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Abstract 

This paper presents the incorporation ofa new internal force 
for active contours. This internal force is generated by an 
electric charge, distributed al/-over the active contour. Our 
extended contour model can describe objects with high 
curvature, without increasing the number ofcontrol points. 
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1 Introduction 

Snakes or active contours were originally proposed in (Kass 
et al., 1987), as a segmentation tool based on energy 
minimizing. This kind of contours has been used in many 
image analysis applications, particularly to locate object 
boundaries. : 

Simulated internal and external forces deform snakes to 
adapt to the object' s shape. The internal forces are normaJly 
the rigidity and the tension, while the external force s are 
defined as a scalar potential function over the image planeo 

A snake is a parameterized curve v with components x(s) 
and y(s), where s is defined in the unit domain [0,1]. We 
represent the contour v locally by piecewise polynomials, 
generated by cubic B-Splines. 

There are several methods for achieving the minimal energy 
state. One ofthe most used is dynamic programming proposed 
by (Amini, 1990). However the time complexity is O(nmk+J), 

where k indicates the highest order derivative of the con tour 
geometry, n is the number of control points and m is the 
number ofpossible choices at each control point. 

BasicalIy there are two mayor problems '"' ith this 
representation. We need more control points in the regions 
with high curvature and we canno! interpolate control points 
with B-Splines. By replicating control points, one can force a 
B-Spline to interpolate the control points. In (Menet et al., 
1990) control points are duplicated in regions where after N 
steps of contour deformation, the curvature is higher than a 
threshold. However, if we increase the number of control 
points the time complexity increases too. 
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Schnabel and Arridge (1995) proposed the introduction of 
Multiscale Oifferential Operators (MOO), who are invariant 

to linear intensity transformations su eh as contrast or 
brightness adjustments and independent of coordinate 
transformations. In order to introduce MOO to achieve 
matching, the active contour energy model has to be modified, 
íntegrating information of the image and contour curvature 
for every patcb in tbe contour. This in creases the complexity 
of the algorithm making it slower and reduces possibilities 
for tracking objects. 

Another important idea that contributed to this paper is tbe 
introduction ofGradient Vector Flow (GVF) as a new external 
energy (Xu and Prince, 1997). GVF is computed as a diffusion 
ofthe gradient vectors derived from the image. The GVF is 
like an electrostatic potential produced byan electrical cbarged 
object. The introduction of GVF makes tbe active contour 
able to converge to boundary concavities, but tbe reported 
computation ofGVF for a 256 x 256·pixel image takes more 
than 50 seconds. 

We propose an electric charge density uniformly distributed 
over eacb span of the initial contour, in order to concentrate 
more control points in the regions ofbigb curvature as a result 
of tbe internal electrostatic forces, without increasing tbe 
number of control points. 

2 Active Contour Model 

For active contours we define an energy function as: 

E(v) =Elv) +E/v), (1) 

where E is the internal energy and E is the exter­
i e 

nal energy, over the contour v. The contour V is a 

mapping from the unít parametric domain SE [O, 1] 

into the image planeo 
We define the internal energy as: 

(2) 
o 

wbere the subscripts on v denoted differentiation with 
respect to s, w¡ and w

2 
are parameter functions wbich control 

the tension and tM rigidity, respectively. 
OriginaHy (Kass et aL, 1987), the external energy was 

divided in two parts: 

E (v) = E (v) +E (v)
e imuge resl' 

wbere E. contains image information and E contains ex-
Image resl 

ternal restrictions. This division is not necessary, because 
sometimes, as explained in the introduction, a combination 
of these two energies is used in one termo 
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We use the external energy as follows (Terzopoulos and 
Szeiliski, 1992): 

I 

E,(v)= Jp(v(s»ds (3) 
" 

where P(x,y) is a scalar potential function defined over the 

image plane, as: 

P(x, y) -c IV[GO" * ¡(x,y)]¡ 
(4) 

wbere e controls the magnitude oftbe potential and Gcr*! 
denotes tbe image convolved witb a Gaussian filter. Tbe 'V 

operator represents the gradient of the image intensities. 

