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Abstract 

The problem 01 sequencing jobs 01 equal durations with 
available (readiness) times and the additional taüs on 
a set 01 parallel identical processors is considered. The 
objective is to minimize the maximal completion time. 
We present a new polynomial algorithm whích improves 
the running time 01 the previously known best algorithm 
under the realistic assumption that tails ol all jobs are 
bounded by some sufficiently large constant. 

Keywards: Scheduling, Identical Processors, Readi 4 

ness Time, Tail, Computational Complexity. 

1 Introduction 

Scheduling problems constitute part of the combinator
ial optimization problems. Combinatorial optímizatíon 
itself is relatively new field, traditionally belonging to 
Operatíons Research, now also it significantly intersects 
with Computer Science. The combinatorial optimiza.,; 
tion problems are discrete optimizatíon problems with 
the finite set of leasible solutions and a goal functíon, 
which has to be minimized (or maximized). A problem 
is (exactly) solved if a feasible solution with the minimal 
(maximal) value of a goal functíon ís found. Though the 
set of feasible solutions is finite, it might turn out that it 
is "too big" , so that the complete enumeration would be 
practically impossible, since it woulci take inadmissible 
amount of machine time and memory. The dependence 
of the number of feasible solutions of a problem P on the 
length of input (the size of P) might be polynomial, as 
well as exponential. In the latter case we are not able 
to find an algorithm for P with polynomial dependence. 
The problems with polynomial dependence are typícally 
much easier to solve than the problems with exponential 
dependence, since they take significantly less computa
tional time. For a polynomial problem P, there may exist 
several algorithms with different degrees of the polyno
mi al. Then the algorithm with the smallest degree is 
preferable, since it takes less computational time. In this 
paper we propose an.algorithm for a polynomial problem 
of scheduling n equal-Iength jobs (or tasks) on m identi
cal processors to minimize the total completion time of 
all jobs. Our algorithm has a smaller degree of the poly
nomial than the earlier ones under a realistic restriction 
which we impose on the problem data. . 


The sequencing problem PI we conseder, can be stated 
as follows: There are given a set 1 = {I,2, ... , n} of jobs 
and a set M = {I, 2, "" m} of machines (or processors). 
Each job has to be performed on any of the given m ma

239 




Nodori Vokhanio: A Fas' Algorifhm for Sehedullng Equol-Lengfh Job! on Idenfieol Mochines 

i""+l 

itm+l 

i1 

1 

Figure 1: An ESS S. 

chines; the processing time of any job (on any machine) 
is a given integer number p. Job i (i 1,2, ... , n) is avail.,. 
able at its integer readiness time ai (this job cannot be 
started before the time ai) and has an integer tail qí (in
terpreted as the additional amount of time needed for The objective is to find an optimal schedule, that is, a 
the termination of job i once it is processed on a ma feasible schedule which minimizes the maximum lateness 
chine). A schedule is a function which assigns a machine L!ax = max{Lrli 1,2, ...n}. The equivaIence between 
to each job and a starting time (on that machine). An the two problems P1 and P2 is established by a simple 
(integer) starting time tr of job i (in the schedule S) is transformation [Bratley et al., 1973]. 
the time at which this job is scheduled to be performed 

If we aIlow in PI or in P2 different processing times on a macmne. The completion time of job i on a ma
we get strongly N P-complete problem even in the singlechine cr = tr + p. The full completion time of job i 
macmne case [Baker & Zaw, 1974; Bratley et al., 1973;in the schedule S is cr + qi (notice that qi doesn't take 

any machine time). Each macmne can handle at most Carlier, 1982; Garey & Johnson, 1979; McMahon & Flo
rian, 1975].one job at a time, that is, if jobs i and j are scheduled 

on the same machine then either cr ::; tr or cr ::; tr. If we replace in P2 due dates with deadlines and look
The preemption of jobs is not allowed, that is, each job 

for a feasible schedule, we get the corresponding feasibil
is performed during the time interval [tr, tr + p] on a 

ity problem P F (by PFl we abbreviate the one-machine
machine. A feasible schedule is a schedule which satisfies 

version of P F). In a feasible schedule ,9 of P F no job can
the aboye restrictions. The objective is to find an opti

be delayed, that is, cr ::; dí, for i = 1,2, ... , n (in a fea
mal schedule, thq.t is, a feasible schedule which minimizes 

sible schedule of P2 we allow the existence of such jobs 
the makespan (the maximum fuIl job completion time). 

and we look for a schedule which minimizes the maxi
An alternate formulation of the aboye problem is the mum delay). 

one with due dates (abbreviated as P2): instead of the 
It has been proved that P F is solvable in polynomial tail qi an integer due date di is given for each job i (di is 

time. An O(n2 1ogn) aIgorithm for PFl presented in the desirable time for completion of job i). The lateness 
[Carlier, 1981] is improved to an O(nlogn) algorithm in Lr of job i in a schedule S is defined as: 
[Garey et al.], 1981]. This algorithm applies a concept 
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of the so called forbidden regions (that is a region in a 
schedule in which it is forbidden to start a job). Ones 
the algorithm declares the forbidden regions it applies 
the earliest due date heuristic and constructs the final 
feasible schedule. In [Simons, 1983] and [Simons & War
muth, 1989] the concept of forbidden regions is general
ized for a multiple-machine case and an O(n3 10g1ogn) 
and O(n2m) time algorithms, respectively, are presented 
for PP. 

The minimization problems PI and P2 can be solved 
by the repeated application of an algorithm for the cor
responding feasibility problem. We iteratively increase 
the due dates of aH jobs by sorne constant until we find a 
feasible schedule of the feasibility problem with modified 
data. Since the maximum lateness will depend on the 
number of jobs, we need to apply such algorithm O( n) 
times. 

