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ABSTRACT 

In this paper we discuss our approach to learning 
classification rules from data. We sketch out two modules 
ofour architecture, namely LINNEO+ and GAR.LINNEO+, 
which is a knowledge acquisition tool for íll-structured 
domains automatically generating classes from examples 
that incrementally works with an unsupervised strategy. 
LINNEO+'s output, a representation of the conceptual 
structure of the domain in terms of classes, is the input to 
GAR that is used to generate a set of classification rules 
for the original training sel. GAR can generate both 
conjuctive and disjunctive rules. 

Herein we present an application of these techniques to 
data obtained from a real wastewater treatment plant in 
order to help the construction of a rule base. This rule 
will be used for a knowledge-based system that aims to 
supervise the whole process. 

1 INTRODUCTlON 

For a long time, engineers and scientists have been 
developing complex models to describe the time-varying 
nature of environmental systems, including wastewater 
treatment plants (wwtp). New emerging and very innovative 

4 

technologies in the fields of Artificial Intelligence and 
Computer Science have lead to the development ofpromising 
new concepts and tools, such as real-time and interactive 
simulation, Knowledge Based Systems (KBS), etc. 

More specifically, expert systems, a kind of KBS, are 
becoming increasingly more popular for the design, operation 
and control of WWTP. In the development ofan expert system, 
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the achievement of procedural knowledge is a very crucial 
step, usually considered as a bottle-neck, even when dealing 
with a very structured domain. These problems become larger 
when we think about the environmental engineering in gene­
ral and, particularly, in the WWTPdomain where information 
is usually incomplete and oftenly imprecise, and whose study 
requires specialized knowledge in diverse fields like chemistry, 
fluid mechanics, biology, mathematics, economy and laws. 

An alternative to this expertise approach is the use of a 
Knowledge Acquisition Tool (KA T) capable of using the 
knowledge implicitly included in data and other sources of 
information and automatically build, from it, diagnostic rules. 

The WWTPis a good target domain for this kind of 
tools since it is very difficult to obtain descriptions (or 
rules) directly from the experts because of the diversity, 
quantity and complexity of the data involved. Moreover, 
the complex chemical and biological interactions within 
a WWTP are not always easily described using 
mathematical models, [12]. A great reliance on experience 
and intuition is required in many situations. 

On the other hand, there exists a lot of recorded information 
for this domain that can be useful to initialize this KA T process 
but there is almost no information about the conceptual entities 
that could permit the modelization (from the Al point of view) 
nor is there a tradition for compiling the experience of experts 
using a formalism that could be easily generalized, and therefore, 
useful to generate a complete knowledge base. It is also difficult 
to export the experience from one plant to another due the 
technological or climatic differences, due to the changes on the 
environmentallaws, etc. So, a non-supervised machine learning 
method seems adequate to deal with these problems and, when 
possible, to organize knowledge in concepts. This task is called 
learning from data and it deals with the task of learning 
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descriptions (traditionally decision trees or rules) from raw 
data. This paper describes how sorne machine learning systems 
are Iinked together in order to automatically generate 
classification rules from data. The training set used to illustrate 
this work is a complex and real data set, obtained from an ill­
structured domain, that includes both qualitative and 
quantitative attributes and whose classification structure is 

buih-up by LINNEO+. J.l, the new architecture bom from 

the merging ofthese systems, is depicted in figure 1. Although 
sorne modules are not described in this paper, as the Consensus 
Module [25] or the clustering module LINNEO+ [2,21], they 
are well documented in the bibliography. MILORD 11 [14] 
and Bolero[lO] are respectively a shell for Expert Systems 
and a Case-Based System to manage and reason with the 
acquired knowledge and the new incoming cases. 

Our idea is to partial1y tackle the bott/e-neck of knowledge 
acquisition in the construction of KBS and to have a tool that 
leams from raw data in real domains ( i. e. creates a concept 
or builds-up a rule). 

The organization of this work is as folIows. Section 2 is 
used to describe the domain and data set that has been used to 

show the performance of J.l within a real WWTP. In section 

3 the Automatic Rule Generator Module GAR is introduced 
together with the description of how conjunctive and 
disjunctive rules are generated. Later, sorne details about the 
complexity ofthis process is given, and an altemative solution .. 
is presented with the extension ofthe Duce operators [24]. 

Section 4 summarizes the results obtained by J.l when this is 

applied to the problem described in section 2, and shows the 
levels ofknowledge compactation when disjuntive expressions 
are allowed. In section 5 sorne conclusions are commented. 

Figure 1: General overview o/the J.l system. 

2 A CASE-STUDV: W ASTEWATER TREATMENT PLANT 

After sorne successful tests using the classification module 
LINNEO+, to generate a concept structure at the level of 
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operation situations in a real Wastewater Treatment Plant 

[21,20,23], now, J.l has been applied to generate classification 

rules for those operation situations. 

