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Abstract. This paper addresses the problem of speaker 
verification in two speaker conversations, proposing a 
set of confidence measures to assess the quality of a 
given speaker segmentation. We study how these 
measures can be used to estimate the performance of 
a state-of-the-art speaker verification system, the I3A 
submission for the core-summed condition in the NIST 
SRE 2010. We present a Factor Analysis based speaker 
segmentation system, along with three confidence 
measures that are fused to obtain a single measure 
that we show to constitute a good estimation of the 
segmentation accuracy, when evaluated on the 
summed-channel telephone data of the NIST SRE 
2008. Finally we present speaker verification results 
obtained with the I3A submission for the NIST SRE 
2010 on several conditions of this evaluation, 
involving summed-channel. We show that the 
confidence measure also predicts the performance of 
a state-of-the art speaker verification system when it 
faces two speaker conversations. 
Keywords. Confidence measures, speaker 
segmentation, speaker verification and telephone 
conversations. 
 
Resumen. Este artículo trata el problema de 
verificación de locutor en conversaciones con dos 
locutores, proponiendo un conjunto de medidas de 
confianza para evaluar la calidad de una 
segmentación de locutores dada. Estudiamos cómo 
estas medidas pueden ser utilizadas para estimar el 
rendimiento de un sistema de verificación del locutor 
del estado del arte, el sistema del I3A para la 
evaluación de reconocimiento del locutor NIST SRE 
2010. Presentamos un sistema de segmentación de 
locutor basado en Análisis Factorial y tres medidas de 
confianza que son combinadas en una medida que 
constituye una buena estimación de la calidad de la 

segmentación, cuando se evalúa en las grabaciones 
de canal sumado de la NIST SRE 2008. Finalmente 
presentamos resultados de verificación de locutor 
obtenidos con el sistema del I3A en distintas 
condiciones de canal sumado de la NIST SRE 2010. Se 
demuestra que las medidas de confianza también 
predicen el rendimiento de un sistema de verificación 
del locutor cuando se enfrenta a conversaciones de 
dos locutores. 
Palabras clave. Medidas de confianza, segmentación 
de locutor, verificación de locutor y conversaciones 
telefónicas. 

1  Introduction 

Recently, there has been a great advance in the 
field of speaker identification, in part motivated 
by the NIST Speaker Recognition Evaluations 
(SRE). One of the main breakthroughs of the last 
years has been the formulation of the Joint 
Factor Analysis (JFA) for speaker verification 
[Kenny, et al., 2008]. Nowadays most state of 
the art speaker verification systems are based 
on this approach. Since then, researchers have 
explored its application to different areas, 
especially to study new speaker diarization 
methods. One of the most interesting of these 
methods is the one presented in [Castaldo et al., 
2008], a novel approach for streaming speaker 
diarization, which shows several differences with 
traditional diarization systems. This method 
makes use of a simple Factor Analysis (FA) 
model composed only of eigenvoices [Kuhn et 
al., 2000] to obtain high accuracy in a two 
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speaker segmentation task on telephone 
conversations. However, performance decreases 
significantly when the number of speakers is 
unknown.  

Consequently, the speaker identification 
community has focused on improving the 
performance in the two speaker segmentation 
task on telephone conversations, a task quite 
related to speaker verification. In [Reynolds, et 
al., 2009] several approaches using JFA and 
Variational Bayes are proposed and compared to 
a traditional Bayesian Information Criterion (BIC) 
based Agglomerative Hierarchical Clustering 
(AHC) system [Reynolds and Torres 
Carrasquillo, 2005]. In that study, results are 
reported in terms of segmentation error on the 
NIST SRE 2008 summed dataset. Most 
approaches show higher accuracy than the 
classical AHC system, including the streaming 
eigenvoice based approach; however, this last 
system is outperformed by two Variational Bayes 
based systems. The first one is a classical AHC 
system that makes uses of Variational Bayes to 
perform a final resegmentation. The second one 
applies Variational Bayes to build iteratively 
eigenvoice based speaker models. 