The algorithm for the problem PI which we present 
here has the time complexity O( mn log n) under the as
sumption that the taHs of all jobs are bounded by the 
sufficiently large constant. We notice that for many ap
plications this assumption is realistic and imposes no ad
ditional restrictions. With each node of our search tree 
the so caHed complementary schedule is associated. The 
complementary schedules are complete schedules which 
we generate iteratively by the application of the greatest 
tail heuristic to the specially modified problem instances. 
An overflow job is a job which realizes the value of the 
maximal completion time in a schedule. We introduce 

a five behaviour alternatives in our algorithm which reflect 
five different ways of alteration of an overflow job when 
we generate a new complementary schedule. Our searchn 
for an optimal schedule is based on the analysis of a 
behaviour alternative in the generated complementary 
schedules. 

le 

In Section 2 we introduce the basic definitions and 
notations. In Section 3 we investigate the properties of 
the complementary schedules providing the basis for the 
algorithm construction. ,In Section 4 we describe the 
algorithm and indicate its computational complexity. In 
Section 5 we give the final remarks. 

2 Basic Concepts 

Our search for an optimal schedule can be conveniently 
represented by a rooted tree T (we call it the solution 
or the search tree). We iteratively generate new feasible 
schedules which are represented by the nodes in T. Each 
of the new generated schedule is obtained from the pre
viously generated one by sorne specific rearrangement. 
Each feasible schedule we construct using the modifica

tion of the heuristic suggested by Luis Schrage for prob
lem P2. According to this heuristic, the Iiext sched.uled 
job is a one which has the smallest due date (ol, equha
lently the greatest tail, for probJ.em Pl) amoIlI~~ 
able jobs: .. 

Procedure Extended Schrage. 

begin{extended schrage} 

(O) 	 t:= min{aili E I}i A:= Ii 

R(k) O, k 1,2, ... ,mi 

{ Rk is the release time of machine k } 

(1) 	 Among the unscheduled jobs 1 E A with al :5 t 
schedule next job j with the greatest tail on machine 
k = ord(j) mod m {break ties arbitrarily}¡ 

{ord(j) is the ordinal number of job j in the current 
partial schedule} 

tj := max{t, Rkl; Rk t j +Pj; A:= A \ {j}; 

k' := (ord(j) + 1) mod m; { k' is the next available 
machine} 

if A =1= 0 then t := max{Rk"min{ailí E A}}; go to 
(1) 

else Extended Schrage:= {tj} (j = 1,2, ''', n); 

return; 

end.{extended schrage} 

Thus the aboye algorithm repeatedly determines the 
next scheduled job using the Extended Schrage heuris
tic and assigns it to the next machine (next to machine 
k, k = 1,2, ... , m - 1, is machine k + 1 and next to ma
chine m is machine 1). The schedules, generated by the 
application of this algorithm are called extended Schmge 
schedules (abbreviated ESS). An example of an ESS S 
is given in Figure 1. The ordinal number of job í in 
this schedule is denoted by ord( i, S) (Le. i is ord(i, S)st 
scheduled job in S); we say that job i is occupying 
ord(i, S)st slot in S. We denote by tes, S) the starting 
time of sth slot in S, that is, the starting time of the 
job scheduled in this slot in S. Later we frequently use 
a short form i > j for ord( í, S) > ord(j, S), assuming for 
the simplicity that jobs in S are numbered consequently 
from 1 to n. 

With the root of our s(')lution tree T the feasible sched
ule, obtained by the application of the Estended Schrage 
algorithm to the initially given problem instance is as
sociated (we call the schedule, thus obtained, the initial 
extended Schrage schedule). Each subsequent schedule 
we also obtain by the Extended Schrage algorithm, but 
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we iteratively apply it to the specially modified problem 
instances (different from the initially given one). We dis
cuss this in details later in this section. 

Proposition 1. For any extended Schrage schedule S 
andjobs i, j such thatord(j,S) > ord(i,S), tf ~ tf 
Proof. Immediately follows from the heuristic of the 
ESS.<> 

With an extended Schrage schedule S we associate a 
conjunctive graph GS (see Figure 1). Each node in this 
graph, except the (fictitious) source node O, and the (fic
titious) sink node *, represents a unique job with the 
same number. We have in Gs the set of (initial) arcs 
(O,í), (i,*), i = 1,2, ... ,n. With an arc (O,i) «i,*), re
spectively) the weight ai (p + qi, respectively) is associ
ated. We complement the set of initial arcs as follows. 
We add an arc (i,j) (i,j <t {O,*}) to Gs with the asso
ciated weight p when job j is scheduled directly after job 
i on the common machine. The makespan of S is then 
determined by the length of a critical path in Gs . 

Figure 2: The Graph Gs. 

Figure 2 shows that GS contains m unconnected 
"gchains" , each of t}lem consisting of jobs scheduled suc
cessively on one partícular machine. First such a chain 

consists of jobs scheduled on machine 1, the second such 
a chain consists of jobs scheduled on machine 2 and so on; 
the last chain consists of jobs scheduled on the last ma
chine m. Each of these chaíns may contain one or more 
critical paths. Among all critical paths in GS we distin
guish the ones associated with the machine (or equiva
lently, with the chain) with the greatest index and call 
them the rightmost critical paths. Among critical paths 
of one partícular chaín we distinguish critical paths with 
the maximal number of jobs. The first such a path in a 
chain we call the maximal path. We will be further in
terested mainly in rightmost maximal paths (notice that 
for any schedule this path is defined uniquely). 

