexive, and
transitive closure 01 ~. When x ~. y we say that x
reduces to y. An irreducible element is said to be in
normal form o

We say that a rewriting system is

noetherian: il there is no infinite chain Xl ~ X2 ~

... ~ Xi ~ Xi+l ~ ...

confluent: il whenever u ~. X and u ~. y then there
is a z such that X ~. z and y ~ * z.

locally confluent: il whenever u ~ X and u ~ y then
there is a z such that ,e ~. z and y ~. z .

In a noetherian and conflueLt rewriting system, every
element X reduces to a unique normal form that we de
note by norm(x).

A signature L is a finite set of elements that we call
atoms. A literal is an atom or the negation of an atom a
that we denote by ,a. Given a set of atoms {al, ... ,an }

, we write ,{al, .. . ,an } to denote {,al, . .. "an }. We
may denote a normal clause C as usual [Lloyd, 1987] : a
:- ll , . . . , ln , where a is an ato m and each li is a literal;
or by a f- B+, ,B-, where B+ contains all the posi
tive body atoms and B- contains all the negative body
atoms. We also use body(C) to denote B+ U ,B- . A
program is a finite set of clauses. Sometimes we will con
sider the logical constants t and f with their intended in
terpretation. Let Progc be the set of all normal propo
sitional programs with atoms from L. By Lp we under
stand the signature of P, i.e. the set of atoms that occur
in P. A (partial) interpretation based on a signature L
is a disjoint pair of sets (l¡ , h) such that l¡ U h <:;;; L .
A partial interpretation is total if l¡ U 12 = L. Given
two interpretations 1 = (11 ,12), J = (JI , J2), we define
1 "5:.k J iff l i <:;;; Ji, i = 1,2. Clearly "5:.k is a partial order.
We may also see an interpretation (l¡ , 12) as the set of
literals l¡ U'h· When we look at interpretations as sets
of literal s then "5:.k corresponds to <:;;;.

A general semantics SEM is a function on Progc
which associates to every program a partial interpre
tation.

What are the minimal requirements we want to im
pose on a semantics? Certainly we want that facts,
i,e. rules with empty bodies are true. Dually, if an atom
do es not occur in any head, then its negation should be
true. This gives rise to the following definition (given by
Brass and Dix) , which will play an important role later.

Definition 2.2 (SEMmin)

For any program P we de
fine HEAD(P) = {al a f- B+, ,B- E P} - the set
01 all head-atoms 01 P . W e also define

SEMmin(P) = (ptrue, pfalse) , where
ptrue := {pi p f- E P}, and

105

J. Arrazola, J. Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

plalse := {pi pE .cp\HEAD(P)}

3 Non-monotonic confluent
LP-Systems

The main concept our notion of a LP system is based
upon, is the concept of a tmnsformation rule, see [Brass
and Dix, 1997].

Definition 3.1 (Basic Transformation Rules)
A tmnsformation rule is a binary relation on Proge.
The following tmnsformation rules are called basic. Let
a progmm P E Proge be given.

RED+: This tmnsformation can be applied to P, if
there is an ato m a which does not occur in
HEAD(P). RED+ tmnsforms P to the progmm
where all ocurrences of -,a are removed.

RED-: This tmnsformation can be applied to P, if
there is a rule a *- E P. RED- tmnsforms P
to the progmm where all clauses that contain -,a in
their bodies are deleted.

SUB: This tmnsformation can be applied to P, if
P contains two clauses a *- bodYl, and a *- bodY2,
where bodYl <;;; bodY2. SUB tmnsforms P to the pro
gmm where the clause a*- bodY2 has been removed.

Although these rules are not really functions on Proge
(e.g. RED- is only determined if an occurrence of a
certain rule is distinguished), we usually write them as
opemtors on Prog e when it is understood by context how
they are uniquely determined.

Obviously, the just mentioned transformations are
among the minimal requirements a well-behaved seman
tics should have (see [Dix, 1995b]). From now on, when
we speak of a semantics SEM, we understand that SEM
is invariant under the transformations RED+, RED
and SUB.

Given a program P and a list of operators ops, we
define the application of ops to P, denoted as pops, as
follows:

p[] .- P
p[oplops]

We define the size of ops as the number of elements of
ops. We are now ready to introduce our main notion:

Definition 3.2 (Confluent LP-system eS)
A non-monotonic confluent LP-system es over the sig
nature .c is a pair

({OPi I i = 1, ... , n}, -+)

that satisfies the following conditions:

106

1. {OPi I i = 1, ... , n} is a finite set of tmnsformation
rules on Proge. By abuse of language we ofien view
them as opemtors and we write pop to denote the
result of the application of the given opemtor. We
say that the opemtor is executed in this case.

2. (Proge, -+), where -+ is the union of all the tmns
formation rules in es, is a noetherian and conflu
ent rewriting system.

We denote the uniquely determined normal form of a
progmm P with normcs(P).