In this work we address the problem of 
speaker verification in two speaker 
conversations and how a set of confidence 
measures that assess the quality of a given 
speaker segmentation can be used to estimate 
the performance of a speaker verification 
system, enabling us to identify those test 
recordings that will give good results on speaker 
verification. We use the eigenvoice based 
approach for two speaker segmentation and the 
confidence measures presented in [Vaquero et 
al., 2010], and the state-of-the-art speaker 
verification system presented in [Villalba et al. 
2010]. Results are presented on the NIST SRE 
2010, and such results, combined with those 
presented in [Vaquero, et al., 2010] show that 
the proposed approaches are valid across 
different datasets. 

In Section 2 we describe the proposed 
segmentation system, and three reliable 
confidence measures to estimate the 
segmentation performance are presented in 
Section 3. In Section 4, we evaluate the speaker 
segmentation system and the confidence 

measures for speaker segmentation, while in 
Section 5 we analyze the performance of the 
mentioned speaker verification system when 
using the segmentation system and confidence 
measures proposed. Finally, in Section 6 we 
summarize the conclusions of this study. 

2  Speaker Segmentation 

The proposed speaker segmentation system is 
described in [Vaquero, et al., 2010]. We use a 
factor analysis approach to model the desired 
sources of variability. As a starting point we try to 
capture the variability present among different 
speakers. For this purpose, we model every 
speaker by a Gaussian Mixture Model (GMM) 
adapted from a Universal Background Model 
(UBM) using an eigenvoice approach [Kuhn et 
al., 2008], according to 

 

 
(1) 

 
where Ms is the speaker GMM supervector, 

obtained concatenating all Gaussian means, 
MUBM is the UBM supervector, V is the low rank 
eigenvoice matrix, and y is the set of speaker 
factors, which follows a standard normal 
distribution N(y|0,I) a priori. This way, every 
speaker is represented by a GMM supervector in 
a high dimensional space, and in such space we 
allow the speakers to lie in the low dimensional 
subspace generated by the column vectors of V, 
which point to the directions of maximum 
variability among speakers. We refer to this 
variability as inter-speaker variability and to the 
low rank subspace as the speaker subspace. 

In our approach we use a 256 Gaussian 
UBM, and as feature vectors we use 12 Mel 
Frequency Cepstral Coefficients (MFCC) 
including C0, computed every 10 ms over a 25 
ms window. The dimension of the speaker 
subspace is 20, compared to the dimension of 
the supervector space that is 256x12=3072. This 
way every point estimate for a given speaker is 
defined by a set of 20 speaker factors. 

To perform speaker segmentation given a 
sequence of feature vectors, as in [Castaldo et 
al., 2008], we estimate the speaker factors for 
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every frame over a 100 frame window, with an 
overlap of 990 ms, an we estimate a 2-Gaussian 
GMM to model the stream of speaker factors 
obtained, after removing silence frames 
according to a Voice Activity Detector (VAD). 
Each one of these Gaussians will be assigned to 
a single speaker. In contrast to [Castaldo et al., 
2008], we estimate the GMM using all available 
data in the recording, rather than processing 1 
minute slices and applying a clustering 
technique. The later allows stream processing 
with 1 minute latency but the former yields better 
results. A block diagram of the proposed 
segmentation system is shown in Figure 1. 

 

 
 

Fig. 1. Block Diagram of the proposed segmentation 
system 

2.1 Initialization 

We have detected that a good initialization is 
quite important to ensure that every Gaussian in 
the GMM corresponds to a single speaker. In our 
approach, we use prior knowledge about 
speaker factors proposed in [Kenny et al., 2008]: 
A priori, speaker factors are assumed to be 
distributed according to the standard normal 
distribution N(y|0,I). Since we obtain speaker 
factors from a small data sample (100 frames, 
which is small compared to the number of 
frames that speaker recognition systems usually 
manage, around 10000), using MAP estimation, 
we can expect the posterior distribution of 
speaker factors for a single speaker to keep 
some properties of the prior. Assuming that the 
posterior variance is close to I, we can perform 
PCA to obtain the direction of maximum 
variability in the speaker factor space. Such 
direction should be the best one to separate 

speakers, since both are supposed to have a 
variance close to I and a different mean. 

