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Abstract
In this paper, some heat transfer characteristics through a sample that is
uniformly heated on one of its surfaces by a power density modulated by a
periodical square wave are discussed. The solution of this problem has two
contributions, comprising a transient term and an oscillatory term, superposed
to it. The analytical solution is compared to the experimental results obtained
by using the approach first proposed by Ångström, which has become a well-
known thermal wave experimental procedure used for the determination of
thermal diffusivity. A number of conclusions are drawn from this comparison,
which highlight the need to carefully consider the experimental setup employed
when carrying out this type of measurement. The results may be of interest to
those dealing with heat transfer problems, thermal characterization techniques
and/or involved in the teaching of partial differential equations at undergraduate
or graduate level.

1. Introduction

Heat transfer problems are of considerable importance due to their relevance in daily life and
scientific research. Therefore, it becomes very important to deal with them in introductory as
well as advanced courses on physics and engineering. A physical situation often encountered
is transient heating of a solid slab by a continuous heat source placed on one of its surfaces.
This situation has been discussed recently in this journal [1, 2]. Another interesting example
is that of a sample subjected to periodical harmonic uniform heating. This type of heating
appears, for example, in the field of photothermal (PT) and related techniques [3], a group of
well established methods that are useful, among other things, for the thermal characterization
of materials. They are based on measurements of the harmonic temperature oscillations (the
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so-called thermal waves) generated in a sample by periodical heating, which can be induced
by light (photons) or by other means, e.g., by Joule’s effect [4]. One of the simplest and
most inexpensive experimental setups that can be used to teach these techniques is the one
proposed by Ångström [5], in which a metallic bar is alternately heated and cooled on one
extreme, while the other is kept at fixed (e.g. room) temperature. In this way, temperature
oscillations with time are generated that are measured at different distances away from the
heat source. From the temperature amplitude attenuation with distance, and from their phase
lag with respect to the heat source, the thermal diffusivity of a sample can be obtained.
Although the Ångström method has the advantage of being simple, accurate and inexpensive,
it also has some drawbacks that limit its application in a general way. Amongst these are
the relatively large volume of material required, and the fact that its application is limited
to solid, homogeneous samples made of high thermal conductivity materials. Nevertheless,
due to its technical simplicity and the straightforward nature of the physical-mathematical
formalism involved, experiments based on Ångström’s method are very often conducted in
undergraduate physics laboratories, as described by Bodas et al [6] and Bouchard [7]. Other
authors [8–10] have also provided details on data processing which are based on a very similar
method inspired by Fourier’s early proposals of measurements of thermal properties at the
earth crust using the daily periodical temperature oscillations [11, 12]. For different reasons,
such as the use of synchronous detection [13–17] in PT methods and the attention paid to the
long-term temperature distribution, once the system has lost information regarding its initial
conditions, the presence of a transient contribution is often ignored, with most studies focusing
on the oscillatory component alone. This paper is focused on the effects of both the transient
and the oscillatory contributions to the temperature field when a square wave temperature
modulation is applied to the surface of a solid. The heat diffusion equation is solved—under
Robin boundary conditions—to calculate the temperature field, and its solution is compared
with the results of an experiment inspired by the Ångström method. The experiment was
prepared to show the importance of an appropriate selection of the temperature testing device
as well its correct use. For the particular case of a thermally thin sample for transient heat
conduction [2], which can experimentally be achieved in an easier manner than a thermally
thick sample [1, 2], we show that the solution of the problem can be achieved in a much
simpler way using the here-called calorimetric approximation based on the energy balance
equation. The implications of these results should be helpful in framing the experiment setup
in teaching laboratories.

2. Periodical heating

PT techniques, in all the existing variants, require a controlled excitation source to produce a
temporally periodic thermal response in the sample from which heat transfer parameters such
as thermal diffusivity and thermal effusivity can be obtained. For this purpose, the sample’s
heating power density is frequently modulated by a periodical rectangular wave that can be
described, without loss of generality, by the following function:

T(t) = 1

2

∑
m

sinc(m/2) exp(i(ωmt − mπ/2)) for t > 0. (1)

Figure 1 shows a schematic representation of the amplitude of the modulation function
given by equation (1), which will be used in theoretical calculations.