The studied urban wastewater treatment plant uses a 
biological process known as activated sludge process. 
Activated sludge is undoubtedly the most widely extended 
waste water treatment. In this process, a mixture of several 
microorganisms transforms the biodegradable pollutant 
(expressed in units of organic matter as Biological Oxygen 
Demand (BOD) or Chemical Oxygen Demand (COD)), into 
a new biomass, with the addition ofdissolved oxygen supplied 
by any aeration system. Previous to the input in the biological 
reactor, a primary treatment is usually established. 

In figure 2, scheme of a plant prototype is presented. As 
shown, after the primary settler, water is first treated in the 
bioreactor where, by the action of the microorganisms, the 
level of substrate is reduced. Next, the water flows to a 
secondary settler where the biomass sludge settles. Thus, clean 
water remains at the top ofthe settler and is carried out ofthe 
plant. A fraction of the sludge is retumed to the input of the 
bioreactor in order to maintain an appropriate level of 
biomass, allowing the oxidation of the organic matter. The 
rest of the sludge is purged. 

Real time control of the process constitutes a quite complex 
problem due to the lack of reliable instrumentation and the 
simplicity of the models to describe the microbiological 
processes that takes place in the bioreactor. In this context, 
although sorne advanced control techniques such as 
predictive control have obtained promising results, they are 
not able to handle a number ofsituations that need to consider 
qualitative knowledge [12]. Consequently, the personal 
expertise of the plant manager is necessary to attain an 
efficient management of the process. 

Simultaneously to this problem, and taking into account 
the social importan ce ofthis kind ofplants in order to preser­
ve the ecological equilibrium of water bodies, a lot of varia­
bles related with the organic matter and microorganisms are 
measured in the plants, giving a lot of information that is 
difficult to manage. 

The plant studied is located in Manresa, a town of 100,000 
inhabitants, nearcBarcelona (Catalonia). The plant treats a 
flow of 35,000 m3/day of mainly domestic waste water 
although waste water from industries located inside the town 
are also received in the pl~nt. 

A set of 38 system variables, 8 of which are quality 
indicators and 9 of which are percentages of performance 
indicated with the prefix Rd, are measured in several places 
of the plant (at the input P2 -variable suffixed with E-, 
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after the pretreatment P3 -sufixed with at the input of 
the biological reactor P4 -suffixed with D- and at the water 
output of the plant -suffixed with S-), with a daily 
frequency. In this study the behavior of the plant along 527 
days has been considered. 

P2 P3 
-.. Pretrea ~[Primary ] ~ 

ment '~~!tl~l>~ .. 

pr¡maryl RecycJing ..,P4I 

sludge i_~'5eConda1 .........~ 
~s~!!!~t>~--

Purge 1 
Figure 2: Wastewater treatment process. 

The variables measure properties ofthe water: effluent (Q), 

zinc (Zn), acid level (Ph), biological oxygen demand (BOD), 
chemical oxygen demand (COD), suspended solids (SS and 
VSS), sediments (Sed), and general water conditions (Cond). 

Combining the aboye properties with the four possible sites 
of measuring (PI, P2, P3, and P4 in figure 2), and with the 
sort of variable (indicator or performance), the meaning of 
each ofthe 38 system variables in table 2 can be interpretea. 

Once the whole set of variables is stablished, their values 
for the plant are observed for 527 consecutive days. AH these 
observations are taken as input data ofthe clustering module 
LINNEO+ [1] as figure 1 shows. 

The original classification was obtained after setting the 
radius to 4 -measure of the similitude among the objects of 
each class [21 ]-, without using a DT -set of predefmed 
rules to direct the first step in the classification process [2], 
represented in figure 1 by the rules coming into the 
LINNEO+ module-, and considering only the attributes 
whithin the process. The results were the 17 meaningful 
classes briefly described in table 1 (at the taxonomicallevel 
of operation situation [22,23]). 

As an example ofthe classification obtained by LINNEO+, 
the normalized center of the class number 13 is shown in 
table 2. According to the valueG ofthe prototype in that table, 
the class has been identified as those days in the WWTPwhich 
reflect a NORMAL situation of the plant with normal influent 
values and with a performance slightly over the average 
situation obtaining a normal effluent. This interpretation was 
confrrmed when confronted with the daily log of the plant. 

The results were used to help the experts to build-up a 

knowledge base for the automatic control and supervision of 
the wastewater treatment plant and reported in [20,22,23]. 

The data used in this example are available in the UCI 
Repository of Machine Learning Databases and Domain 
Theories, and can be obtained by anonymous ftp from 
ftp.ics.uci.edu. 