This strategy gives two clusters that can be 
seen as first speaker segmentation, and then, K-
means clustering is performed to reassign 
frames to the two clusters and a single Gaussian 
is trained on each of them. Using this frame 
assignment as segmentation output gives 
reasonably good results, as we will see later, in 
Section 4. 

2.2 Core Segmentation 

The 2 Gaussians previously trained serve as 
initial GMM of the whole recording. Then a two 
stage iterative process is applied until 
convergence: first several Expectation-
Maximization (EM) iterations are used and then, 
every Gaussian is assigned to a single speaker 
and a Viterbi segmentation is performed (Viterbi 
1 in Figure 1). According to this new frame 
assignment, 2 Gaussian models are trained and 
the iterative process restarts again. 
Convergence is reached when the segmentation 
of the current iteration is identical to that 
obtained in the previous one. 

To avoid false fast speaker changes, in the 
Viterbi segmentation, we modify the speaker turn 
duration distribution using a sequence of tied-
states [Levinson, 1986] for every speaker model. 
This way, we avoid the state duration to follow a 
geometric distribution that cannot accurately 
model real speaker turn durations. Each speaker 
model is composed of 10 states that share the 
same observation distribution, a single Gaussian 
in this case. Tied-states are not considered for 
the silence, but a single state without an 
observation distribution is used, since the 
algorithm is forced to go through the silence 
state according to the VAD labels. We have 
observed that this way of modeling speaker turn 
duration yields better results than modifying the 
transition probability. 

2.3 Viterbi Segmentation and Soft 
Clustering 

The output of the core segmentation system 
gives accurate speaker labels in most cases, but 
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these labels can be refined by means of Viterbi 
resegmentations (Viterbi 2 in Figure 1). 

In this case we model every speaker with a 
32 component GMM according to the output of 
the core segmentation system using as features 
12 MFCC including C0. Again we use 10 tied-
states for speaker models and a single state for 
all silence frames. 

After this resegmentation we retrain the GMM 
models and run a forward backward decoding to 
perform a soft reassignment of the frames to the 
two speakers. GMM models are retrained 
according to the soft reassignment and a final 
Viterbi resegmentation is performed. This 
approach was first presented in [Reynolds et al., 
2009] as soft-clustering. 

3  Confidence Measures 

In the following section we describe a set of 
confidence measures that aims at determining 
the performance of the segmentation system 
explained in the previous section for a given 
audio recording. These set of confidence 
measures is described and analyzed in [Vaquero 
et al., 2010]. 

3.1 Bayesian Information Criterion 

BIC has been successfully applied to the task of 
speaker diarization, both for speaker 
segmentation and speaker clustering. Currently, 
most speaker diarization systems rely on BIC to 
perform AHC [Reynolds and Torres Carrasquillo, 
2005]. In such systems, BIC is used both to 
decide the next pair of closest clusters to merge 
and as a stopping criterion, to decide the final 
number of speakers in the current audio 
recording. In our task the number of speakers is 
priorly known, so we do not need a stopping 
criterion to make that decision. However, BIC 
can be used as a measure of the accuracy of a 
given segmentation.  

In this approach, given two sequences of 
acoustic feature vectors obtained by the 
segmentation system, we compute the BIC for 
two hypotheses: Each sequence belongs to a 
different speaker or both sequences belong to 
the same speaker. The confidence measure is 

the difference between BIC values. To avoid 
adjusting BIC penalty parameters, we force the 
models for both hypotheses to have the same 
complexity. That is, we model every speaker in 
the first hypothesis with a GMM of N Gaussians, 
and the global model in the second hypothesis 
with a GMM of 2N Gaussians. In our 
experiments we set N to 32 Gaussians.  

