The CN stretch of hexacyano metallates as a sensor of ligand-outer cation interactions—II. Ferrocyanides José Fernández Bertrán,* Edilso Reguera-Ruíz and José Blanco Pascual Centro Nacional de Investigaciones Científicas, P.O. Box 6990, La Habana, Cuba (Received 26 April 1990; accepted 9 May 1990) Abstract—The CN stretching frequencies of 14 ferrocyanides are correlated with atomic parameters of the outer cations. The contributions of σ and π interactions to the CN frequency shifts are calculated. ## Introduction The vibrational frequency of the CN ligands in hexacyano metallates are dependent on the electronic interactions of the ligands with the central cation [1, 2]. The outer cations have a lesser but significant influence on $\nu_{\rm CN}$ [3]. Both effects can be described in terms of σ and π interaction mechanisms between the CN ligand and the inner and outer cations. In a recent publication we have shown how the σ and π contributions to the CN shifts can be calculated by correlation $\nu_{\rm CN}$ with atomic parameters of the outer cation [4]. The model has been applied with success to ferricyanides and cobalticyanides, obtaining reliable and physically significant values of the interaction parameters [4]. In this paper, the second of the series, we apply this model to a family of ferrocyanides. The results are compared with those of ferricyanides and cobalticyanides. ## THEORY The model used to describe the effect of σ and π interactions on ν_{CN} is rather simple [4]. Both mechanisms are supposed to contribute independently to ν_{CN} and in turn each contribution is factorable into ligand and cation factors. The equation is $$v = v_0 + B\sigma P\sigma + B\pi P\pi. \tag{1}$$ The $P\sigma$ and $P\pi$ parameters correspond to the ability of the outer cation to promote σ and π interactions with the CN ligands, while the parameters $B\sigma$ and $B\pi$ measure the sensitivity of the CN vibration to these mechanisms. For $P\sigma$ we have selected the polarizing power of the outer cation measured by Z/r^2 . (Z= cation charge; r= ionic radius.) For $P\pi$ we have selected the parameter nr^2/Z , where n is the number of electrons in the T_{2g} level of the cation available to be transferred to the ligand, this "back donation" being opposed by the polarizing power of the cation Z/r^2 . The $B\sigma$ and $B\pi$ parameters will be calculated from the correlation of $\nu_{\rm CN}$ with $P\sigma$ and $P\pi$ according to Eqn (1). ## EXPERIMENTAL The synthesis of ferrocyanides was carried out by standard procedures [4]. The products were characterized by i.r. spectroscopy. They were run as Nujol mulls in a UR-20 Carl Zeiss spectrometer. The broadness of the bands makes the frequencies uncertain by ± 2 cm⁻¹. In favourable cases the error is ± 1 cm⁻¹. The values of Z/r^2 used for $P\sigma$ and $P\pi$ are taken from the work of ZHANG [5]. ^{*} Author to whom correspondence should be addressed.