Every LP-system es induces a semantics SEMcs as
follows:

SEMcs(P) := SEMmin(normcs(P))

When there is no ambiguity about the given confluent
LP-system we drop the subscripts.

Sorne points are worth mentioning:

l. Thanks to confluence and termination, our trans
formation rules have both a declarative and an op
erational meaning. From the declarative point of
view, they tell us that our semantics is closed under
the given transformation rule. From an operational
point of view the transformations are computable
functions that can be applied to simplify the pro
gramo When we arrive to the normal form, then
computing its semantics is immediate.

2. Rationality (introduced later) has been argued as
a desirable property of semantics in logic program
mingo Confluence plus a simple property that we
call partial distribution implies rationality. It is
straightforward to see that all (but one) of our se
mantics satisfy partial distribution. Therefore we
know that these semantics are rational.

3. The nature of simple transformations, confluence
and termination allow us to prove many properties
by induction on the number of steps that we need
to compute the normal formo

3.1 Basic Results

We omitt the proofs of most of our results but they can
be found in the research report [Dix et al., 1997].

Lemma 3.1 For every confluent LP-system es and ev
ery progmm P such that every step in pops is executed
we have: SEMmin(P) S,k SEMmin(POPS).

Corollary 3.1
For every progmm P of a confluent LP-system es:
SEMmin(P) S,k SEMcs(P).

J. Arrazola, J. Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

The following condition is also desirable in logic pro
gramming.

Definition 3.3 (Three-valued Based)
A semantics SEM is called a 3-valued based if for every
program P the partial interpretation SEM(P) is a 3-
valued model 01 P.

In 3-valued based semantics, it can not happen that the
body of a rule evaluates to true in SEM(P) while the
head of this rule evaluates to false or to undefined. For
the details of 3-valued based semantics see [Dix, 1995a;
Brass and Dix, 1997].

3.2 Rationality
A semantics SEM is called rational, if for every atom a
and program P the following holds

-,a ~ SEM(P) implies SEM(P) 5.k SEM(P U {a +-}).

Definition 3.4 (Partial distribution)
A confluent LP-system es satisfies partial distribution
il for every op, P and a su eh that a E HEAD(JX'P) and
pop is exeeuted, the following holds:

1. (P U {a} lP is exeeuted,

Lemma 3.2 For every partial distributive confluent
LP-system es the following is true. Let a E
HEAD(JX'Ps J, where ops is any list 01 operators sueh
that every step in pops is exeeuted. Then:

1. every step in (P U {a} lPs is executed,

2. (PU {a})OPS = pops U {a}.

Rationality is a nice property for a semantics SEM,
especially if we plan to use the system in logic program
mingo The following result is important because it shows
that a relatively simple condition, namely partial distri
bution on es suffices to ensure rationality of the induced
semantics.

Theorem 3.1 (Rational semantics)
Every partial distributive confluent LP-system es in
duces a rational semantics SEMcs.

4 Clark's completion, WFS and WFS+

In this section we show that the 3-valued version of
clark's completion semantics (introduced by Fitting in
[Fitting, 1985, and 1986]), WFS ([Gelder et al., 1988,
and 1991]) and an extension of WFS (introduced inde
pendently by [Dix, 1992] and [Schlipf, 1992]) are induced
by confluent LP-system.

To this end, we introduce the following transformation
rules:

GPPE: (Generalized Principle 01 Partial Evaluation)
Suppose P contains a +- 8+, -,8- and we fix an
occurrence of an atom 9 E 8+ different from a.
Then we can replace a +- 8+, -,8- by the n clauses
(i=l, ... ,n)

a+-(B+ \ {g }) U Bi +, -,8- U -,Bi -

where 9 +-Bi +, -,Bi - E P, (for i = 1, ... ,n) are
all clauses with 9 in their heads. If no such clauses
exist, we simply delete the former clause.

TAUT: (Tautology) Suppose P contains a rule e which
has the same atom in its head and in its body. Then
we can remove this rule.

LC: (Logieal Consequenee) Suppose P F a for an atom
a. Then we can add the rule a +- to P.

Let eso be the LP-system which contains, besides the
basic transformation rules, the rule GPPE. Let eSl be
eso enlarged by TAUT. Finally, let eS2 be eS l plus the
rule Le. By using results of [Dix, 1995a; Brass and Dix,
1998] we get

Theorem 4.1 (Classifying comp3, WFS)

1. Fitting 's semanties eomp3 is the weakest 3-valued
based semantics satislying GPPE. It is induced by
the confluent LP-system eso.

2. The welllounded semanties is the weakest 3-valued
based semantics satislying GPPE and TA UT. It is
indueed by the confluent LP-system esl .