Class Class name Rules Elem. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

NORMAL-I 

SECONDARYPROBLEM 

SECONDARYPROBLEM 

NORMAL-4 

NORMAL-5 

SOLlDS CRASH 

BAD PERFORMANCE 

STORM-I 

DA Y AFTER STORM 

NORMAL-lO 

NORMAL-II 

BAD PERFORMANCE 

NORMAL-13 

SOLlDS CRASH 

STORM-l 

NORMALDAYI 

NORMAL DA Yl 

86 

22 

38 

18 

3 

1 

1 

254 

1 

81 

108 

3 

1 

57 

3 

2 

10 

1 

1 

Table}: General information about classes. 

3 THE AUTOMATIC RULE GENERATOR MODULE 

GAR is the module of f..L (see figure 1) capable of 

generating and manipulating rules. Knowledge induced by 
LINNEO+ in the clustering process must be internally 
represented ¡nto GAR for its future use. 

The input to GAR is a set of classes, each one described by 
both the center of the class (al so caBed concept or prototype), 
and the list of objects iri the class. 

GAR generates, for each concept (or class), a set of rules 
with the purpose of entirely describing such a concept. One 
of the limitations to the process of rule construction comes 
from the syntax ofthe rules, described as follows: 
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Term = (op lval attribute¡) I ( rel exp) 

I (range (val val) attribute¡) 

Clause = (or Term+) 

Premise = Term I Clause 

Rule = (Premise+ ~ Cj) 

where op could be one of "=", "neq, ">", 

"~" , "~", or "<". The term "(rel exp)" 

stands for whatever relational expression between 
attributes; Ival stands for a non-empty list of modalities 
in the case of qualitative attributes and a single value in 
the case of quantitative attributes; attribute¡ is the target 
attribute and, ej is a dummy identifier for the set of objects 
that satisfies this rule. The "range" constructor restricts 
the attribute¡ valuations to the interval defined by the pair 
of values val. elauses permit the introduction of a 
disjunction of terms, and rules contain a conjunction of 
premises which are terms or clauses. 

Table2: Nortnlllized Center for the class NORMAL. 

GAR inherits this syntax to maintain the coherence and 

to facilitate the change of information between f.1 the mo­

dules. One can expect LINNEO+ to use the rules produced 
by GAR to bias a classification or to help to modify sorne 
rules given by the expert. 
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A second limitation, this time more subjective, is the purpose 
of having rules that are useful, understable and meaningful 
at the same time. Useful in the sense that they are produced 
to define a future reasoning system; understable in the sense 
that experts have to understand them as a step previous to 
validation; and meaningful to justify the use of GAR as well. 

3.1 CONJUNTIVE RULES 

Mostly, the process of building a descriptive conjunctive 
rule up can be faced under several strategies, each one 
producing not necessarily the same rule or set of rules. Sorne 
of these strategies are grouped into specific-to-general vs. 
general-to-specific, instance-based vs. selectors-based, and 
exhaustive vs. heuristic methods. 

Specific-to-general methods [6] start with the most specific 
rule, which is the result of making a conjunction with all the 
available terms, and then the methods perform generalizations 
to include those positive examples missing in the initial 
description. In general-to-specific methods [5,16] an initial 
empty rule set is successively modified by specialization 
techniques to adjust the target concept, this time by means of 
refusing negative examples previously accepted. 

Sorne methods take a disturbing example, i.e. a positive 
example rejected or a negative example accepted, and perform 
a modification in the rule set to fix this situation. This is the 
case of instance-based methods like [6]. Alternatively, n 

selectors-basedmethods take terms to modify a deficient rule a 
eset ant then they evaluate the modified subset with the training 

set to decide whether the change is maintained or not. r 
il 

Finally, we can find methods which search the best rule set 
exhaustively accross the whole searching space defined by 
the training set for sample-based methods, and by both the s 

available terms, and the way these terms can be combined a 
into rules, for selectors-based methods. Unfortunately, the s 

time complexity of exhaustive search is exponential respect 

to the size of the searching space. , 


In the case of heuristic methods a criterion is taken to direct 
the search. Two big alternative criteria have directed the 
research: those based on statistics [4], and those based on 
information theory [15, 5, 16]. 

Focusing our attention on the specificity [26] of a 
rule, generally defined as the percentage of negative 
examples not explaine,d by the rule, the methods 
producing rules can be catalogued depending on the 
specificity of the rules they produce. After the analysis 
and comparison of conjunctive, k-term-DNF, k-DNF, 
and k-eNF rules in [17], the following conclusions have 
been reached: 
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a) the effectiveness of rule generation (defined here as the 
specificity of a rule normalized in time) is the largest for 
conjunctive rules [17]; 

b) when given to the expert, conjunctive rules are qualified 
as more understable than other sort ofrules [23]; 

c) when applying conjunctive rules, the reasoning process 
is faster [14]; and 

d) conjunctive rules structure knowledge in a more 
atomic way. 