3.2 Kullback-Leibler Divergence in the 
Speaker Factor Space 

Another way to measure the accuracy of a given 
segmentation is to compute the symmetric 
Kullback-Leibler (KL) divergence between the 
Gaussian speaker models obtained in the 
speaker factor space. In this approach we use 
the hypothetic segmentation labels to obtain two 
sequences of speaker factors, and Gaussian 
models are trained for each sequence. We can 
expect higher KL divergences between both 
Gaussian models when the segmentation is 
correct (i.e. the models are pure). 

3.3 Core Segmentation System 
Convergence 

Previous measures were based on the principle 
that if the segmentation is accurate we can build 
pure and separate models for every speaker, so 
both measures will be quite correlated. In 
Section 2 we saw that the core segmentation 
runs until convergence. A way to estimate the 
quality of the output of the core segmentation 
system is to study how long it took to converge. 
We can expect the system to converge fast 
when it can easily find the correct segmentation 
and to converge slowly otherwise. This measure 
is probably less correlated with the previous 
measures described. 

4  Speaker Segmentation Experiments 

4.1 Experimental Setup 

To evaluate the proposed segmentation system 
and the confidence measures, the 2213 five 
minute telephone conversations from the NIST 
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SRE 2008 summed channel condition are 
considered. Performance is measured in terms 
of segmentation error rate, obtained as specified 
in the NIST SRE 2000 speaker segmentation 
task. In all cases speech/non-speech and 
reference segmentation labels are derived from 
Automatic Speech Recognition (ASR) transcripts 
provided by NIST as in [Reynolds et al., 2009].  

4.2 Segmentation Performance 

As we explained in Section 2, the proposed 
segmentation system comprises several steps, 
including PCA initialization, K-means clustering, 
iterative EM and Viterbi segmentation in the 
speaker factor space, a Viterbi resegmentation 
using MFCC features and a last soft-clustering 
resegmentation. Table 1 shows the results 
obtained by the segmentation system after every 
step. 

 
Table 1. Block Diagram of the proposed segmentation 

system 
 

Segmentation 
System 

Segmentation 
Error 

Typical dev 

PCA 20.2% 14.3% 

+K-means  4.9% 8.8% 

+Core 
segmentation  

3.1% 6.6% 

+Viterbi 
resegmentation 

2.3% 6.2% 

+Soft-clustering 2.2% 6.1% 

 
Given these results we can extract several 

conclusions. First, speaker factors enable easy 
separability between speakers. Just with PCA 
and using one dimension to classify the frames 
we get 20.2% segmentation error. Compared to 
the eigenvoice based system presented in 
[Castaldo et al., 2008] and evaluated on the 
same dataset in [Reynolds et al., 2009], we can 
see that our approach outperforms that one just 
using PCA initialization and K-means clustering.  

Note that at that point, frames are assigned to 
one speaker or the other assuming statistical 
independence, no context or temporal 

information is used. Completing the core system 
gives great improvement and results are 
comparable to those obtained with the best 
systems presented in [Reynolds et al., 2009]. 
Moreover, after resegmentations results improve 
further. We believe that the key improvements to 
outperform the system in [Castaldo et al., 2008] 
are the novel PCA initialization and the 
modification on the speaker turn duration 
distribution. 
 

 
 

Fig. 2. Segmentation error and data distribution for the 
fused confidence measure 

4.3 Confidence Measures 

To analyze the proposed confidence measures, 
first we normalize them to be in the range [0,1] 
and then we divide the dataset into 3 subsets 
according to a uniform division of the confidence 
measure range. We combine the confidence 
measures applying Linear Logistic Regression 
using the FoCal toolkit [Brummer]. For this 
purpose we optimize the weights in order to 
detect those recordings that have less than 5% 
segmentation error, since it has been suggested 
that low segmentation errors does not impact in 
speaker verification performance [Reynolds et 
al., 2009]. Both normalization and Linear Logistic 
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Regression is made using the NIST SRE 2008 
data, since we only have ground truth 
segmentation labels for this task. However, we 
will see in Section 5 that the fused confidence 
measure performs as expected in a different 
dataset, at least in terms of Speaker Verification 
Performance. 