Let us note that although the eSl system has the nice
property of confluence (and termination), its computa
tional properties are not that efficient. In fact, comput
ing the normal form is exponential, whereas it is known
that the WFS can be computed in quadratic time. It
turned out that recently an equivalent confluent LP
system was defined, where the normal form can be com
puted in quadratic time (see [Brass et al., 1997]). The
idea is to restrict the GPPE rule and to replace it by
two simple instances plus an additional check for an un
founded set (Loop detection):

Success (8): Suppose that P includes a fact a and a
clause q +- Body such that q E Body. Then we
replace the clause q +- B ody by q +- B ody \ {a}.

Failure (F): Suppose that P includes an atom a and
a clause q +- Body such that a 1:. H EAD(P) and
a is a positive literal in Body. Then we erase the
given clause.

Loop Detection (Loop): We say that P2 results from
PI by Loop A iff there is a set A oí- atoms such that

107

J. Arrazola, J. Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

1. for each rule a +-- Body E P l , if a E A, then
Body n A f:. 0,

2. P2 := {a: -Body E PI : Body n A = 0},

3. PI i P2 .

We call the resulting system esl " i.e.
RED++RED-+S+F+Loop. We now show that F
is redundant, for that we need the following lemma.

Lemma 4.1 (Zepeda, 1997)
Let f-t x denotes the reduction relation 01 the es l' sys
temo Let f-t x _ F be as f-t x without F . For all pmgrams
P, P', PI , P2 , where,

there is a program P" such that

Proof: If P' f-t'F P l , where a is the atom resposible of
this failure reduction. Let A={a}. Suppose that there
are exactly k clauses in P' such that a occurs positively
in them. Starting with P' we can apply a sequence of k
Failure steps (over the same positive literal) leading to
sorne program P" where a no longer occurs positively.
And by confluence we get that,

Moreover: There is no rule A +-- B in p' such that
A ti. A. P" := {A +-- B E p' I B n A = 0}, and
p' i P" . For hence P" also results from p' by applying
the Loop Detection, so

as desired.

The following theorem is a direct consequence of the
aboye lemma.

Theorem 4.2 (Elimination of Failure, Zepeda,97)

Let P be a programo Then p' the normallorm of P
w.r.t. the es l , system, iff P' is the normal form of P
W. r. t the same system but without F.

Theorem 4.3 (Classifying WFS+)
The WFst- semantics is the weakest 3-valued based se
mantics satisfying S, F, Loop, TA UT and LC. Jt is in
duced by the confluent LP-system consisting of exactly
these transformations (plus the basic ones).

The reason we gave up GPPE is not only for computa
tional purposes. As has been shown in [Dix and Müller,

108

1994] GPPE do es not hold for WFS+ . Let us consider
the programs:

P : a +-- ,b P': a +-- ,b
b +-- ,a b +-- ,a
:1; +-- el X +-- ,a
x +-- b x +-- ,b

By applying GPPE twice, we get P'. But WFS+(P) =
{x} while WFS+(P I

) = 0. We point out that the WFS
for both P ancl P' is 0, considered as a shortcoming of
WFS.

5 N ew Semantics extending WFS
In this section we show how our transformation rules
can be extended by new rules that still define confluent
LP-systems.

The motivation of these rules is the overly sceptical
approach of WFS. In particular for aggregation predi
cates, rules of the form a +-- ,a should be considered as
being equivalent to a. However, incorporating this into
a well-behavcd semantics is in general ver y difficult.

Of course the WFS+ semantics has this property. But
again it can be shown that WFS+ is on the second level
of the polynomial hierarchy (due to the LC-rule) and
thus most probably not polynomial. We therefore intro
duce a weaker form of LC:

Definition 5.1 (Local Logical Consequence)
By the application of LLC (locallogical con sequen ce) to
a pmgram P that only contains one clause with head a,
namely a LC-cla'use a +-- ,a E P, we mean the trans
lormation 01 P which simply r'emoves every occurrence
of ,a in P.

We define eS3 as LP-system eS l plus the rule LLC.
Here is one of our main theorems.

Theorem 5.1 (eS3 is a confluent LP-System)
eS3 is a confiuent LP-System, Jts induced semantics,
called WFSO, is 3-valued based, but not rational,

Here are stronger versions of LLC.

Definition 5.2 (LLC*)
Let B be an ordered set {ao, ... , an }, where n 2: O
. Suppose in addition that the set of clauses LLCB:=
{al +-- ,ao} U {aHI +-- ai : 1 ::; i ::; n - 1} U {ao +-- an}
is a subset of a program P. Jf n = O we assume that
the set reduces to ao +-- 'ao. Then the transformation
(LLC*, B) substitutes the clause ao +-- an by the fact ao .