These considerations intuitively justify the production of 
conjunctive rules, like the majority of the rule leaming systems 
do. Nevertheless, sorne other considerations which are more ad 

hoc in the Ji system (e.g. we want to produce rules which 

could feed-back the clustering process -see figure 1-) drive our 

whole system to bear rules following the syntax on section 3. 

Use and understanding of WWTPrules was observed to 
work one in the opposite of the other. This is, short rules 
perform well in the reasoning but they are hardly accepted by 
experts as good descriptive rules. In the contrary, long rules 
are uncomfortable but, at the same time, their meaning is 
clear to the experts. 

Any rule partitions the training set into those examples 
accepted, and those examples rejected. A conjunctive rule 
is said to be the least specific conjunctive rule (LSC) ir. 
none term can be removed from it without a change in the 
aboye partition. As a complement, the most specific 

conjunctive rule (MSC) [7] is defined as a conjunctive 
rule where none term can be added to it without a change 
in the partition of the training set. 

LSC rules can be defended since they repesent a memory 
safe and a faster reasoning process, though Haussler [7] 
attacks this position and introduces the MSC rules for the 
sake of human understanding. 

Both standpoints are pursued by GAR under two different 
working modes. One producing a set of short conjunctive 
rules, and other one as a step previous to the compactation 
process described in the next section. 

Nevertheless, the computation of the least specific 
conjunctive rule is a NP-complete problem which is 
heuristically relaxed to a more handled problem via a 
Hill-climbing algorithm in the form of [4,11] and called 
the best-first descriptive conjunctive rule (BDC). The 
algorithm in table 3 describes how the BDC rules are 
obtained in an iterative process. At each iteration, the term 
with the greatest reduction ofnegative examples accepted 
is called to be part of the conjunctive rule. All the terms 
that, when added to the conjunction, accept none negative 

example, or do not decrease the number of negative 
examples accepted, become useless and they are removed 
from the set of possible terms in the third step. 

On the other hand, the MSC rule computation, also a complex 
problem [7], is approximated by an algorithm that takes the m 

terms of the BDC rule, as well as those feasible terms whose 
addition to the rule do not modify its accuracy [26]. 

The algorithm in table 4 takes the BDC rule and it adds all 
the terms in the set of possible terms which do not modify the 
rule criterion of acceptation or rejection for any example. 

One ofthe main successes ofthis work is the unification 
of these two, apparently independent, valuable methods 
for rule generation under a global algorithm showing the 
falsehood of such independence. The unification is done 
in such a natural way that both methods se€m to be one 
the complement of the other. 

More explicitely, the BDC rule obtained by the algorithm 
in table 3 is the conjunctive rule used by the algorithm in 
table 4 after a slight change in the step 1, which now selects 
all the terms accepting all the examples and none 
counterexample. 

INPUT: training set, set of possible terms 

OUTPUT: the BDC rule 

l. Sele.ct the best termo 

2. Add such term to the up to now conjunctive premisé 

3. Reduce the set of possible terms. 

4. Repeat steps 1 to 3 while rule in not completed. 

Table 3: The BDC algorithm. 

INPUT: training set, set of possible terms 

OUTPUT: the MSC rule 

1. Select all terms accepting all the examples. 

2. Join all the aboye terms under the and operator. 

Table 4: The MSC algorithms. 

These two methods are applied to produce a rule (or a set of 
rules) for the same concept, which comes in this case from 
the WWTPdomain when classified with LlNNEO+ [23] , and 
only considering the attributes relevant for the characterization 

81 



David Riaño and Ulises Cortés: Rule Generation and Compactalion in the WWTP 

(in this case DBO-P, DBO-D, SSV-D, and ZN-E 1). The 
complementarity of both BDC and MSC methods, is 
empirically depicted in table 5 .a, where the frrst colurnn shows 
the rule permises obtained for isolate BDC, isolate MSC, and 
combined BDC+MSC methods. The second column contains 
the positive examples accepted by the aboye rule premises 
(true positives), and the third column all those negative 
examples not rejected (false positives). 

Apparently, the combined performance BDC+MSC (third 

row) produces a worst premise, if compared with the one 
produced by the single BDC algorithm (first row), because that 
one describes the same positive examples, and negative 
examples, but it needs more information to do the work. But 
this is not so if we want to generate safe methods. Consider, for 
instance, the benefits of taking into account the combined per­
formance ofboth methods, i.e. BDC+MSC, when a new object 
O=[DBO-P = 0.3, DBO-D = 0.6, ...] is asked to be within the class, 
or not. Pure methods will thought1essly answer 'yes', but the 
combined method will want to know about the attribute ZN-E 
for coming to a conclusion, which is a more proper behaviour if 

algowe confront O with the examples in table 5.b. 
fom 

Sorne other considerations can be taken into account and algc 
are expressed in the next lines in the form of properties that e.g. 
each of the methods fumish to the symbolic unification, 

d­showing the complementarity of both methodologies. 