A gap in a schedule is a time interval which is not oc
cupied by any jobo The greatest tail schedules consist of 
the sequence of one or more blocks. Intuitively, a block 
is an "isolated" part of a schedule. Any block, differ
ent from the last block (or equivalently, the first one, if 
they are the s ame ) in any schedule contains the number 
of jobs which is multiple of m. Formally, a block is the 
maximal sequence of successively scheduled jobs on ad
jacent machines such that first m jobs in it are preceded 
by gaps or are earliest scheduled jobs on their respec
tive machines, and the last m scheduled jobs (k < m 
jobs, correspondingly) are succeeded by ·gaps (are latest 
scheduled jobs on their respective machines, correspotl.d
ingly). For any two blocks BI, B2 E S either BI > B2 

or BI < B2 holds, that is, either BI precedes B2 in S or 
vise versa. In a given schedule, the critical block is the 
block containing the rightmost maximal path. 

In Figure 3, the rightmost maximal path in GS is rep
resented. We call the last scheduled job of the rightmost 
maximal path in S the overflow job and usually denote 
it by r. Let B be the critical block in the ESS S. A job 
lE B such that ord(l) < ord(r) is called an emerge job 
in S if q¡ < qr. We denote by KS,IL the set of all emerge 
jobs in S, where Jl stands for the respective rightmost 
maximal path. 

The sequence of jobs scheduled in S between l, the 
emerge job with the maximal ordinal number and the 
overflow job r (including this job) is called the emerge 
sequence and is denoted by CS,w Notice that jobs of 
CS,IL are scheduled successh:ely on adjacent machines 
and hence may belong to different paths in Gs· 

We denote by L(S) the length of the (rightmost max
imal) criticalpath in Gs and by L(S,j) the length of a 
longest path to node j ih Gs. 

Let S be any Extended Schrage schedule and let 
lE Ks,w The schedule obtaíned from S by rescheduling 
job l after all jobs of the emerge sequence C s, l' we call 
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Figure 3: The fragment with the rightmost maximal path 
in Cs. 

the complementary schedule and denote it by Si. Com
plernentary schedule S¡ we. obtain by application of the 
heuristic of ESS to the specially modified problem in-' 
stance. We increase the readiness time of job l as well as 
sorne other jobs scheduled in S after the sequence Cs.1l 
so that these jobs will be "forced" and scheduled after 
all jobs of CS,1l by the heuristic of the ESS. So, we leave 
an additional free space in S¡ givíng the possibility to 
the urgent jobs from the emerge sequence to start their 
processing earlier. 

Let I' be the set consisting of all jobs from CS,1l 

and the jobs scheduled before Cs.1l in S, excluding job 
lE Ks,ll; let S' denotes the partíal schedule obtained by 
the applicatíon of the heuristic of the ESS to the set J'. 
Let us redefine the readiness times of all jobs i E 1 \ J' as 

S" 	 ' follows: aí := max{tr ,ad (t~ is said to be the thresh
old value fór SI)' Now the complementar y schedule SI is 
an extension of S' obtained by application of the heuris
tic of the ESS to the remained jobs (with the modifi~d 
readiness times) from J \ J'. 

, 
The rightmost maximal path with the respective over

flow job might alternate in different ways in newly gener
ated complemen1;.ary schedules, that is, the consequences 
of rescheduling of an emerge job after the emerge se
quence might be different. We distinguish five behamour 
altematives in a complementary schedule SI. Let reS) 
denotes the overflow job in S. Then the critical path in 
Si is said to be: 

(a) unmoved, if reSi) reS), 

(b) rested on l, if r(Si) = l, 

(c) shifted forward, 

(d) s1:ifted 	 backward, if r(Si) and reS) are in the 
same block (r(S¡) #- reS), r(SI) #- l) 
and ord(r(S¡), Si) > ord(r(S), Sd (respectively, 
ord(r(S¡),S¡) < ord(r(S),S¡), 

(e) otherwise, 	the critical path is said to be relocated, 
that is, r(S¡) and "reS) belong to different blocks. 

AH the alternatives except the last one are "local" for 
the current block: in the case of the instances of the first 
four alternatives we "stay" in the current block (mak
ing further the necessary rearrangement) while with the 
instance of the alternative five we "move" to another 
block (and make necessary rearrangement. there). We· 
again analyze the behaviour of the critical path in the 
newly generated complementary schedule and repeat the 
process. As it will be evident later, the impact of differ
ent alternatives on the complexity of our algorithm dif
fers (alternatives (a), (b) will cause less computational 
efforts than instances of the other alternatives). 

It can be easily seen that all five alternatives are at 
tainable (see the Appendix for the examples). Clearly, 
the five alternatives are exhaustive (we can refer to one 
oí them in any S¡): the overflow job in SI may remain the 
same as in S (the alternative (a)) or 'change to l (the al
ternative (b». Otherwise, either it can move to another 
block (the alternative (e») or stay in the current block. 
For the latter case we have two possibilities: either r(SI} 
is scheduled after reS) in SI (the alternative (c)) or it 
is scheduled before reS) (the alternative (d». Thus, we 
have the following 

Proposition 2. The altematíves (a) to (e) are attaín
able and exhaustive. 

3 	 Study of the Complementary 
Schedules 

In this section we give the basic properties of the comple
mentary schedules which ,we use later in our algorithm. 

Lemma 1. There arises at least one flap in any comple
mentary schedule SI between the (ord(l, S) -l)st sched
uled Job and the overflow Job r. 

Proof. Consider job j, aj = min{aill < i :s: r}. Assume 
first that j is not an emerge jobo Then qj > q¡. This 
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yields aj > tf since otherwise job j would be scheduled 
at the moment tf in S (by the heuristic of the ESS). 
From the definition of the complementary schedule we 
have that no job from those which were scheduled after 
Cs,p. in S can occupy any interval before Cs,p. in Si. 
Therefore we will have a gap [tf, aj) in SI' 

Now suppose j is an emerge job with qj s:: ql and 
aj s:: tf (if a{ > tf then we have a gap [tf, aj)). Again 
by the heuristic of the extended Schrage schedule and 
the definition of the complementary schedule, j will be 
ord(l, S)st scheduled job in SI and (due to the equal 
processing times) we will háve a gap in SI strictly before 
(ord(j, S) + 1)th scheduled job if j is the only remained 
emerge jobo If not, the next slot might be occupied by 
next emerge jobo It is easy to see thát there will be a 
gap in SI strictly before the job scheduled after the last 
such emerge job.o 

By t!te following lemmas we give other properties of 
the complementary schedules. 

