MÖSSBAUER AND INFRARED SPECTROSCOPIC STUDIES OF NOVEL MIXED VALENCE STATES IN COBALTOUS FERROCYANIDES AND FERRICYANIDES ## E. REGUERA, J.F. BERTRÁN, C. DÍAZ, J. BLANCO National Center for Scientific Research, P.O. Box 6990, Havana, Cuba and ## S. RONDÓN Applied Study Center for Nuclear Energy, 5ta y 30, Miramar, Havana, Cuba Novel mixed valence states have been obtained by the treatment of cobaltous ferrocyanides (Co⁺²Fe^{II}) and ferricyanides (Co⁺²Fe^{III}) in an ozone flow. The CN stretching bands occur at 2085 cm⁻¹ for Co⁺²Fe^{II} and at 2160 cm⁻¹ for Co⁺²Fe^{III}. After the ozonization process of Co⁺²Fe^{II}, an intense band approximately at 2125 cm⁻¹ is detected. This intermediate band must correspond to a mixed valence state of the type: $$Fe^{II} - CN - Co^{2+} - NC - Fe^{III}$$ Mössbauer spectra recorded "in situ" during the ozonization of Co⁺²Fe^{II} show the presence of two components: a doublet with isomer shift and quadrupole splitting values close to the cobalti ferricyanide and a very broad line for the mixed valence state. From the Mössbauer and infrared spectra of the aged samples of the Co⁺²Fe^{II} after ozonization, a relaxation process to the initial state of the samples is observed but the mixed valence state is stable. ## 1. Introduction Cobalt ferrous and ferricyanides are analogs of Prussian Blues, with a general formula $M_j^A[M^B(CN)_6]_k mH_2O$ where M^A and M^B are the transition metal cations, j and k are the stoichiometric numbers which depend on the oxidation states A and B, and m is the degree of hydration [1]. They crystallize in a cubic system with a unit cell of fcc symmetry and a_0 close to 10 Å [2]. The M^A and M^B atoms are octahedrally coordinated to N and C ends of the CN ligand respectively. The strong crystal field at M^B , produces a low spin state while M^A is in a high spin state. The water molecules occupy the cubic voids in the network, being of a zeolitic nature. The ferrous and ferricyanide complexs as well as the Co⁺² salts have been used as catalysts in oxidation-reduction processes. We are not aware of previous studies of the interaction of the cobalt hexacyanoferrates with ozone. These compounds could be used as catalysts for ozone decomposition. Furthermore, the