«=Three basic features can be remarked in the compilation of 
BDC expressions. One conceming the low computational cost, whi 
when this method is compared with other traditional searching 
algorithms. This benefit, someone can think, comes to the 
detriment of the goodness of the results, assumption whose 
falsehood has been empirically shown2• 

The third feature is minimality. BDC rules are built using 
Hill Climbing which stops when no improvement is feasible 

T
at that point. The final BDC rules are then concrete and 

allo
experts read them easily, although they rarely accept them as 

stat
good descriptive rules. 

a cl 
Apart from those previous features, BDC rules present 

hseveral lacks that the complementation whit the MSC 
fon 

rnnil1nr.tinn 

Pure BDC 


PureMSC 


BDC+MSC 

d-29/1I91 

d-3111191 

d-10/12/90 

d-2/5/91 

d-6/3/90 

d-27/5/91 

eas 

Pn~ifiw> PYnmnlp.~ Npunfil!p PYnmnlp~ 

(> (0.22) DBO-P) ~ (0.5) DBO-D) d-29/1I91 d-3111191 none 

~ (0.22) DBO-P) al! al! 

(~ (0.22) DBO-P) (~(0.5) DBO-D) 

(range(0.050.10)ZN-E 
. d-29/1I91 d-3111/91 none 

(a). BDC and MSC rules. 

DBO-P 

0.4659793814433 

0.4371134020618 

0.3591904993755 

nRO-p 
0.2226804123711 

0.3591904993755 

0.1938144329897 
, 

DBO-D 

0.6293436293436 

0.5289575289575 

0.3397683397683 

nRo-n 
0.2548262548262 

0.3 720026926440 

0.2277992277992 

SSV-D 

0.6378446115288 

0.7192982456140 

0.7305764411027 

ZN-E 

0.07485029940120 

0.07185628742515 

0.02964071856287 

ssv-n ZN-F 

0.6616541353383 0.11976047904191 

0.6015037593985 0.04191616766467 

0.5112781954887 0.05988023952096 

(b). Examples and Counterexamples description. 

Table 5: Combined performance o/BDC and MSC methods. 

10S0-p, OSO-O, are respectively the biological oxigen demand at the prirnary 

and secondary settler (see figure2), SSv-o the percentage offloating solids at 

the secondary setter, and ZN-E the degree ofinput zinc. 
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2During the testing ofthis algorithrn, three different dornains (marine sponges 

[2], metal illnesses [19], and wastewater treatment plants [23]) were chosen 

with equivalent good results. 
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algorithm helps to overpass. They are abstracted here in the 
fonn of four considerations: initially MSC completes the BDC 
algorithm in the case that few positive examples are available, 
e.g. in the extreme of one only example to be described, 

d-13/3/90, BDC produces the rule 

(1406.0) COND-P) -> SECONDARY PROBLEMS) 

which is extended by MSC 

«< 36.4 RD-SSED-G) (= (43.0) RD-SS-G) 

(= (36.0) RD-DQO-G) « 19.6 RD-DBO-G) 

(= (45.8) RD-SS-P) « 0.6 RD-DBO-P) 

(= (1406.0) COND-P) -> SECONDARY PROBLEMS) 

This is reflected in the fact that the mixture of both methods 
allows a more accurate description of the concept in the line 
stablished by table 5.a, and by the assertion 'MSC behaves in 
a closer way to how humans do' [3]. 

In fact, the property that most entrusts us to use the combined 
fonn is that it makes the forther construction %r-clauses 

easier in the form discussed in the next section. 

3.2 DISJUNCTIVE CLAUSES 

In the aboye section, conjunctive express ion s have been 
chosen appealing to the argument of the best effectiveness. 
Despite the truity of this position, it can receive several 
criticisms. One of them comes related to the horizontal 
(number ofterms perrule) and vertical (number ofrules) size 
ofthe set of rules. Ifonly conjunctive rules are permited, both 
horizontal and vertical sizes use to be great. In front of this 
situation, Shapiro [24] defined Duce, a machine leaming 
system based on the·truth-preserving transformation of a set 
of conjunctive rules into a more compact set of rules. 

These transformations are synthesized ¡nto the set of 
operators given in table 6. Inter and Intra-construction 
permits the introduction of a new concept Z? with the 
common terms of the initial rules. Absortion represents the 
extreme case of inter-construction where one rule subsumes 
the other one completely. Identification searches for a relation 
between the different terms of the rules (e D E, and Y). 
Dicotomization is related to the case that rules concluding 
positively (X) and negatively (-X) coexisto And truncation 
is used to forget the different terms of very similar rules. 