Lemma 2. An ESS cannot be improved by rescheduling 
al any non-emerge Job. 

Proof. Obviously follows from the definition of a non
emerge jerb and Proposition 1.0 

Lemma 3. An ESS S cannot be ~mproved by the re~ 
ordering jobs 01 the' emerge sequence Cs,p.. 

Proof. Suppose that in the emerge sequence Cs,p. job 
m precedes job l and that we have interchanged the order 
of these two jobs in the schedule S'. Consider the two 
following possibilities: al s:: t~ and al > t~. 

If al s:: t~ then qm ;::: ql (by the heuristic of the ESS). Job 
m can be scheduled befare or after the overflow job r in 
S'. The first alternative is obvious (see Proposition 1). 
For the second one we easily obtain L( S', m) > L( S, r) 
since qm s:: qr' 

If al > t~ then we have a gap in Cs,p. in the schedule S', 
Again, job m can be scheduled before or after the over
flow job r. In the first case we obvioUBly have L(S', r) ;::: 
L(S,r). In the second case, L(S',m) ;::: L(S,r) (since 
qm ;::: qr)'o 

Let S be an extended Schrage schedule and 8s = cf ~ 
aj, where l max{ili E Ks,p.}, aj = min{aílí E CS,p.}' 

Lernma 4. The lower bound on the value 01 an optimal 
schedule is L(S) ~ 8s. 

Proof. L = t~ +P+ qr is the makespan of S. We can
not improve this value by reordering jobs of the emerge 
sequence (Lemma 3). 'I'herefore, the only possible way 
to improve it, is to reschedule some other jobs in such 
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a way that jobs from Cs,p. could start their processing 
earlier. Suppose we released some slots in S. Then none 
of the job i E CS,!L can start its processing earlier than at 
time tr 8s (by the definition of 8s and the ESS). Thus 
the value L(S) = L(S, r) can be decreased at most by 8s 
and therefore L(S) 8s is the resulting lower bound.o 

Theorem 1. An optimal schedule is amongst the com
plementary schedules. 

Proof. Consider any ESS S. We claim that if this sched
ule is not optimal then we can improve it only by gener
ating complementary schedules. Then, coming out from 
the definition of a complementary schedule, we have to 
show that S cannot be improved by: 

1. 	 Rescheduling of any non-emerge jobo This we have 
from Lemma 2; 

2. 	Reordering the jobs of Cs,p.. We have this from 
Lemma 3; 

3. 	 Rescheduling an emerge job inside the emerge se
quence. If we reschedule an emerge job inside the 
emerge sequence Cs,p. then we can decrease L(S) 
at most by 88 (Lemma 4) while we increase it by p 
(8s < p); 

4. 	 Reordering the jobs of a block difIerent from the 
critical block. This case is obvious.o 

Let S be a complementary schedule with the rightmost 
maximal path ¡L. Consider the set of the complementary 
schedules SI, l E Ks,p. and the magnitude, by which 
the length of ¡L is reduced in each of these schedules. As 
the following lemma shows, this magnitude may only de
crease while we apply an emerge job which has an ordinal 
number, less than that of already applied emerge jobo 

Lernma 5. L(S¡,r) s:: L(Sk,r) if l> k (l,k E Ks,p.)' 

Proof. Consider the complementary schedule Sk and 
the job, say j, which occupied ord( k, S)th slot in it. By 
the heuristic of the ESS we have tJ' ;::: tf. The similar 
condition holds for all jobs which scheduled between job 
k and an overflow job r in S (in other words, the starting 
time of a job, scheduled in lth, (ord(k, S) s:: l s:: ord(r, S)) 
slot in Sk is more than or equal to that of in S). Anal
ogously, the first late slot in SI will be ord(l, S)th slot 
and we have ord( l, S) > ord(k, S). This easily im
plies inequality of the .form tes, SI) s:: tes, Sk), s 
ord(l, S), ord(l, S) + 1, .oo, r Now we get the lemma since 
in both SI and Sk job r is scheduled in (ord(r, S) l)th 
slot.o 

Intuitively it should be clear that if a critical path in 
some complementary schedule is rested on the resched

uled 
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uled emerge job then it m~kes no sense to improve it. 
A closed schedule is a schedule without successors which 
cannot have successors, while an open schedule is a sched
ule which is not closed and has no successors. 

Lemma 6. Suppose in the fomplementary schedule 
SI, l E Ks,jlJ a critical path is rested on l. Then: 
1. SI can be closedj 
2. Any complementary schedule Sk such that k < 
l and qk :::: q¡ can be neglected. 

Proof. 

Part 1. Suppose l' is any emerge job in SI (if there is 
no emerge job in SI then it can be closed, Lemma 2). 
This job is also emerge in S since qll < q¡. If ord(l', S) > 
ord(l, S) then SI can be neglected (this lemma, part 2). 
Let now ord( l', S) < ord(l, S). Consider the nested com
plementary schedule (S¡)l'. If L((SI)!', l') "2: L(SI, l) then 
obviously (Slk can be neglected. Assume L«SI)II, l') < 
L(SI,l). Then also L(S/"l') < L(SI,l) sínce jób [' in 
Sf will be scheduled in an earlier slot than in (S¡)l' (see 
Proposition 1), hence L(SI 1 ) < L(S¡) and again SI can 
be closed. 

Part 2. Obviously follows from Lemma 5.0 

The following lemma enables us to reduce the number 
of complementary schedules' we generate: 

Lemma 7. If l > k and ql :S qk (l, k E KS;jl), S E T 
then the complementary schedule Sk can be neglected if 
the complementary schedule SI is generated. 