Figure 2 represents the distribution of the 
recordings and the mean segmentation error 
with the 90% confidence interval (CI) over the 
previously proposed confidence measure 
ranges, for the fused confidence measure. We 
can observe that all confidence measures 
proposed follow the expected behavior: as they 
increase, the mean segmentation error 
decreases and so does the 90% CI. This way, 
we can assure that given a segmentation output 
with a high value in its confidence measure there 
is a high probability of having a good 
segmentation. However, we cannot assure that 
given a low confidence measure the 
segmentation is wrong, since the CI is large is 
that case. This behavior does not allow us to 
predict the segmentation error given the 
confidence measures in all cases, but it is 
enough to consider them as an indicator of the 
segmentation quality.  

5  Speaker Verification Experiments 

To evaluate the effect of our speaker 
segmentation system and the confidence 
measures on the speaker verification 
performance we have conducted experiments on 
the core-summed and 8summed-core conditions 
of the NIST Speaker Recognition Evaluation 
2010 [SRE, 2010]. For that purpose, we have 
used a state-of-the-art JFA system. 

5.1 Speaker Verification System 
Description 

As speaker verification system, we use the I3A 
submission for the NIST SRE 2010 [Villalba et al. 
2010]. This is a SV system based on JFA 
[Kenny, et al., 2008]. Feature vectors of 20 
MFCC (C0-C19) plus first and second 
derivatives are extracted. Voice Activity 
Detection (VAD) is performed computing the 

Long-Term Spectral Divergence (LTSD) of the 
signal every 10 ms, and comparing it against a 
threshold [Ramirez, et al., 2004]. After frame 
selection and segmentation, every feature 
stream is short time Gaussianized as in 
[Pelecanos and Sridharan, 2001].  

A gender independent Universal Background 
Model (UBM) of 2048 Gaussians is trained by 
EM iterations. Then 300 eigenvoices v, 100 
eigenchannels u and the residual variability 
matrix d are trained by EM ML+MD iterations. 
We have used all telephone data from SRE04, 
SRE05 and SRE06 for UBM and JFA training. 

Speakers are enrolled using MAP estimates 
of their speaker factors (y, z) so that the speaker 
means super vector is given by  

 

 
(2) 

 
For the 8 summed-channel training condition, 

we have clustered the streams belonging to the 
target speaker prior to the estimation of the 
model. First, we calculate the speaker factors of 
each of the streams separately and then, we use 
a criterion based on the cosine distances 
between the factors of the different streams for 
selecting the ones belonging to the same 
speaker. Given a set o possible stream 
selections 

 

(3) 

 
where N is the number of conversations. We 

choose the stream combination Iopt such as 
 

(4) 

 
Finally, we accumulate the statistics of the 

selected streams to estimate the target speaker 
model. 

Trial scoring is performed using first order 
Taylor approximation of the LLR between the 
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target and the UBM Models like in [Glembek et 
al., 2009].  

 

(5) 

 
Finally, scores are gender dependent ZT 

Normalized using data from SRE04, SRE04 and 
SRE06 (628 male speakers and 858 female 
speakers with 4 segments by speaker). For the 
core-summed condition, the maximum score of 
the two automatic segmented speakers is 
chosen. 

5.2 Results Core-summed 

Figure 3 shows Detection Error Trade-off (DET) 
curves for the NIST SRE10 core-summed det5 
condition. On the one hand, we present results 
for the full trial list and, on the other, for three 
different subsets of trials split according to the 
fused confidence measure described in section 
4.3. Minimum and actual NIST Detection Cost 
Function (CMiss=10, CFA=1, PTarget=0.01) are 
marked on the curve with a point and a cross 
respectively. Output scores have been calibrated 
to log-likelihood ratios by linear logistic 
regression using the FoCal package [Brummer] 
with the matching condition of the NIST SRE08 
short2-summed condition. In this manner, actual 
costs are calculated applying the Bayesian 
threshold of 2.29. Table 2 presents the EER and 
cost values for the different confidence intervals, 
together with the number of trials belonging to 
each subset. 