Inter-construction Intra-construction Absortíon 

BCDE -> X BCDE -> X ABCDE ->x 
A B D F -> Y ABDF -> X ABC ->y 

CE z? -> x B D z? -> x y D E -> X 

AFZ? ->Y CE -> z? ABC ->y 

B D -> z? AF ->z? 

Identification Dícotomízation Truncation 

ABCDE -> X A BCD -> X A BCD -> X 

A BY -> X A C J K ->-x ACJK ->x 
ABCL ->- X 

ABY ->x ACZ? ->x A C -> X 

C D E -> Y A C -Z ->-x 
B D -> z? 
J K -> -z? 
B L -> -z? 

Table 6: Shapiro trans/ormations. 
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Sorne of the operators in table 6 are the foundation for 
or-compactations as we will see later. Disjunctive clauses here 
are basically used to compact knowledge. Two sort of methods 
can be pointed out for such purpose: methods a priori 
where rules are directly produced containing disjunctive 
clauses [17, 18J and methods a posteriori where rules are 
initialt'y borne in conjunctive form and compacted 
afterwards to disjunctive expressions [9,13]. GAR is able 
to produce disjunctive clauses a priory[17], and a 
posteriory by the use of the operators in table 7, which 
are inspired in those of Shapiro. 

The operators, extended to manage or connectors and depicted 
in table 7, are a transformation ofthose suggested by Shapiro. 

It is easily verifiable that compactations will be more 
breathtaking for long rules sínce the possibility of sharíng 
descriptors, Le. 111 or common part of the rules, is greater. 

Among the six rules in table 6, we are particularly interested 
in those that conclude about the same, and only with positive 
conclusions, Le. Intra-construction, Identificatíon and 
Truncation. AII three rules are modified to accept or-operators, 
keeping in mind the initial idea of Shapiro. 

Look at the similarities between Intra-construction* 
and Inter-construction defined in tables 6 and 7 
respectively, and how this similarity comes reflected in 
the number of symbols reduced. Furthermore, the. 
Identification* transformation is only safely applicable 
when the symbol Y is not found within the other rules, 
and the rule produced by the last operator must be verified 
not to be in contradiction with other rules in the rule base. 

The respective symbol reduction comes expressed by the 
equations: 

V¡ntra' = 11' 1- 1) . (IR1- 1) - 2 = V inrer 

Vident> 111 . (IR1- 1) = Videnl 

total(R') - 111 - 1 V
trunc 

where R' stand s for the subset ofthe rule base R to be modified, 
I' for the common subset of all the bodies of rules within R', 

and total (R? represents the number of descriptors in R'. 

Extending the set ofpossible operators in Duce [13] with 
the aboye three new or-operators and modifying the 
treatment of rules to accept disjunctions, the system Duce 
can come to grips with the compactation of and/or-rule 
bases within its initial time cost. 

Nevertheless, the aboye modifications are feasible only 
in the assumption that or-operators are present in the set 
ofrules to simplify, which is not the case in the process 6f 
conjunctive rule learning. This gap is easily filled with 
the incorporation of three new disjuntion-introductor 
operators (see table 8 ), with a saving of 

= (11'. (IR1- 1),VdiJ 

V = (111+ 1). (IR1- 1) - 3, and di2 

Vd;3 (111-1). (IR1-1)-2. 

This methodology has been proved hightly time consuming 
and useless for medium and large sets of rules, but very fuitful 
for small sets ofrules where the degree of compactation is of 
about 10% and the time needed not very high. 

Intra-construction* Identification * Truncation * 

C(B+D)E->X (A + B) e D E -> X B (A + C) D -> X 

A (B + D) F ->X (A + B) yo> X (A + e) J K -> X 

e EZ?-> X (A+B) Y->X A + e ->X 

A F Z? -> X eDE ->Y , 
B + D ->Z? 

Table 7: New operators lor or-clauses treatment. 
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disjuntion-introductor-l disjunction-introductor-2 dis junction-introductor-3 

A B C -> X A BC E -> X A BCD -> X 

A D C -> X A B DE -> X 

A B Y ->Y 

A EFD -> X 

A (B + D) C -> X A B Y -> X 

(C + D) E -> Y 

A (Y? + Z?) D -> X 

B C -> Y? 

E F -> Z? 

Table 8: Transformations to introduce disjunctive expressions. 

A third alternative approach to or-clauses is to transform the 

set of rules into a decision tree [8] and transform this tree to 
contain external or operators. 

3.3 COMPLEXITY OF RULES GENERA TION 

Here the temporal cost of producing the set of rules 

describing a class (or concept) is analyzed in the worst case 

of asymptotic time. 