Proof. Suppose that a critical path in SI is rested on 
l. Then it is rested on k in Sk and L(SI, l) :S L(Sk, k) 
sÍIlce q¡ :S qk. If a critical path in S¡ is unmoved then 
from Lemma 5 we have 

L(S¡,r):S L(Sk,r) (*) 

and obviously the schedule Sk can be neglected. 

Let a critical path in S¡ be shifted forward. If a critical 
path in Sk is rested on k then this schedule cannot be 
furthe¡; improved (Lemma 6); also it cannot be better 
than S¡ sínce q¡ :S qk and l > rn (Lemma 5). 

Suppose in Sk a critical path is unmoved. Again from 
Lernma 5 we have L(SI) < L(SI, r) :S L(Sk, r) = L(Sk) 
and obviously we, have to generate a complementary 
schedule of the form (Sk)kl , E Ks,jl' > k to imk' k' 
prove the value L(Sk, r). We have (Sk)kl (SkI k If 
job k' is such that there is no k" E Ks,jl' k" > k' with 
qk" :S qk' then according the this theorem (Skl)k will be 
generated and (Sk)kl can be neglected. Otherwise, we re
cursÍvely apply the similar reasoning to job k" until we 
find a complementary schedule satisfying the conditions 

of the theorem. 

Suppose a critical path in Sk is shifted backward. Agaín 
from Lemma 5 and from the definition of l and k (due to 
the equal processing times) we easíly get that L(Sk) "2: 
L(SI) and that none of the complementary schedules, the 
successors of Sk, can have makespan better than that of 
the schedule S¡ (if we succeed in the schedule Sk we will 
be brought to the schedule which cannot be better than 
the schedule SI)' 

Let now, in both SI and Sk, a critical path be 
shifted forward. Coñsider the complementary sehed
ules (,,(SI)¡" .)¡, (..(Sk)k .. )k, obtained from the sehed
ules SI, Sk by reseheduling repeatedly jobs l, k respec
tívely (as an emerge jobs). Observe that, if k is emerge 
in (,,(Sk)k")k, than l ís also emerge in (,,(SI)I")¡ since 
q¡ :S qk· Besides, the ordinaJ. number of l in (..(SI)¡ ...)1 
is greater than or equal to the ordinal numher of k in 
(,,(Skk')k (again, because ql :S qk). This again ímplies 
inequality of the form (*). The lengths of a critical paths 
in the considered sehedules are decreasing step-by-step 
and the number of such schedules is bounded by the max
imal tail (for details we refer to our proof of Theorem 2). 
As a result, we are brought either to the situation when 
the job k, or both 1and k become non-emerge (these jobs 
cannot be further used for a schedule improvement), or 
to one of the situations considered abqve while for all in
termediate eomplementary schedules inequalities of the 
form Eq. (*) are satisfied. 

Suppose now that a critical path in SI is shifted back
ward. A new arisen gap forces an 'order change of a 
couple of jobs in SI; let ji, j{ be the corresponding cou
pIe of jobs in SI. If the processing order of jobs j and 
)' in Sk is the same as in SI (i.e. job)' precedes job 
j) then obviously the starting time of job j in Sk can
not be less than that in SI, that is, Sk cannot be better 
than SI. If job j precedes job )' in Sk then the starting 
time of ord()', SI )th slot is greater than that in S¡ (by 
the heuristie of the ESS). Therefore the starting time of 
all consequent slots in Sk is greater than that in SI (see 
Proposition 1) and again L(Sk) "2: L(S¡). For any suc
cessor schedule of Sk we apply the reasoning which we 
already used for the different behaviour alternatives. 

The alternative (e) obviously reduces to one of the alter
natives (a) to (e). The lemma i.S proved.o 

We use Lemma i to reduce the set of emerge jobs. The 
subset of the emerge jobs KrS,jl we will call a reduced 
set of emerge jobs, if for ffi1y pair l, k E KrS,jl such that 
1< k, we have ql < qk. 

Prom Lemma 7 we obviously get the following: 

Lemma 8. Let L(Sl., r) 
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L(SII"r), l¡,l2, ... ,lp E Ks,#, ana qlA, min{ql.il j = 
1,2, ... ,p}. Then complementar¡¡ schedules Slj!j 
1,2, ... ,p and j =1= k, can be neglected il the comple
mentar¡¡ schedule SlA' is generated. 

Lemma 9. The number 01 complementar¡¡ schedules) the 
direct successors of a particular complementar¡¡ schedule 
S is bounded by 8s. 

Proof. There are no more tp.an 8s possibilities to reduce 
the length of a critical path in S (by 1,2, ... , 8s, see 
Lemma 4). From all the complementary schedules, for 
which the critical path is I;educed by a certain quantity 
8,1 :s;; 8 :s;; 8s, we generate only one (Lemma 8). Thus, 
we generate no more than 8s complementary schedules.ó 

4 The AIgorithm 

In this section we finally give our algorithm. But before, 
we need sorne additional definitions and lemmas. 

Let lPr be any branch in T and let S be the first com
plementary schedule in bT such that r E 1 is the overflow 
job in it. A complementary schedule S' E T, a successor 
of S, we call1th level nested complementar¡¡ schedule of 
job S if: 

1. 	A critical path in S' is unmoved with job r being ~ 
overflow job in it (the instance of alternative (a)) or 
it is relocated to job r (the instance of alternative 
(e))j 

2. 	 S' has exactly l 1 predecessors in lPr satisfying the 
condition 1. 

Thus the main characteristic featlij.'e of a nested com
plementary schedule of S is that r is the overflow job in 
it. 

Let 7f = min{ICs,J.LI,m}. We say that the nested 
complementary schedule of S, S' is well-defined, if any 
of the first 7f jobs of Cs.J.L is preceded by a gap in it. 

