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Abstract

This paper presents the incorporation of a new internal force

Jor active contours. This internal force is generated by an
electric charge, distributed all-over the active contour. Our
extended contour model can describe objects with high
curvature, without increasing the number of control points.
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1 Introduction

Snakes or active contours were originally proposed in (Kass
et al., 1987), as a segmentation tool based on energy
minimizing. This kind of contours has been used in many
image analysis applications, particularly to locate object
boundaries. .

Simulated internal and external forces deform snakes to
adapt to the object’s shape. The internal forces are normally
the rigidity and the tension, while the externa! forces are
defined as a scalar potential function over the image plane.

A snake is a parameterized curve v with components x(s)
and y(s), where s is defined in the unit domain [0,1]. We
represent the contour v Jocally by piecewise polynomials,
generated by cubic B-Splines.

There are several methods for achieving the minimal energy
state. One of the most used is dynamic programming proposed
by (Amini, 1990). However the time complexity is O(nm**/),
where £ indicates the highest order derivative of the contour
geometry, » is the number of control points and m is the
number of possible choices at each control point.

Basically there are two mayor problems with this
representation. We need more control points in the regions
with high curvature and we cannot interpolate control points
with B-Splines. By replicating control points, one can force a
B-Spline to interpolate the control points. In (Menet ef al.,
1990} control points are duplicated in regions where after N
steps of contour deformation, the curvature is higher than a
threshold, However, if we increase the number of control
points the time complexity increases too.
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Schnabel and Arridge (1995) proposed the introduction of
Multiscale Differential Operators (MDQ), who are invariant
to linear intensity transformations such as contrast or
brightness adjustments and independent of coordinate
transformations. In order to introduce MDO to achieve
matching, the active contour energy model has to be modified,
integrating information of the image and contour curvature
for every patch in the contour. This increases the complexity
of the algorithm making it slower and reduces possibilities
for tracking objects.

Another important idea that contributed to this paper is the
introduction of Gradient Vector Flow (GVF) as a new external
energy (Xu and Prince, 1997). GVF is computed as a diffusion
of the gradient vectors derived from the image. The GVF is
like an electrostatic potential produced by an electrical charged
object. The introduction of GVF makes the active contour
able to converge to boundary concavities, but the reported
computation of GVF for a 256 x 256-pixel image takes more
than 50 seconds.

We propose an electric charge density uniformly distributed
over each span of the initial contour, in order to concentrate
more control points in the regions of high curvature as aresult
of the internal electrostatic forces, without increasing the
number of control points.

2 Active Contour Model

For active contours we define an energy function as:
E(v) = E(v) TE(v), (H
where E is the internal energy and E is the exter-
nal energ}‘f, over the contour v. The contour v is a
mapping from the unit parametric domain s€{0,1]

into the image plane.
We define the internal energy as:

Jas

where the subscripts on v denoted differentiation with
respect to s, w, and w, are parameter functions which control
the tension and thé rigidity, respectively.

Originally (Kass et al., 1987), the external energy was
divided in two parts:

Ee(v) = Eimage(v) +Erexl(v)’
where E.

mage CONtains image information and £ contains ex-
ternal restrictions. This division is not necessary, because
sometimes, as explained in the introduction, a combination
of these two energies is used in one term.

2
st + 0)2 (S)}vs.a*

Ev)= ](wl (5)
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We use the external energy as follows (Terzopoulos and
Szeiliski, 1992):

i
E(v)= [P(v(s)ds 3

where P(x,y) is a scalar potential function defined over the
image plane, as:

Px, y)=-¢V[G, * I(x, )] @
where ¢ controls the magnitude of the potential and Go*/
denotes the image convolved with a Gaussian filter. The V

operator represents the gradient of the image intensities.

Some authors (Terzopoulos and Szeliski, 1992) define a
kinetic energy for the contour, in order to make a dynamic
energy minimization. Then they define the Lagrangian
(Terzopoulos, 1987) in terms of the kinetic and potential
energy of the contour, and then get the Lagrange equations
of motion.

In this paper we did not use the Langrangian formulation,
instead we use dynamic programming for the energy
minimization, as described below.

3 Contour Representation

There are several contour representations that can be divided
in two classes, depending on whether they are global or local.
Global representations are typically compact but changes in
one shape parameter affect the entire contour, and conversely,
local changes of the contour affect all parameters.

On the other hand, local representations control the contour
shape by various parameters, which depend locally on contour
shape; this makes local representations well suited in a shape
reconstruction context. Most local representations used des-~
cribe contours in terms of piecewise polynomials. Each
segment is described by a polynomial in s.

Cubic B-Splines present an efficient way to represent curved
objects, where each segment of the curve v, is defined by four

control points (P, , P, P, , P, )as:
-1 3 =3 1][e,
3 -6 3 0||B ,
w@=l & s 11 | B :[x,@]
6-3 .0 3 0|IR,| W) (5
14 1 0f[R,

One of the problems with this representation is the fact that
B-Splines do not interpolate control points. Sometimes this
problem is solved duplicating contro} points when the
curvature is higher than a threshold (Menet et al., 1990).
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In (Gavrila, 1996) a Hermite contour representation is
proposed, which is obtained replacing the square matrix in
(5) by:

2 -2 1 1
-3 3 -2 -1
0 0 1 0
1 0 60 0o

and the control vector by:
[P,._‘ P, ] 4

i i1
where P'.-v P, are control points and, t*, , T',are tangent vec-
tors at points /-1 and 7 respectively.
This technique has the following advantages:
- Efficiently represent both smooth and sharp contours.