Sorne autbors (Terzopoulos and Szeliski, 1992) define a 
kinetic energy for tbe contour, in order to make a dynamic 
energy minimization. Then tbey define the Lagrangian 
(Terzopoulos, 1987) in terms of tbe kinetic and potential 
energy of tbe contour, and then get the Lagrange equations 
ofmotion. 

In this paper we did not use the Langrangian formulation, 
instead we use dynamic programming for tbe energy 
minimization, as described below. 

3 Contour Representation 

There are severa) contour representations that can be divided 
in two c1asses, depending on whetber they are global or local. 
Global representations are typicalIy compact but cbanges in 
one shape parameter affectthe entire contour, and conversely, 
local changes of the contour affect aH parameters. 

On the other band, local representations control the contour 
shape by various parameters, which depend locally on contour 
sbape; this makes local representations well suited in a shape 
reconstruction contexto Most local representations used des­
cribe contours in terms of piecewise polynomials. Eacb 
segment is described by a polynomial in S. 

Cubic B-Splines present an efficient way to represent curved 
objects, where each segment ofthe curve Vi is defined by four 

control points (Pí-I' Pi' Pj+l , Pj+2) as: 

-1 3 -3 Ij[P¡_lj
r J 2 ] I 3 -6 3 O P¡ x¡(S)

v¡(s)=LS s s 1·- . = 
6

[
-3 • O 3 O P¡+l (Y;(S») (5) 

I 4 I O P¡+2 

One oftbe problems with tbis representation is tbe fact that 
B-Splines do not interpolate control points. Sometimes this 
problem is solved duplicating control points when tbe 
curvature is higber tban a tbresbold (Menet et al., 1990). 
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In (Gavrila, 1996) a Hennite contour representation is 
proposed, which is obtained replacing the square matrix in 
(5) by: 

-2 1 

3 -2 

O 1 

O O 

and the control vector by: 

Ti-]r 
where P. P. are control points and, "C+. l' "C'.are tangent vec­1-1' t 1- 1 

tors at points i-l and i respectively. 

This technique has the following advantages: 

Efficiently represent both smooth and sharp contours. 

Easily interpolates control points. 

But has the following disadvantage. It is necessary to have 
infonnation of the tangent vector in every control point in 
order to get the span parameters. This can be solved using a 
template matching strategy, but then we need templates for 
every object. 

4 Energy Minimization 

There are many ways to solve the minimization problem. One 
possibility for discrete spaces is to use Al techniques, but 
they need an exhaustive enumeration ofthe possible solutions. 

We use dynamic programming popularized by (Amini, 
1990) in multiple scales to de crease the computational cosí. 
Basically, the dynamic prograrnming consists in search around 
a control point and finding which neighbor produces a 
mínimum energy (Fig. 1). 

We accelerate the dynamic programming using muItiple 
scales, convolving the image at every scale with a Gaussian 
filter ofstandard deviation cr. We begin the search for every 
control point on the curve, over the eight closer neighbors at 
a distance s, as described in Fig. 2. 

Once we find a contour with a minimum energy we reduce 
the scale and repeat the same process for each scale, where 
we use as the initial contour the one found in the previous 
scale. 

Figure 2. Eight closer neighbors ola control point P; at scale a: 

This technique has a problem when the control points are 
c10se and cr has approximately the same value. ~n this case a 
control point can find a minimum in a region'between the 
neighbors control points. The resulting curve will have a twist 
over itselfas shown in Fig 3. One way to solve this problem 
is using a threshold. Ifthe distance between two control points 
is smaller than the threshold that position is invalido Another 
way is reducing the neighbor's search along lines that are 
nonnal to the initial curve (Curwen and Blake, 1992). An 
interesting reduction of complexity for this search is shown 
in (Olstad and Tysdahl, 1993). It is based principally on 
constrains for the selection of candidate points. 