Lemma 10. Any well-defined nested complementar¡¡ 
schedule S' E T might be closed. 

Proof. From the definition of S' we have that first 7f 
jobs of Cs.J.L in this schedule are startiIlg at their earliest 
starting times. Therefore the value L(S', r) cannot be 
further improved (if 7f :s;; m, this claim is obviousj if 
7f > m, we apply Lemma 3). Thus we can cl08e the 
schedule S'.ó 

Lemma 11. A nested complementar¡¡ schedule of a level 
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at most m is well-defined. Consequently, it might be 
closed. 

Proof. Consider S', a 7fth level nested complemen
tary schedule of S. We claim that this schedule is well
defined. We get this claim from the definition of the ex
tended SdlTage and complementary schedules. Indeed, 
let j denotes a job from Cs.J.L with the minimal readi
ness time. In a nested complementary schedule of S of 
the first level job j will occupy the slot ordU, S) 1 and 
this job will be preceded by a gap (by the definition of 
a complementary schedule and Lemma 1). Analogously, 
in the next, nested complementary schedule of S of the 
level two, job j will occupy the slot ord(j, S) - 2 while 
the next job from CS,J.L will occupy the slot ord(j, S)-l 
and both jobs will be preceded by a gap. Now, in S', a 
7fth level nested complementary schedule of S, the first 7f 
jobs of Cs.J.L will be preceded by gaps. Thus, S' is a well
defined nested complementary schedule. Consequently, 
it can be cl08ed (Lemma 10).0 

Suppose S*, S' are the complementary schedules with 
the common parent schedule S, S* is the schedule with 
non-empty set of successors and S' is an open schedule. 
Let, further S" be a successor of S* and let A(S) denotes 
the active job of the complementaryschedule S. We have 
the following: 

Lemma 12. The complementar¡¡ schedule S' might be 
closed il the complementar¡¡ schedule- S" with qA(S") :s;; 
qA(S') is generated. 

Proof. Consider schedules S* and (S'), The sched
ule S* should be generated before the schedule S' on 
the level le(S"') (le(S) denotes the level of S in T) 
since otherwise the schedule (S') would have successors 
(remind that in T we continue search from the near
est leftmost open schedule). From this we get that 
ord(A(S*), S) >ord(A(S'),S') and therefore L(S*,r):S;; 
L(S',r) (Lemma 5). Since Sil is a successor of S* we 
should have L(S",r) L(S*,r) unless job r is shifted 
right in one of the schedules, generated between S* and 

. Sil. Obviously, this might happen only ií a critical path 
fust is relocated to sorne block B' < B and then shifted 
forward (here B E S' is the block containing the over
flow job r of S)', If in S' we decrease "enough" the length 
of a critical path then a critical path will be relocated 
to the same block B' and sÍmilarly in sorne successor 
se of S' job r would be delayed as much as in S". So 
we apply Olle of the inequalities L( S", r) :s;; L( S' ,r) or 
L(S~',r) :s;; L(se,r) with the inequality in the condition 
and use a reasoning analogous to that from the proof of 
Lemma 7 and complete this proof.ó 

Now we are ready to give the description of our al
gorithm. It constructs the solution tree T containing 
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an optimal solution Sopt. With the root node of T 
the extended Scmage schedule S, constructed for the 
initial data is associated. The successor nodes on the 
first level of T represent the complementary schedules 
SI, l E Krs,w The successor nodes on the second level 
of T represent the complementar y schedules (S¡)k where 
SI is a complementary schedule of the fust level and 
k E Krs"p., and so on. We test each generated sched
ule for the optimality (by Lemma 2) and close ít íf the 
conditíons of one of the lemmas 6, 8, 10 are satisfied. 
Then we continue search from the leftmost open node, if 
an optimal schedule is not obtained, applying Lemma 12 
(the Procedure Backtrack in the description below) and 
finally we stop when there is no more open node left in 
T. 

Procedure Main; 

Procedure Backtrack; 

begin{ backtrack} 

Find the nearest open schedule S' E T (íf there is 
sorne); 

ijqA(Sf) Z qC then (close SI; Backtrack) {Lemma 12} 

else (S:= S'; return) 

ij there is no open schedule in T then stop 

{Sopt is an optimal schedule} 

end{backtrack} 

begin{ main} 

(O) 	 S :=Extended Schrage { Section 2} 

Sopt := Si qC +00; 

(1) 	Find the emerge sequence CS,j1. and the reduced set 
of emerge jobs Krs,p.; K Krs,p.; 

~f K = 0 then (close the schedule S; Backtrack); 
{Lemma 2} 

(2) SC:= 0; 

while K =/:0 do 

begin{while } 

l := max{jlj , E K}; K K \ {l}; 

Construct the complementary schedule S¡; 

ijSC =/: (/) & L(S¡,r) L(SC,r) thenclose SC {Lemma 
8} 

~f L(S¡) < L(Sopt) then Sopt := SI; 

~f q¡ < qC then qC := ql; 

if SI is a well-defined nested complementary schedule 
or a critical path in it is rested on l 

then close SI; {Lemmas 10, 6} 

se :=S¡; 

end {while} 

Backtrack; 

end {main}. 

Theorem 2. The time complexity of the algorithm is 
O(mn log n) (under the assumptíon that the maxímal Job 
tail is bounded by the sufficíently large constant e). 

Proof. Suppose that B E B is a critical block in the 
initial extended Schrage schedule S and r is the overflow 
job in it. First we estimate the number of nodes in the 
solution tree T under the assumption that in aH gener
ated complementary schedules a critical path is shifted 
forward (the alternative (c)) . 