In equation (1) ωm ≡ 2πmf, where f is the modulation frequency, m is an integer and sinc
is the cardinal sine function. Note that this type of modulation can be implemented in most
laboratories using simple and relatively inexpensive equipment.



On heat transfer through a solid slab heated uniformly and periodically 137

Figure 1. Schematic representation of the modulation function (amplitude) used for heating the
sample probe.

Figure 2. Schematics of the heat source and the thermometric region of the physical system to be
measured.

In the experimental setup used here, a rod of length L made up of some solid material
(surrounded by an insulating material to minimize and stabilize heat loss by convection) is
heated by an external source in thermal contact to one of its ends (see figure 2). Heating is
affected by Joule’s effect using an electrical resistance introduced into a small portion of the
rod to guarantee best possible thermal contact. This heating configuration is designed so that it
can be assumed that the region of the rod surrounding the resistance becomes part of the heat
source (see inset of the figure). One can further assume that the remaining portion of the rod
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Figure 3. Schematic representation of the physical system used for the mathematical model.

lies in the thermometric region of thickness ls < L, along which the temperature distribution
can be measured by a set of thermocouples. Note that part of the electrical power supplied is
lost to the surroundings, so that the effective heating power density is actually smaller than
the generated by Joule’s effect.

The simplicity and low-cost of the experimental setup makes it suitable for use in teaching
laboratories.

3. Heat diffusion model

Consider the following one-dimensional heat diffusion equation for the homogeneous sample
probe with cylindrical symmetry, schematically represented in figure 3:

∂2

∂z2
�(t, z) − α−1

s
∂

∂t
�(t, z) = κ−1

s G(t, z). (2)

In this equation, z is the spatial coordinate, t > 0 is the time, αs and κs are the thermal
diffusivity and thermal conductivity of the sample respectively, �(t, z) is the temperature
variation of the sample around the ambient temperature and Gs (t, z) is the surface heat source.
The solution of equation (2) is constrained by the following Robin type boundary conditions:

−κs
∂

∂z
�(t, z)

∣∣∣∣
z=0

+ h�(t, 0) = 0,

κs
∂

∂z
�(t, z)

∣∣∣∣
z=ls

+ h�(t, ls) = 0.

(3)

In the above equation, h is the thermal exchange coefficient (that takes into account
convective and radiative heat losses [2]) which is assumed to be the same at both sample ends.
Our interest lies in the case where the time dependence of Gs is given by a periodic function
in time, i.e.

Gs(t, z) = −I0δ(z)T(t), (4)

where I0 is the heating power density applied to the sample at z = 0 and T is a periodic
modulation function, e.g. with the form given by equation (1).

3.1. Transient response

Since T(t) is a periodic function, it can be expanded on a Fourier basis. By means of
the Laplace transform, we obtain the following boundary value problem in the spatial
coordinate:
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Table 1. Thermal regimes as a function of the modulation frequency.

Thermal regimes

Thermally thin f � f c

Thermally thick f � f c

d2

dz2
�̂(ς, z) − q2

s (ς )�̂(ς, z) = − I0δ(z)

κs

∑
m

Cm

ς − iωm
,

−κs
d

dz
�̂(ς, z)

∣∣∣∣
z=0

+ h�̂(ς, 0) = 0, κs
d

dz
�̂(ς, z)

∣∣∣∣
z=ls

+ h�̂(ς, ls) = 0,

(5)

where q2
s ≡ ζα−1

s with ζ being the complex angular frequency from the Laplace transform and
Cm the coefficients of the Fourier expansion of T(t). The solution of equation (5) represents
the thermal response of the sample to the excitation and is given by the following expression:

�̂(ς, z) =
∑

m

T̂m(ς, z),

T̂m(ς, z) = I0Cm

κs(ς − iωm)

{
(1 − rs) exp(qs(z − ls)) + (1 + rs) exp(−qs(z − ls))

qs[(1 + rs)2 exp(qsls) − (1 − rs)2 exp(−qsls)]

}
.