The performance of the system on the core-
summed condition is not far from the 
performance on the core-core condition in which 
we have a 2.4% of EER. We can appreciate a 
fair correlation between the confidence and the 
performance. The subset with higher confidence 
is a 48% better than the subset with lower 
confidence in terms of EER and a 26% better in 
terms of actual DCF. These results prove that if 
we have a high confidence on the segmentation 
of the test speech segment we can expect a 
good speaker verification performance. If we 
analyze, the number of trials of each subset, we 
observe that 85% of the trials have a confidence 

bigger than 0.33. This implies that trials with 
lower confidence do not have a big effect on the 
performance of the full trial list. 
 

Table 2. Performance on SRE10 core-summed 
condition for different confidence intervals 

 

Confidence 
range 

0-1 0-0.33 0.33-0.67 0.67-1 

EER(%) 3.38 4.35 3.59 2.25 

min 
DCF(x10) 

0.192 0.230 0.177 0.148 

act 
DCF(x10) 

0.193 0.238 0.188 0.174 

Target trials 633 94 390 137 

Non target 
trials 

26487 3884 18041 4533 

 
 

 
 

Fig. 3. DET plot for the SRE10 core-summed 
condition 
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5.3 Results 8summed-core 

Figure 4 compares the DET curves of the NIST 
SRE10 8conv-core and 8summed-core det5 
conditions. Minimum NIST detection costs are 
marked on the curves with a point. Table 3 
presents the EER and cost values, and the 
number of trials of each condition. According to 
these results, having perfect segmentation and 
knowledge of the streams where the target 
speaker is present leads to an improvement of 
28% in terms of EER and 37% in terms of DCF. 
However, we must take into account that we 
have achieved very low error rates for both 
conditions (under 1% of EER). With the number 
of trials available, this means that, in the EER 
operating point, we have only 3 absolute misses 
for both conditions. For the min DCF operating 
point, we have 6 misses and 32 false alarms on 
the 8conv-core condition, and 10 misses and 22 
false alarms for 8summed core. Doddington 's 
"rule of 30" [Doddington, 2000], affirms that to be 
90% confident that the true error rate is ±30% of 
the true error rate there needs to be at least 30 
errors. Therefore, the degradation between 
8conv and 8summed condition is inside the 
confidence range of the estimated error rates so 
we would need a much bigger number of trials 
for being able to measure it precisely. The fact 
that, in absolute terms, 8summed and 8conv 
performance is quite similar makes us think that 
we are very near of achieving the same results 
as with the perfect segmentation. 
 

Table 3. Performance on SRE10 8conv-core and 
8summed-core conditions 

 

 8conv-core 8summed-core 

EER(%) 0.67 0.93 

min DCF(x10) 0.028 0.045 

Target trials 442 322 

Nontarget trials 21093 15010 

 
 

 
 

Fig. 4. DET plots for the SRE10 8conv-core and 
8summed-core conditions 

6  Conclusions 

In this work, we have presented an eigenvoice 
based speaker segmentation system and a 
speaker verification system that, together, 
produce performances that are among the very 
best of the state-of-the-art systems on speaker 
verification tasks that involve summed channel 
segments in the enrollment or the testing sets. 
We have shown a set of confidence measures of 
the segmentation that can be fused together into 
a unique measure. We can use this measure to 
estimate the level of confidence that we can 
have on the speaker verification performance on 
a given test segment. This can be useful to apply 
back-off strategies on the segments with low 
segmentation confidences. These strategies 
include using other segmentation approaches on 
the segment or even human inspection. On the 
other hand, we have presented results on the 
NIST SRE10 8summed enrollment condition that 
proves that our system can produce a 
performance very near to the one we get having 
perfect segmentation. Besides, we think that 
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bigger trial lists should be needed to measure 
performance on 8summed and 8conv conditions 
precisely. 
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