Consider the complementary schedule S¡, le(S¡) = 1 and 
suppose that a critical path is shifted forward to the job 
j (j E BS¡r) in it. We claim that qj ~ qr - 1. Indeed, 
there can be ~cheduled no more than m - 1 (m is the 
number of machines) jobs in SI (different from job r) 
which are started at time t~l and have the tail equal to 
qr. There can exist no job started in S¡ at time t~l or 
later and having the tail greater than qr since otherwise 
a critical path in S would pass throúgh this jobo AH of 
the jobs with the tail equal to qr are scheduled before 
job r in S¡ since r belongs to the rightmost critical path. 
Thus a critical path cannot be shifted forward to any of 
these jobs and we get that qj ~ qr - 1. 

For the next complementary schedule S' = (S¡)/, (l' E 
Krs¡,j1., le(S') 2) in which a critical path is again 
shifted forward to job J' (J' > j) we use the analogous 
reasoning and get that qj' ~ qr - 2, for the next one we 
get qj" ~ qr 3 and so on. Thus the number of levels in 
T will not exceed qr. 

Furthermore, the reduced set of emerge jobs Krs,1-' can 
contain no more than qr jobs (by the definition). This 
implies that the number of complementary schedules of 
the first level of T cannot be more than qr (see Lemma 
7). Since an emerge job of any schedule of the fust level 
cannot have tail greater than qr - 1, analogously, we get 
that none of the schedules' of the fust ll:lvel can have more 
than qr 1 successors, none of the schedules of the sec
ond level can have more than qr - 2 successors and so 
on. Now we claim that the total number of schedules on 
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the level l will not be greater than qr - (l - 1). Sup
pose it exceeds qr - (l 1). Then at least one schedule 
on the level l 1, different from the leftmost schedule 
should have successors. Consider such a schedule, say S. 
Since S was not closed, there is no schedule among those 
already generated, which active job has the tail equal 
to or less than that of the active job of the schedule S 
(Lemma 12). Consequently, there cannot exist a succes
sor of the schedule S such that its active job has the tail 
equal to or more than that of the active job of any of the 
generated schedules (we remind that tails of active jobs 
are decreasing level by level). Thus, on level l we will 
have no schedules such that their active jobs have equal 
tails. Therefore, the number of schedules of level l will 
not exceed qr - (l- 1). 

So, for the total number of schedules in T we get the 
bound 

qmax 

b = 1 + L(qmax í) = O(q;na",) , 
i=O 

qma:x max{qilí = 1,2, "'j n}. 

Now suppose that a critical path in a complementary 
schedule S is unmoved. Prom Lemma 11 we have that 
there can exist no more than m-l nested complementary 
schedules of r, the successors of S. For the number of 
complementary schedules on each level of T we have the 
bound of the same order as for the alternative (c). Thus, 
an instances of the alternative (a) cause an additional 
factor of m in b. 

Let now in the complementary schedule S E T a critical 
path be shifted backward. It is easy to see that a critical 
path cannot be shifted backward again in any of the di
rect successors of S. The number of the direct successors 
of S is bounded by 8s (Lemma 9). So, the instances of 
the alternative (d) will cause an additional factor of p in 
b. 

Suppose that a critical path is relocated from the block 
B' E S' to the block B" E S', S' E T (the alterna
tive (e)). Consider two different possibilities: B" > B I 

and B" < B' . Case 1 (B" > B I 
). We apply a reason

ing quite analogous to that which we used aboye in the 
case of the alternative (c) and get the bound O(qma:x) 
on the number of relocations from one block to another 
successive block. Notice that this bound provides the 
instances of both alternatives (c) and (e, case 1) since 
these instances 'alternate. Case 2 (B" < B I 

). Again we 
can use a reasoning, similar to that which we used for 
the alternative (c) and obtain that the number of reloca
tions from a block to its preceding block cannot be more 
than ij = qma:x qmin, qmin = min{qili 1,2: ... ,n} (if 
a critical path is moving from job j to job 1', l' < j 
we should have qj' :2: qj + 1; from this inequality we can 
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easily get the aboye bound). 

The number of repeated relocations of a critical path to 
any job r cannot exceed m and these instances of the al
ternative (e) are covered by the bound of the alternative 
(a) (Lemma 11). 

Thus, the alternative (c) may cause the creation of 
O(q;'a:x) nodes in T. Instances of the alternatives (a),(d) 
cause an additional factors of the order O(m) and O(p), 
respectively. With each instance of the alternative (b) 
we close the corresponding schedule (Lemma 6). Each 
insLnce of the alternative (e, case 1) is covered by the 
bound of the alternative (c). The instances of the al
ternative (e, case 2) cause the additional factor of order 
O(ij). 

So, the resulting bound on the total number of nodes in 
T is: 

O(m ).O(q;"ax) .O(p).O(ij) 

(the constant factor O(P) can be excluded since, by divid
ing the readiness times, tails and durations of all jobs by 
p we obtain the equivalent problem with rational readi
ness times and tails and unit-Iength jobs). 

For each node of T we construct an extended Schrage 
schedule (the time complexity is O(nlogn)) and spend 
time O(n) to find an overflow jobo We spend the same 
amount of time to find the sets Krs,{L' Altogether, we 
have the time complexity: 

, 
O(m).O(q!a:x).O(ij).(O(n log n) 

+O(n) + O(n)) O(mnlogn) 

(from our assumption about the maximal job tail). The 
Theorem is proved.o 

5 Concluding Remarks 

The algorithm proposed improves the running time of 
the previously known best algorithms for the feasibility 
problem P F [Simons, 1983; Simons & Warmuth, 1989J 
under the made assumption about the maximal job tail, 
and solves an extended minimization problem PI. Algo
rithms from [Simons, 1983; Simons & Warmuth, 1989], 
as well as the one from [Garey et al., 1981], are based on 
the concept of forbidden regions. In fact, we showed that 
an approach without the preliminary construction of the 
forbidden regions, what takes time O(n2 ), can be more 
efficient. In the solution tree T, the number of no des is 
bounded by the polynomial on the maximum tail and the 
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number of machines and does not depend on the num
ber of jobs, although we apply the greatest tail heuristic 
with the time complexity O( nlogn) each time we gener
ate a new ESS. Is it possible to generalize the presented 
algorithm to an algorithm with the same time complex
ity but without the restriction on the maximal job tail? 
This question is left open. 