Since one rule describes at least one positive example, the 

temporal cost would be, in the worst case, o times the tempo­

ral cost ofcompiling a rule. This compilation is done following 
the four steps of the BDC algorithm which are the selection 
ofthe best term (as the number ofterms is proportional to the 

number of features, the final cost is O(j. o)). After that, the 

incorporation of the term to the premise and the reduction of 

possible terms are respectively 0([. o) and O(f). Thus, the 
global cost ofthe BDC algorithm is: 

0(0. (o. f + o. f + j)) = 0(02 
• j) 

Furthermore, the MSC process is computed in 0([. o) and, 
whether it is al so applied together with the BDC process the 
cost is: 

0(02 .f+ o.j) = 0(02 .j) 

When operators in tables 6,7 and 8 are applied, any 

subset of rules within the rule base R is candidate for the 

application of one of the 12 operators. Thus the search­
space [13] for the best operator application is of size 2 1R1 , 

the size of the power set of R. 

4 RESULTS 

Let us give som.e ideas about the kind of rules that are 

generated by the automatic rule generator module GAR 

attending the classification in table l. 

In our case the goal is just to classify situations within the 

plant' s day-to-day operation conditions. An alternative objective 

is to generate rules to predict tht: plant's operation out from 

sorne changes in the tendency of a set of given attributes. This 
objective cbuld be achieved through the use ofsorne background 

knowledge as for example to avoid, during the rule generation 

process, all the attributes related with the plant's output and 
identifying each class with a certain behaviour. 

Three considerations araise at the sight of table 1, and divi­

de the classes into differentiate groups. 

• Classes where the MSC'part ofthe general 
algorithm in section 3.1 affect the rules. 

• Classes where the disjunction transformations in 
section 3.2 are feasible. 

• Classes where the use ofdisjunction transfonnation is 
innapropriate, alternative niethodologies are needed. 

Concerning the first item, only the marginal classes like 

SECONDARY PROBLEMS, whose description appears in 
section 3.1 as a rule, iake profit of this methodology. 

Alternatively, LlNNEO+'s classes 6, Iland 12 (i.e. SOLIDS 

CRASH, NORMAL JJ, and BAD PERFORMANCE are parti­
cular cases where this consideration was unsuccessfully 
expected to happen. 
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4.1 COMPACTATION 

For this particular work, the second consideration is where 
the most interesting classes are. Classes with few rules where 
the transformations to compact conjunctive rules (table 6), to 
introduc~ or-clauses (table 8), or to modify disjunctive rules 
(table 7) does not spend much time. 

For example, when the BDC+MSC algorithm (see 9 3.1) 
is applied to leam the concept underlying in the class 
NORMAL-J3 given by the system LlNNEO+, the following 
three conjunctive rules are obtained; 

«RANGE (126.92 170.27) DQO-D) 

(RANGE (100.75117.24) DBO-P) 

(RANGE (7.46 7.61) PH-E) 

(RANGE (7.49 7.60) PH-P) 

-> NORMAL-13) 

«< 7.52 PH-D) « 41.74 SSV-P) 


(RANGE (134.35 289.64) SS-E) 


-> NORMAL-13) 


«RANGE (100.75 117.24) DBO-P) 

Rule number 

Correct elements 

Wrong elements 

Sensitivity (%) 

(RANGE (782.09 907.10) COND-P) 

-> NORMAL-13) 

meaning the last one, that days whose DBO-P index is between 
100.75 and 117.24, and whose COND-P index is between 
782.09 and 907.10, are days which represents a NORMAL­

13 situation, i.e. theyare in the 13th class. 

A semantical analysis ofthese rules, within the wastewater 
plant tested problem, shows their sensitivity (percentage of 
the correctly described elements) indexes to be 50%, 40%, 
and 50% respectively. Truncation and Identification are two 
possible transformations of this small set of rules with a safe 
of 6 and 1 symbols, respectively, when applied to the aboye 
first and third rules. With these rules the ten elements of 
NORMAL-13 are fully covered. 

However, when we want to obtain relevant examples ofhow 
the transformations in tables 6 y 7 are applied, a more difficult 
class must be chosen, e.g. NORMAL-ID, which needs 18 
conjunctive rules to completely describe the 57 days (see table 
9 for more details. 