Note that by transitivity of +-- we get ao +-- ,ao. More
over (,a --+ a) --+ a is a theorem in propositional classi
callogic and by Modus Ponens we can infer a. So, this
rule is sound in propositional classical logic. In [Oso
rio et al., 1995] it is defined a language that allows to
model aggregation in a natural way via POL programs.
In [Osorio and Jayaraman, 1997] we showed that this

J. Arrazola, J. Dix and M. Oserio: Confluent Rewriting Systems in Non- Monotonic Reasoning

POL programs can be translated to normal programs
such that the declarat.ive semantics of a POL program
corresponds to the WFS+ of the translated normal pro
gramo But we have recently noted, [Dix amI Osorio,
1997), that not always we needed the full power of WFSo

but a restricted form that corresponds to LLC* .
Let eS4 be the LP-system es!, plus the rule LLC*.

Theorem 5.2 (WFS + LLC*)
eS4 is a confiuent LP-System. ¡ts induced semantics is
3-valued based and rational.

Definition 5.3 (Contra)
Let C a clause of the form a f- Body, where both b E

Body and .b E Body. We define the transformation
Contra as the one that deletes the clause C from the
program P.

At this point we are really not sure about the poten
cial uses of Contra. The motivation for Contra comes
from the following observations. Clearly the rule is a
theorem in intuitionistic propositional logic and so is in
classical logic. The power of a theory should not be
affected if we add or dele te theorems from the proper
axioms of the theory (the proper axioms correspond t.o
our programs).

Theorem 5.3 (WFS + Contra)
The LP-system given by es l , plus the rule Contra ís
confiuent. In addition its induced semantics is rational
but not 3-valued based.

It has been criticized the WFS for its inability to do
reasoning by cases and this is one reason to prefer in
several cases STABLE over WFS , see for instance [naral
and Gelfond, 1994J. The following rule allows to add a
weak form of this kind of reasoning to WFS, still pre
serving the polynomial-time computability property of
the semantics.

Definition 5.4 (Weak-Cases)
Let CI be of the form a f- b and C2 be of the form a f

.b, where a :j; b are any pair of atoms of the signature.
We define the transjormatíon (Weak - Cases, C) as the
one that snbstitutes the pairo oj clauses C l , C2 by the fa ct
a in the program P.

Theorem 5.4 (WFS + Weak-Cases)
The LP-system given byeS l , plus the rule Weak-Cases
is confiuent. In addition its induced semantics is ratio
nal and 3-valued based.

6 Disjunctive programs

We may denote a (general) clause C as: al V . .. V am :

ll, ... ,In, where m > 0, n 2: 0, each ai is an atom, and
each li is a literal. When n = O the clause is considered
as al V ... V am f- true, where tTue is a constant atom
with its intended interpretation. Sometimes, is better

to denote a clause by A f- 8+, .8- , where A contains
all the head atorns, 8+ contains all the positive body
atoms and 8- contains al! the negative body atoms .
We also use body(C) to denote 8+ U .8- . When A is a
singleton set., the clause reduces to a normal clause. A
definite clause ([Lloyd, 1987J is a normal clause lacking
of negative literals, that is 8 - = 0. Apure disjunction
is a disjunction consisting solely of positive or solely of
negative literals. A (general) program is a finite set of
clauses. As in normal programs , H EAD(P) to denote
the set of atoms ocurring in heads in P. We use F to
denote the consequence relatíon for classical first-order
logic. It will be useful to map a program to a normal
programo Given a clause C := A f- 8+, .8-, we write
dis-nor"(C) to denote the set of normal clauses:

{a f- 8 +, .(8- U (A \ {a}lla E A}.
We extend this definition to programs as follows. If P is
a program , let dis-nor(P) denotes the normal program:
U c EPdis - nor(C). Given a normal program P, we
write Dejin'ite(P) to denote the Definite program that
we obtain frorn P just by removing every negative literal
in P. Given a Definite program, by M M(P) we mean
the unique mínimal model of P (that always exists for
definite programs, see [Lloyd, 1987]).

D efinition 6.1 (Definition of dej and sup)
Let P be a nor'mal programo Let a be an atom in a given
signatuTe [(such that [p ~ [), by the definition of a
in P, we mean the set of clanses: {a f- body E P}, that
we denote by dej(a). We define

sup(a) := {
faZs e

bodYl V ... V bodYn
ij dej(a) = 0
otherwise

where dej(a) = {a f- budYI, ... ,a f- bodYn}

Definition 6.2 (comp(P) (Clark,1978»
Fo1' any normal program P, we define comp(P) over a
given signatu1'e [(wheTe [p ~ [) as the classical theory
{a t-t sup(a) : a E [F.
WC use an example to illustrate the above definitions.
Let P be the program:

p V q f- .1'

pf-S,.t

Then HEAD(P) = {p,q}, and dis - nOT(P) consists of
the clauses:

p f- 'T,'q
q f- 'T,'P
P f- s , .t

Dejinite(dis - nor(P» consists on the clauses:
p f- t1'ue
q f- true
pf-S

2In the standard definition L is LP. Our paper requires
this more general uefinition

109

J. Arrazola, J. Dix and M. Osario: Confluent Rewriting Systems in Non- Monotonic Reasoning

MM (Definite(dis-nor(P)))={p, q}. Finally, comp (dis
nor(P)) over .cp consists on the formulas

p ++ true V s
q ++ true
l' ++ false
s ++ false
What are the minimal requirements we want to im

pose on a semantics for disjunctive programs? Certainly
we want that disjunctive facts, i.e. clauses in the pro
gram with empty bodies to be true. Dually, if an atom
do es not occur in any head, then its negation should be
true. These ideas are straightforward generalizations of
the case on normal programs.