("/ .--
o 

/.*(~~
J>"",¡a •• ' Control Points 

---- ---_....-.~ o 
Neighbors• n-Spline 

Figure l. Dynamic programming search. 
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(a) (b) 

(c) (d) 

Figure 3. (a) Objeet, (b) eontour minimization. (e) and (d) eontour twisted. 

5 Electric Snakes 

We propose to assign a constant electric charge Q over the 
con tour, in order to get an electric force between every pair 
ofpoints in the contour, described as: 

F = k (6)
r 

where q is the electric charge associated to every 

point, r is the distance between points and k is a 

constant. 
The electric charge is distributed uniformly over the initial 

snake, in order to make that each span has the same charge. 
The main purpose is to make a repulsion force between each 
point associated with control points, where the energy is 
calculated. This force produces that control points can 
approach to one another only when the other forces in the 
model are greater than the electric force. 

We use the following physics results (Weidner and Sells, 1971): 

(a) In a conductor ofarbitrary shape with a net charge, al! 
of the net charge will reside on the outer conductor 

surface. 

(b) The electric field Hnes are always perpendicular to the 

exterior conductor surface. 

(c) The electrical field inside any conductor is exactly zero. 

(d) Once the conductor has reached the equilibrium the 

free charges do not move over the surface. 

Therefore, the electric charge density in a conductor with a 
net charge will be greater in regions wh~re the curvature is 

high (Feynman et al., 1964; Price and Crowley, 1985). 

Figure 4. In a eharged conductor the eleetrie field is strong at points 

ofhigh eurvature (Weidner and Sells. 1971). 

Then, when equílibrium is reached the control points will 
be form clusters in regions where the curvature is high, and 
they are not going to move around the surface. 

The total energy equation will be: . , 
~(v)= n~(s)v/ +Wz(s~v,/)ds+ Jkq~ ds+ JP(v)ds (7) 

r 

Using equation (7) in energy minimization, the control 
points will define in a better way the contour, without 
increasing the number of control points and the time 
complexity. 
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6 Results 

The following images show the results of contour fitting with standard and electric snakes. 
Figure S (a) displays the image energy computed as described in equation (4), in (b) the standard snake fits a mouse embryo. 
Here we can find regions where the active contour is twisted (dotted circles). The contour is evolving towards the object in (e) 
and in (d) the object is fitted. The distribution of control points with electrical forces makes a better description of the contour. 

(a) (b) 

(c) (d) 

Figure 5. (a) Potential energy in mouse embryo image, (b) contour adjust with standard snake, (e) snake evolution with eleetrie forees 

and (d) final fit wíth eleetríe snake. 
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Figures 6 (a), (b) and (e) show anatomícaI struelures in head tomographies, identified by standard snakes. The same struetures 

are better fitted by e1ectrie snakes (fig. 6.d, e and f). Another example of segmentation ofbiologieaI shapes (Phytoplankton) is 
presented in figure 7. 

(a) (b) (e) 

(d) (e) (f) 

Figure 6. (a), (b) and (e) final fit with standard snake, (d), (e) and (f) final fit using eleetrie Jorees. 

(a) (b) (e) 

Figure 7. Phytoplankton acljustment (a) original image, (b) standard snake and (e) eleetrie snake. 
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A final example of electric snakes is object tracking (figure 8). The final snake fit in each frame is used as initial contour for 

the nest frame. The perfomance of our implementation on a SOl Indy is between 8 to 16 per second, depending on the number 
of control points used. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 8. Objeet traeking: (a) ínitia/ eontour, (b) eontour evo/ution, (e) fina/fit, (d) (e) y (f) e/eetrie snake traeking. 

7 Conclusions 

We have presented a new internal force for active contours, 

which adapts to points ofhigh curvature. This force follows 

electromagnetic properties of matter and is modeled by 
introducing a uniforrnly distributed charge over the initial 

snake. As the contour e'(olves the control points concentrate 
around regions of high curvature, without the need of 
introducing additional control points. The number ofcontrol 
points necded depends on the number of regions of high 

curvature and the application, but it was shown that a few 
points are enough to describe and track objects not too 

complex. 
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