(6)

In the previous expression, rs = h(κsqs)−1. The temperature distributions due to the
modulated heat source show a heavily damped behaviour in the spatial dependence: these
distributions are often referred as thermal waves. Despite the discussion about the correctness
of the term [18, 19], the temperature distributions are in fact damped by a factor called the
thermal diffusion length, which depends on the modulation frequency [3]. The particular value
of the modulation frequency at which the thermal diffusion length equals the sample thickness
is called the characteristic frequency fc = αs(π l2

s )−1, which defines the thermal regimes in
the PT techniques (see table 1).

It is convenient to define the following dimensionless numbers:

qsls =
√

ζ

π fc
≡

√
ξ, z∗ ≡ z

ls
, rs = h

κs

√
π fc

ζ
≡ Bi√

ξ
, (7)

where Bi ≡ h · ls · κs
−1 is the Biot number, z

∗
is the normalized spatial coordinate and ξ called-

here the relative complex frequency. With these definitions, the term T̂m in equation (6) can be
rewritten as

T̂m(ξ , z) = I0l3
s Cm exp(−√

ξ · z∗)
κsαs(

√
ξ + Bi)(ξ − 2iνm)

⎧⎪⎨
⎪⎩

1 +
(

1−rs
1+rs

)
exp(−√

ξ (2 − z∗))

1 −
(

1−rs
1+rs

)2
exp(−2

√
ξ )

⎫⎪⎬
⎪⎭ =

· · · = I0l3
s Cm exp(−√

ξ · z∗) · F(ξ , z)

κsαs(
√

ξ + Bi)(ξ − 2iνm)
≡ Am · exp(−√

ξ · z∗) · F(ξ , z)

(
√

ξ + Bi)(ξ − 2iνm)
. (8)

In this equation νm ≡ ωm(2π f c)−1 will be called the relative modulation frequency, and
the terms Am are amplitude factors (with units of K · s) depending on the harmonic index m.
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Any thermal regime can then be obtained from the asymptotic behaviour of function F(ξ , z)
and the values of Bi. Notice that∣∣∣∣1 − rs

1 + rs

∣∣∣∣ =
∣∣∣∣
√

ξ − Bi√
ξ + Bi

∣∣∣∣ < 1. (9)

As a consequence of equation (9) function F, although sensitive to the combination of
values of ξ and Bi, is bounded and decays asymptotically to zero. This implies that F is
exponential in nature, which is a necessary condition (using Post’s inversion formula) for the
existence of the inverse Laplace transform. However, the inversion might not be possible in
terms of elementary functions in a closed form. In general, the inversion of equation (8) is
only possible by numerical procedures. In the next subsections we will perform this inversion
only for two limiting situations for which analytical expressions become available.

3.2. Thermally thick sample approximation

For exp(−qsls) ≈ 0, the sample can be considered as very thick in the sense that ξ � 1
corresponds to the thermally thick regime. In this case, equation (8) becomes

T̂m(ξ , z) ≈ Am · exp(−√
ξ · z∗)

(
√

ξ + Bi)(ξ − 2iνm)
. (10)

There are no available analytical expressions in terms of elementary functions for the
inverse Laplace transform of equation (10) but for z

∗ = 0 one finds that equation (6) leads to

�(t, 0) ≈ I0

εs

∑
m

Cm(
b2

s + iωm
){

bs − bs erfc(bs
√

t) exp
(
b2

st
) +

· · · + exp(iωmt)[bs −
√

iωm erf(
√

iωmt)]
}
. (11)

In the previous expression, εs = κs ·αs
−1/2 is the thermal effusivity of the sample and

bs ≡ Bi · (π fc)1/2. Equation (11) is shown in figure 4 for a 40 cm thickness aluminum sample
with αs = 1 cm2 s−1, κs = 2.38 W cm−1 K−1 and h = 1.75 mW cm−2 K−1, heated by a power
density of 300 mW cm−2. Calculations were performed using the modulation function defined
by equation (1).