Definition 6.3 (Semantics (Brass and Dix,97)
A semantics over a given signature .c, is a binary re
lation 1- s between logic progmms and pure disjunctions
which satisfies the following conditions:

1. Jf P 1-s a and a ~ al, then P 1- s al.

2. Jf A +--- true E P for a disjunction A, then P 1- s A.

3. Jf a f/. H EAD(P) for some ato m a, then P 1- s ,a.

Jt is an implicit assumption that every ato m that oc
curs in P, a, al, A, 01' a must belong to .c.
For any progmm P we define its minimal semantics as:

SEMmin(p,.c) := {Al A is apure disjunetion that
belongs to every semanties over .c of P}

This means that the minimal semantics of a program
is defined only by the rules 1,2 and 3 just defined. For
normal programs we defined a semantics as a binary
relation between normal programs and literals that sat
isfies rules 2 and 3 given aboye, that is, we get rid of
rule l. For rule 2 note that of course A reduces to an
atom.

Again, the key coneept of this approaeh is the idea of
a tmnsformation rule.

The following transformations are defined in [Brass
and Dix, 1997; Brewka and Dix, 1996] and generalize
the corresponding definitions for normal programs.

Definition 6.4 (Basic Transformation Rules)
A tmnsformation rule is a binary relation 071, ProgL.
The following tmnsformation rules are called basie . Let
a progmm P E ProgL be given.

RED+: Replaee a rule A +--- B+, ,B- by A +--
B+, -,(B- n HEAD(P».

RED-: Delete a clause A +--- B+, ,B- if there zs a
clause A' +--- true sueh that A' ~ B-.

SUB: Delete a clause A +--- B+ , ,B- if there is another
clause Al +--- Bi, ,B1 sueh that Al ~ A, Bt ~
B+ , B1 ~ B-.

110

Example 6.1 (Transformation)
Let P be the progmm:

a V b +--- e, ,e, ,d
aVef---b
e Vd+--- ,e
b +--- ,e, ,d, ,e

then H EAD(P) = {a, b, e, d}, and
SEMmin(P,.c p) = 0.
We can apply RED+ to get the progmm Pi:

a V b f- e, ,e, ,d
aVe+---b
e vd+--- true
b +--- ,e, ,d, ,e

Jf we apply RED+ again, we get progmm P2:
a V b +--- e, ,e, -,d

aVe+---b
e vd+--- true
b +--- ,e, ,d

SEMmin (P2, .cp)

{{e,d},{e,d,a},{e,d,b},{e,d,a,b},{,e}, ... ,
{ ,a, ,b, ,e, ,d, -,e} }.

Clearly {e,d,a} E SEMmin (P2,.c p) means that eV
d Vais a consequenee in SEMmin (P2, .cp). Now, we
can apply SUB to get progmm P3 :

aVe+---b
e Vd+--- true
b +--- ,e, -,d

We will refer to this example again, that we will start
ealling our basie example.

Obviously, the just mentioned transformations are
among the minimal requirements a well-behaved seman
ties should have (see [Dix, 1995b]). For this reason, ev
ery semantics presented in this paper will be invariant
under the transformations RED+, RED - and SUB.

The fol!owing transformations are defined in [Brass
and Dix, 1997; Brewka and Dix, 1996].

GPPE: (Genemlized Prineiple of Partial Evaluation)
Suppose P contains A +--- B+ , -,B- and we fix an
oceurrenee of an atom 9 E B+ . Then we replaee
A f--- B+, ,B- by the n clauses (i = 1, ... ,71,)

where Ai f--- Bi +, ,Bi - E P, (for i = 1, .. . ,71,) are
al! clauses with 9 E Ai . If no sueh clauses exist, we
simply delete the former clause.

TAUT: (Tautology) same as for normal programs.

Let CS5 be the rewriting system which eontains, be
sides the basic transformation rules, the rules GPPE
and TAUT. This system is introduced in [Brass and
Dix, 1997] and is eonfiuent and terminating as shown
in [Brass and Dix, 1998].

J. Arrazola, J. Dix and M. Osario: Confluent Rewriting Systems in Non- Monotonic Reasoning

Definition 6.5 (D-WFS)
The disjunctive welllounded semantics D- WFS is de

fined as the weakest semantics satislying SUB, RED+,
RED-, GPPE and TAUT.