The iterative application ofthe operators in table 6 produ­
ces an averaged reduction ofclasses NORMAL-4, NORMAL­

JO, and NORMAL-J3 of 8%. This reduction is up to 11.27% 
when only the size of the premises is considered. 

c1ass NORMAL-lO (57 elements) 

1 2 3 4 5 6 7 8 9 10 1'1 12 13 14 15 16 17 18 

5 7 5 2 3 4 2 4 2 6 2 3 2 3 3 2 2 6 

O O O O O O O O O O O O O O O O O O 

8 12 8 3 5 7 3 7 3 10 3 5 3 5 5 3 3 10 

Table 9: Rule-to rule description 01dass NORMAL-I0. 

e 

4.2 THE ANALYSIS OF NORMAL-lO 

Concretely, and fór class NORMAL-JO in table 9, the ave­
rage number of conditions in the premises passes from 7.82 
before the compactation, to 5.36 after the compactation. This 
is a reduction ofabout 3 conditions per rule from 38 attributes. 
!he number of rules, instead, grows up from 18 to 23 and 
five new concepts (see table 1O), some ofthem well recognized 
by the experts as dense-water (this is water with a great 
quantity of biomass), good-extreme-performance (standing 

for a good performance ofthe global treatment ofthe water in 
extreme circumstances), and normal-performance, appear. 
Thus, the normal-performance is represented by the two last 
rules in table 10, the first rule reflecting a normal-perfor­
mance when not much work i~ deserved and, the second, when 
the water is very dense (dirty) and the plant achieves between 
90.07 and 99.90 % of global efficiency. 

Some concepts are hardly recognized by the expert as typical 
cases, e.g. CONCEPT-2, and CONCEPT-4. 

a 
t 
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«> 80.38 SSV-D)(> 73.12 SSV-E) -> dense-water) 

«< 340.81 DQO-DX> 91.94 RDSS-GX< 39.61 RD-DBO-PX> 8.14 PH-E) 

-> CONCEPT-2) 

«> 99.90 RD-SSED-G)« 77.40 SSV-DX< 0.54 SED-DXrange (80.44 83.03) 

RD-DQO-GX< 1779.42 COND-DX> 33869.71 Q-E)« 1751.60 COND-E) 

-> CONCEPT-2) 

«range (90.5391.94) RD-SS-G)(> 99.90 RD-SSED-G)(> 109.31 SS-D) 

(> 299.60 DBO-P) -> good-extreme-perfonnance) 

«< 90.53 RD-SS-GXrange (99.07 99.90) RD-SSED-G) 

« 1779.42 COND-D)« 5.42 SED-PXrange (32066.87 33869.71) Q-E) 

« 340.81 DQO-D)« 497.28 DQO-E) -> good-extreme-perfonnance) 

«< 0.54 SED-D) nonnal-perfonnance -> CONCEPT-4) 

«> 1939.99 COND-PX> 99.90 RD-SSED-GX< 80.44 RD-DQO-G)« 204.13 SS-E) 

« 32066.87 Q-E)« 497.28 DQO-E) -> CONCEPT-4) 

«< 8.04 PH-DX> 83.03 RD-DQO-G)(> 1934.33 COND-DX< 204.13 SS-E) 

-> nonnal-perfonnance) 

«range (90.0799.90) RD-SSED-G)(range (153.36166.01) DBO-D) dense-water 

-> nonnal-perfonnance) 

Table 10: New concepts in NQRMAL-IO after compactation. 

The new concepts make the description of the class easier, 
e.g. rule number 1, initially in the fonn 

«< 1773.82 COND-P) (> 8.15 PH-P) 

(> 8.09 PH-D) CONCEPT-4 -> NORMAL-lO). 
«< 340.81 DQO-D)(> 91.94 RD-SS-G) 

« 1773.82 COND-P) « 39.61 RD-DBO-P) 
In a second stage, new compactations are possible through 

the introduction of disjunctions.Despite an average 
(> 8.14 PH-É) (> 8.15 PH-PX> 8.09 PH-D) compactation of 14.33% after having applied operations on 

-> NORMAL-lO), 
tables 7,8 and, the results does not comply, with the 
requirements of understabi/ity and meaningfulness in section 

after the description ofthe concept CONCEPT-4, is reduced 3. This ¡s, rules obtained are hardly unders~ble by the experts 
by its use to the fonn and the reasoning is assumed bizarreo 
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5 CONCLUSIONS 

The problem offinding conjunctive expressions to represent 
the classification process has been proved to have good 

approximative solutions using hill-climbing techniques. A 

representation is obtained much faster and the goodness of. 
the results are comparable to the goodness of the best 
alternative. In fact, the possible errors commited by the greedy 

decisions are mended in the long term with the incorporation 

of new extra rules. 

One similar solution for or-representations remains unsolved, 

but the application of Shapiro transformations, combined with 
the ones introduced here, represents a frrst aim at the problem 
solution. However, a stronger effort is needed to improve such 

methods to increase their understanding. 

In the future we will explore the introduction of sorne 
bias in the process, using the typicallity of the objects 

within a class and thus make easier the construction of 
rules. Also we will intend to use these ideas to generate 
rules for a hierarchy of classes. 
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