6 Appendix 

We give five simple examples illustrating the behaviaur 
altematives ( a) to (e). 

The altemative (a): 

The initial extended Schrage schedule S = (1,2). Fur
ther, L(S) L(S,2) 0+3 + 3 + 6 12; job 1 is the 
(only) emerging job; SI (2,1); L(Sd = L(Sl, 2) = 
1 +3 + 6 = 10 and the critical path is unmoved since 
r(S) = r(Sl). 

The altemative (b): 

TheinitialscheduleS (1,2), L(S) L(S,2)=0+3+ 
3+6 12; job 1 is the emergingjobj Sl (2,1); L(Sl) = 
L(Sl,l) = 1+3+3+4 11 an the critical path is rested 
on job 1 sínce r(Sd 1. 

The alternative (c): 

job 
1 O 
2 1 
3 6 

The initial schedule S (1,2,3), L(S) = L(S,2) = 
0+ 3 + 3 + 8 14; job 1 is the emerging jabí SI = 
(2,1,3); L(Sl) L(Sl,'3) 1 + 3 + 3 + 3 + 3 = 13 and 
the critical path is shifted forward to job 3. 

The alternative (d): 

Job readiness duratian tail 
1 O 3 O 
2 2 3 6 
3 3 3 9 
4 7 3 4 

The initial schedule: S = (1,3,2,4); L(S) L(S,4) = 
0+ 3+3 +3 + 3 +4 = 16; job 1 is the onIy emerging jabí 
SI = (2,3,4,1); L(Sd =L(Sl,3) =2+3+3+9 17. 
Job 3 is scheduled before jab 2 in S sínce at the time 
t = 3 of compIetion of job 1, both, jobs 2 and 3 are 
ready and q3 > Q2. After rescheduling job 1, we get the 
gap [0,2) in SI, Job 2 is scheduled at the moment t 2 
since job 3 is not ready at this moment; so, the critical 
path is shifted backward to Job 3. 

The altemative (e): 

Job readiness 
1 O 
2 1 
3 8 

The ínitial schedule S (1,2,3); L(S) L(S, 2) 
0+3 + 3 + 8 = 14; job 1 is the only emerging job; SI = 
(2,1,3); L(Sd = L(S}, 3) = 8 + 3 + 2 = 13 and the 
critical path is relocated from the firs't block containing 
jobs 1 and 2, to the second block, containing Job 3. 

References 

K.R. Baker and Zaw-Sing Su 1974."Sequencing with due 

dates and early start times to minimize maximum tardi

ness". N aval Res. logist. Q'lfart 21, 171-177. 


P. BratIey, M. FIorian and P. Robillard 1973. ·"On se

quencing with earliest start times and due-dates with ap

plication to computing bounds for (n/m/G/Fmax) proh

Iem" Naval Res. logist. Quart20, 57-67. 


J. Carlier (1981). "Problemes 

d'ordonnancement a. durées égales". Technical report, 

Institut de Progmmmdtion, Université París, IV-750l2 

Paris, France. 


J. Carlier 1982. "The one-machine sequencing probIem" 

European J. of Operational Research. 11,42-47. 


M.R. Garey, D.S. Johnson 1979. "Computers and 


249 



Nodori Vol<honio: A Fasf AIgorifhm for Scheduling Equal-Length Jobs on ldentical Machines 

Intractability": A Guide to the Theory of NP B. Simons 1983. "Multiprocessor scheduling of unit-time 
completeness, Preeman, San Francisco. jobs with arbitrary release times and deadlines". SIAM 

J. Computo 12, 294-299. 
M.R. Garey, D.S., B.B. Johnson and R.E. Tarjan 1981. 
"Scheduling unit-time tasks wíth arbitrary release times B. Simons, M. Warmuth 1989. "A fast algorithm for 
and deadlines". SIAM J. Computo 10, 256-269. multiprocessor scheduHng of unit-length jobs". SIAM J. 

Computo 18, 690-710. 
G. McMahon and M. Fiorían 1975. "On scheduling with 
ready times and due dates to minimize maximum late N. Vakhania 1997. "Sequencing with readiness times and 
ness". Operations Research. 23, 475-482. tails on parallel machines". Prac. of the Twe~fth A CM 

Conference on Applied Computing, 438-446. 

Nodari Vakhania was born in Tbilisi, Republic olGeorgia en 1961. He obtained his 
first scientific degree in Applied Mathematics at the Tbilisi State University in 1983. 
Later recived his Ph.D. degree in Mathematical Cybernetics in 1991 from the Russian 
Academy 01 Sciences. He has worked as an assitent researcher at the department 01 
Artificial Intelligence olthe Computing Center olthe Russian Academy ofSciences. 
Moscow. Sínce 1995 to 1996 he was an associate reseacher at lIMAS, UNAM From 
1996 he is an associate researcher at the Universidad Autónoma del Estado de Morelos, 
Cuernavaca. His main interest in research are discrete optimization problems, the 
design and analysis 01 aigorthms, schedulíng aigorithms. 

250 


Tesi 
M.S 
Insti 
Fac\ 
CUJ 
e-ml 

Ase 
Uni' 
e-m 

Int 
Enl 
ciól 
ves! 
no' 
obj 
del 

pre 
pla 

] 

Val 

su 
ba 

cil 
re 
Sil 

ni 

t 


	239_ART. 1
	240_ART. 1
	241_ART. 1
	242_ART. 1
	243_ART. 1
	244_ART. 1
	245_ART. 1
	246_ART. 1
	247_ART. 1
	248_ART. 1
	249_ART. 1
	250_ART. 1