Let us note that although the C55 system has the ni ce
property of conftuence (and termination) , its computa
tional properties are not that efficient. In fact, comput
ing the normal form of a program is exponential (even
for normal programs , whereas it is known that the WFS
can be computed in quadratic time).

We introduce our proposed semantics D1-WFS and
D1-WFS-COMP and give sorne important results about
them. Unless stated otherwise we assume that every
program is a disjunctive programo

Definition 6.6 (Dloop)
For a program
P, let unf(P) := Lp \ M M(Definite(dis - nor(P».
The transformation Dloop reduces a program P to P i :=

{A f-- B+,-,B-I B+nunf(P) = 0}. We assume that
the given translormation takes place only il P =j:. PI.

Let Dsuc be the natural generalization of suc to dis
junctive programs, formally:

Definition 6.7 (Dsuc)
Suppose that P is a program that ine/udes a lact a f-
true and a e/ause Q f-- Body such that a E Body. Thcn
we replace this e/ause by the e/ause Q f-- B ody \ {a} .

Definition 6.8 (C56)

Given a relation R , we define R' as lollows:

o.w.

Given two relations Rl and R 2 , we define R 2 o Rl as:
R 2 oR1 U {(x,y)l(x,y) E R 1 ,-,3(y,z) E R 2 }, where o

denotes the standard composition 01 relations.
Let REDUCE be the binary relation on programs de
fined by:

Dloop' o (Dsuc' o(SU BURED+ URED-)') \J, where
J denotes the identity relation.
Finally, let C56 be the rewriting system based on the
basic transformation REDUCE .

Theorem 6.1 (Confl. and termination of C56)

The system C56 is confluent and terminating. Jt induces
a semantics that we call Dl- WFS. JI we consider only
normal programs then its induced semantics corresponds
to the well-founded semantics.

Proof: Conftuence is immediate since REDUCE be
haves as a partial function. Moreover, REDUCES al
ways deletes something in the program and so this rela
tion is terminating. For normal programs, the system is
clearly equivalent to RED+ + RED- + S + Loop
+ SUB (that is, both systems define the same normal
form) which in tums defines the well-founded semantics.

Consider again P from our basic example introduced
before. As we noticed before, program P reduces to
P3 · But P3 still reduces (by RED -) to P4 , which is as
P3 but the third clause is removed. ¿From P4 we can
apply a Dloop reduction to get P5 : the single clause
c vd f-- true. So, REDUCES (which can be seen as
a macro reduction) transforms P (in one step) to P5 •

Since REDUCES can not be applied again, P5 is the
normal form of the C56 system.

For this example it tums out that D-WFS is equiv
alent to D1-WFS, but this is false in general. However
for normal programs both systems are equivalent since
they define WFS, but note that the normal forms for
C55 and C56 are not necessarily the same. An advan
tage of C56 over C55 (again for normal programs) is that
the normal form of C56 is polynomial-time computable,
while computing the normal form of C55 is in general
exponential as it is shown in [Brass et al., 1997].

We now define a very strong semantics that includes
the power of comp.

Definition 6.9 (Dl-WFS-COMP)
For every program P, we define DCOM P(P)
comp(dis - nor(normalcss (P») over Lp. We define
Dl- WFS-COMP(P) as the set 01 pure disjunctions that
are logical consequences of DCOMP(P).

It is immediate to see that D1-WFS-COMP is more
powerful than DI-WFS. Take for instance the program
P:

p V q f-- true
r' f-- -'p
r f-- -,q

Then D-WFS(P) = {{p,q},{p,q,r}} =DI-WFS(P),
however, D1-WFS-COMP(P) at least derives r. In this
case D1-WFS-COMP corresponds to STABLE, but this
is not always true. Sometimes STABLE is inconsistent,
while DI-WFS-COMP is noto Consider P as:

dVe
c f--c
bf--a
af--b

a f-- -,b,-'c
Note that STABLE is inconsistent while D1-WFS
COMP is noto This is because DCOMP(P) is:

d f-+ -,e
e f-+ -,d
a f-+ (b V -,b)
c f-+ false

Due to its construction, we see that D1-WFS-COMP is
similar to STABLE. However, STABLE is inconsistent
more often than DI-WFS-COMP (at least for normal
programs)

Our current research suggests that logic program
ming can be extended by adding both disjunctions and

11 1

J. Arrazola, J . Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

partial-orders as defined and studied in det.ail in [Oso
rio et al., 1995, and 1998; Osorio and Jayaraman , 1998;
Osorio, 1998] arriving to a ver y powerful declarative pro
gramming language. This integration is one of our main
lines of research.