- Easily interpolates control points.

But has the following disadvantage. It is necessary to have
information of the tangent vector in every control point in
order to get the span parameters. This can be solved using a
template matching strategy, but then we need templates for
every object.

4 Energy Minimization

There are many ways to solve the minimization problem. One
possibility for discrete spaces is to use Al techniques, but
they need an exhaustive enumeration of the possible solutions.

We use dynamic programming popularized by (Amini,
1990) in multiple scales to decrease the computational cost.
Basically, the dynamic programming consists in search around
a control point and finding which neighbor produces a
minimum energy (Fig. 1).

We accelerate the dynamic programming using multiple
scales, convolving the image at every scale with a Gaussian
filter of standard deviation 6. We begin the search for every
control point on the curve, over the eight closer neighbors at
a distance s, as described in Fig. 2.

Once we find a contour with a minimum energy we reduce
the scale and repeat the same process for each scale, where
we use as the initial contour the one found in the previous
scale.

6 7 8
$ ¢ 1
a
4 3 2
a

}__._.__b...__._

Figure 2. Eight closer neighbors of a control point P at scale &

This technique has a problem when the control points are
close and o has approximately the same value. In this case a
control point can find a minimum in a region‘between the
neighbors control points. The resulting curve will have atwist
over itself as shown in Fig 3. One way to solve this problem
is using a threshold. If the distance between two control points
is smaller than the threshold that position is invalid. Another
way is reducing the neighbor’s search along lines that are
normal to the initial curve (Curwen and Blake, 1992). An
interesting reduction of complexity for this search is shown
in (Olstad and Tysdahl, 1993). It is based principally on
constrains for the selection of candidate points.

Control Points
Neighbors
B-Spline

|eo

Figure 1. Dynamic programming search.
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(d)

Figure 3. (a) Object, (b) contour minimization, (¢} and (d) contour twisted.

5 Electric Snakes

We propose to assign a constant electric charge Q over the
contour, in order to get an electric force between every pair
of points in the contour, described as:

Fo=k'y (6)

where ¢ is the electric charge associated to every
point,  is the distance between points and £ is a

constant.

The electric charge is distributed uniformly over the initial
snake, in order to make that each span has the same charge.
The main purpose is to make a repulsion force between each
point associated with control points, where the energy is
calculated. This force produces that control points can
approach to one another only when the other forces in the
model are greater than the electric force.

We use the following physics results (Weidner and Sells, 1971):

(a) In aconductor of arbitrary shape with a net charge, all
of the net charge will reside on the outer conductor

surface.
(b} The electric field lines are always perpendicular to the

exterior conductor surface.

(c) The electrical field inside any conductor is exactly zero.
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(d) Once the conductor has reached the equilibrium the

free charges do not move over the surface.
Therefore, the electric charge density in a conductor with a
net charge will be greater in regions where the curvature is
high (Feynman et al.,, 1964; Price and Crowley, 1985).

PR Sy
%Tﬁ‘“‘r{ﬁ

Figure 4. In a charged conductor the electric field is strong at points
of high curvature (Weidner and Sells, 1971).

Then, when equilibrium is reached the control points will
be form clusters in regions where the curvature is high, and
they are not going to move around the surface.

The total energy equation will be:

E(v)= J'(w;(s)jv\,;z +wz(ij:”fz)ds+ Jki ds+ JP(v) ds (7)

Using equation (7) in energy minimization, the control
points will define in a better way the contour, without
increasing the number of control points and the time
complexity.
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6 Results

The following images show the results of contour fitting with standard and electric snakes.
Figure 5 (a) displays the image energy computed as described in equation (4}, in (b) the standard snake fits a mouse embryo.
Here we can find regions where the active contour is twisted (dotted circles). The contour is evolving towards the object in (¢)
and in (d) the object is fitted. The distribution of control points with electrical forces makes a better description of the contour.

(b)

(©) (d)

Figure 5. (a) Potential energy in mouse embryo image, (b) contour adjust with standard snake, (c) snake evolution with electric forces
and (d) final fit with electric snake.
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Figures 6 (a), (b) and (c) show anatomical struciures in head tomographies, identified by standard snakes. The same structures
are better fitted by electric snakes (fig. 6.d, e and f). Another example of segmentation of biological shapes (Phytoplankton) is
presented in figure 7.

Figure 6. (aj, (b} and (¢} final fit with standard snake, (d), (e) and {f) final fit using efectric forces.

(a) (b) ©

Figure 7. Phytoplankton adjustment (a) original image, (b) standard snake and (c) electric snake.
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A final example of electric snakes is object tracking (figure 8). The final snake fit in each frame is used as initial contour for
the nest frame. The perfomance of our implementation on a SGI Indy is between 8 to 16 per second, depending on the number

of control points used.

®

Figure 8 Object tracking: (a) initial contour, (b) contour evolution, (c) final fit, (d) (e} y (f) electric snake tracking.

7 Conclusions

We have presented a new internal force for active contours,
which adapts to points of high curvature. This force follows
electromagnetic properties of matter and is modeled by
introducing a uniformly distributed charge over the initial
snake. As the contour eyolves the control points concentrate
around regions of high curvature, without the need of
introducing additional control points. The number of control
points necded depends on the number of regions of high
curvature and the application, but it was shown that a few
points are enough to describe and track objects not too
complex.
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