7 Conclusion

We introduced the general notion of a confluent LP
system. Such a system is based on certain transforma
tion rules and induces a semantics SEM in a natural way.
Thanks to confluence and termination, our transforma
tion rules have both a declarative and an operational
meaning. From the declarative point of view, they tell
us that our semantics is closed under the given trans
formation rule. From an operational point of view the
transformations are computable functions that can be
applied to simplily the programo

When we arrive to the normalform, then comput ing
its semantics is immediate. Rationality is a desirable
property of semantics in logic programming. Confluence
plus a simple property that we call partial distribution
implies rationality. It is straightforward to see that all
(but one) of our semant ics for normal programs satisfy
partial distribution. Therefore we know that all but one
of these semantics are rational.

We showed that most of the well-known semantics
for normallogic programs are induced by confluent LP
systems. Moreover, we showed by introducing several
new transformation rules that the corresponding LP
systems induce interesting semantics which are polyno
mial time computable and extend WFS. We also showed
how to apply our approach to disjunctive programs.

It is quite surprising that the simple notion of a con
fluent LP-system that we introduced here , is so flexible
that it allows us to extend recently defined calculi for
WFS by new transformations in such a way, that the
new system still is confluent . We have therefore shown
that rewriting methods can be successfully applied in
the realm of logic programming semantics.

Acknowledgments

This research was supported in part by grants from
CONACyT (number 28452A).

References

Brass S., and J. Dix, "A General Approach to
Bottom-Up Computation of Disjunctive Semantics", in
Dix J., L. Pereira, and T . Przymusinski, editors, Non
monotonic Extensions 01 Logic Programming, LN Al
927, Springer, Berlin, 1995, pp 127- 155.
Brewka G., and J. Dix, K nowledge representation
with logic programs, Technical report , Tutorial Notes

112

of the 12th European Conference on Art.ificial Int.elli
gence (ECAI '96), 1996. Also appeared as Technical
R.eport 15/96, Dept. of CS of the University of Koblenz
Landau. WiII appear as Chapter 6 in Handbook 01 Philo
sophical Logic , 2nd edition (1998), Volume 6, Method
ologies .
Brass S. , and J. Dix, "Characterizations of the Dis
junctive Stable Semantics by Partial Evaluation" , Jour
nal 01 Logic Programming, 32(3):207- 228, 1997. (Ex
tended abstract appeared in: Characterizations of the
Stable Semantics by Partial Evaluation LPNMR, Pro
ceedings 01 the Third International Conlerence, K en
tucky , pages 85-98 , 1995. LNCS 928, Springer.).
Brass S., and J. Dix, "Characterizations of the Dis
junctive Well-founded Semantics: Confluent Calculi and
Iterat.ed GCWA" , Journal 01 Automated Reasoning, to
appear, 1998. (Extended abstract appeared in: Charac
terizing D-WFS: Confluence and Itera t.ed GCW A. Log
ics in Artificial Intelligence, JELIA '96 , pages 268- 283 ,
1996. Springer , LNCS 1126.).
Baral C., and M. Gelfond, "Logic Programming and
Knowlege Representation", Journal 01 Logic Program
ming, 19-20, 1994.
Brass S., U. Zukowski, and B. Freitag, "Trans
formation Based Bottom-Up Computation of the Well
Founded Model", In J. Dix, L. Pereira, and T. Przy
musinski , editors, Nonmonotonic Extensions 01 Logic
Programming, LNAI 1216, pages 171- 201 . Springer ,
Berlín, 1997.
Clark K. , "Negation as Failure", In H. Gallaire and
J. Minker , editors, Logic and Data-Bases, pp. 293- 322.
Plenum, New York, 1978.
Dix J. , "A Framework for Representing and Charac
terizing Semantics of Logic Programs", In B . Nebel,
C. Rich, and W. Swartout, editors, PrincipIes 01 Knowl
edge Representation and Reasoning: Proceedings 01 the
Third International Conlerence (KR '92), pages 591-
602 . San Mateo, CA, Morgan Kaufmann , 1992.
Dix J. , "A Classification-Theory of Semantics of Nor
mal Logic Programs: 1. Strong Properties", Fundamenta
Inlormaticae, XXII(3) :227- 255, 1995.
Dix J., "A Classification-Theory of Semantics of Nor
mal Logic Programs: n. Weak Properties", Fundamenta
Informaticae, XXII(3) :257- 288, 1995.
Dix J., and M. Müller, "Partial Evaluation and Rel
evance for Approximations of the Stable Semantics" , in
Ras Z.W. and M. Zemankova, editors, Proceedings 01 the
8th Int. Symp . on Methodologies lar Intelligent Sys
tems, Charlotte, NG, 1994, LNAI 869, pp. 511- 520,
Berlín, 1994. Springer.
Dix J., and M. Osorio, Towards Well-Behaved Se
mantics Suitable lar Aggregation, Research Report 11-
97. University of Koblenz, Germany 1997.
Dix J., J. Arrazola, and M. Osorio, Gonfluent

J. Arrazola, J. Dix and M. Osorio: Confluent Rewriting Systems in Non- Monotonic Reasoning

Rewriting Systems 101' Logic Pragmmming Semantics,
Research Report 27-97. University of Koblenz , Ger
many 1997.
Dix J., and M. Osorio, "Provability Closures in
Logic Programming", in Praceedings 01 the Intema
tional Symposium on Computer Science in Mexico, to
appear, 1997.
Fitting M. C., "A Kripke-Kleene Semantics of logic
Programs" , Joumal 01 Logic Pragmmming, 4:295- 312 ,
1985.
Fitting M. C., "Partial Models and Logic Program
ming", Theoretical Computer Science, 48:229- 255,1986.
Gelfond M., and V. Lifschitz, "The Stable Model
Semantics for Logic Programming", in Kowalski R. and
K. Bowen, editors, 5th Conlerence on Logic Pragmm
ming, pp. 1070- 1080. MIT Press, 1988.
Gelfond M., and V. Lifschitz, "Logic Program with
Classical Negation", in David H.D. Warren and Peter
Szeredi, editors, Praceedings 01 the 7th Int. Conf. on
Logic Pragmmming, pp. 579- 597. MIT, June 1990.
Lloyd J. W., Foundations 01 Logic Pragmmming, 2nd
Ed., Springer, Berlín, 1987.
Osorio M., B. Jayaraman, and K. Moon, "Par
tial Order Programming (revisited)", Prac. Algebmic
Methodology and Software Technology, pp. 561-575.
Springer-Verlag, July 1995.
Osorio M., and B. Jayaraman, "Aggregation and
Well-Founded Semantics+," Prac. 5th Intl. Workshop

on Non-Monotonic Extensions 01 Logic Pragmmming,
pp. 71-90, LNAI 1216, J . Dix, L. Pereira and T . Przy
musinski (eds.), Springer-Verlag, 1997.
Osorio M., B. Jayaraman, and D. Plaisted, "The
ory of partial-order programming," accepted for pub
lication in Science 01 computer pragmmming Journal,
EIsevier.
Osorio M., "Semantics of Partial order programming" ,
presented at JELIA98, Germany, Oct. 1998 appears in
Prac. JELIA98, pp. 47-61, LNAI 1489, Springer-Verlag,
1998.
Osorio M., and B. Jayaraman, "Integrating the
Completion and the Well-Founded Semantics", pre
sented at Ibemmia98, Portugal, Oct . 1998, accepted for
publication in Helder Coelho, editor , Prac. Ibemmia98,
pp. 230-241, LNAI 1484, Springer-Verlag 1998.
Schlipf J. S., "Formalizing a Logic for Logic Program
ming", Annals 01 Mathematics and Artificial Intelli
gence, 5:279-302, 1992.
van Gelder A., K. A. Ross, and J. S. Schlipf,
"Unfounded Sets and well-founded Semantics for gen
eral logic Programs" , in Praceedings 7th Symposion on
Principies 01 Database Systems, pages 221- 230, 1988.
van Gelder A., K. A. Ross, and J. S. Schlipf, "The
well-founded semantics for general logic programs",
Joumal 01 the ACM, 38:620- 650, 1991.
Zepeda C. , Semanticas Bien Fundamentadas, Tesis de
maestria, UDLA, Cholula, 1997.

José Ramón A "azola Ramírez obtained his BSe.. Me.. and PhD. degrees in Mathematica/ Physicsfrom the Universidad Autónoma
de Puebla. His PhD. Dissertation was about Lipschitz Functions Algebra. He is currently a professor at the Mathematical Physics
F aculty of the same University. He is author and co-author of severa! publications in Journals and Proceedings, and is member
ofthe National Researchers Systems as a candidate.

Jürgen Dix is an Assistant Professor in the Department ofComputer Science at University of Koblenz
Landau in Koblenz. He got his PhD in ¡ 992 at Karlsruhe university and his habi/itation al TU Vienna in
1996. He is co-editor of6 proceedings in Ihe Springer Lecture Notes of Artificiallntelligence series. co
author of a monograph on Nonmonotonic Reasoning. and author of more than 30 articles in Handbooks
and Journals .
He is currently a visiting assistant professor at University of Maryland. Co/lege Park and working on
Multi-Agents (he is co-authoring aforthcoming book at MIT-Press on «Heterogenous Active Agents»).
Data Mining and Uncertainty in Databases.

Mauricio Osoria got a BSC degree on Computer Science from UAP. a MC degree on Artificial
lnte//igence from CINVESTA V. and a PhD degree on Computer Science rom the University of New
York at Buffalo. Currently, he is an Associate Professor at the Universidad de las Américas. and
the coordinator ofthe Applied Mathematics and Computer Science Laboratory ofthe Automatics
and lnformation Te chno!ogies esearch Center. He has several CONACyTfinanced projects, and is
a member ofthe National Researchers Systems.

~! ~'. J '. < h.· ... d
. ,....&~.d

'~,.,: . ..;.¡:.,-~

113