Even if closed forms for the inverse Laplace transform of equation (10) cannot be obtained
for z

∗
> 0, it can be argued, since equation (10) tends to zero for sufficient great values of

�{qsls} (which is precisely the starting point assumption), that the temperature � tends to
zero for z∗ > 0. This is the expected behaviour in the thermally thick approximation, already
discussed by Salazar et al [1] for the case of continuous illumination.

3.3. Thermally thin sample approximation

Now we deal with the opposite case, ξ � 1, for which exp( ± qsls) ≈ 1 ± qsls. The general
expression for T̂m (equation (6)) can be approximated by

T̂m(ξ , z) ≈ Am

(ξ − iνm)

[
1 + Bi (1 − z∗)
ξ + Bi + Bi2

]
. (12)

Using this approximation from equation (12) we find that

�(t, z) ≈ I0

Csls

∑
m

Cm(1 + Bi(1 − z∗))(
b2

s + us + iωm
) [

exp(iωmt) − exp
(−(

b2
s + us

)
t
)]

, (13)
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Figure 4. Theoretical calculation of the transient temperature profile at z = 0, in the thick sample
approximation.

where us ≡ 2Bi ·π f c. Now, let us consider that the Biot number is much smaller than unity.
Then we have

T̂m ≈ Am

(ξ − iνm)(ξ + Bi)
(14)

and

� ≈ I0

Csls

∑
m

Cm

(us + iωm)
[exp(i ωmt) − exp(−ust)]. (15)

Figure 5 shows the theoretical predictions of the sample’s temperature at z = 0. It can
be seen that the time dependence shows a similar behaviour as that reported by Salazar et al
[1] for a transient source but displaying the influence of the periodicity of the heat source.
The temperature of the sample rises slowly from the ambient temperature following small
oscillations around a central value. This central value can be obtained from the solution of
equation (2), under the boundary conditions given by equation (3), when the heat source does
not vary with time [1].

Marin et al [2] demonstrated that, for continuous heating, the thermally thin approximation
is achieved for a value of the Biot number much smaller than unity. However, because in the
present case the heating is modulated in amplitude, this is no longer a necessary and sufficient
condition. Instead it is necessary to consider the influence of the characteristic frequency as
well. From the analysis of expressions (8–10) and (12), the thermal response resolved in time
is defined not only through the Biot number but also through the combination of the values of
Biot number and the characteristic frequency.

3.4. Temperature profile for long times

Once the transient state is reached, the temperature distribution along the sample will vary
periodically around a central value, given by the mean asymptotic value of the transient
temperature distribution expressed by expression (11) or (13), depending on the particular case.
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Figure 5. Theoretical calculation of the transient variations temperature profile at z = 0, in the
thin sample approximation. The dotted line represents the central value calculated for continuous
heating.

For this state—that will be designed here as the stationary state—the temperature variations
are calculated by solving equation (2) under the boundary conditions (3), by means of the
unitary Fourier transform. In this way, the following equivalent boundary value problem is
obtained:

d2

dz2
�̃(ω′, z) − σ 2

s (ω′)�̃(ω′, z) = −
√

2π I0δ(z)

κs

∑
m

Cmδ(ω′ − ωm)

− κs
d

dz
�̃(ω′, z)

∣∣∣∣
z=0

+ h�̃(ω′, 0) = 0; κs
d

dz
�̃(ω′, z)

∣∣∣∣
z=ls

+ h�̃(ω′, ls) = 0,

(16)

where σ 2
s ≡ iω′ αs

−1 is the square of the complex thermal diffusion coefficient, which is
related to the thermal diffusion length. Solving equation (16) by means of the Green’s function
technique, the following solution is found:

�̃(ω′, z) =
∑

m

Rm(z)δ(ω′ − ωm), (17)

Rm(z) = −
√

2π I0Cm

κs

∫ ls

0
K(z, z′)δ(z′) dz′, (18)

where

K(z, z′) =

⎧⎪⎪⎨
⎪⎪⎩

[cosh σsz + rs sinh σsz][cosh σs(z′ − ls) − rs sinh σs(z′ − ls)]

σs[(1 + r2
s ) sinh σsls + 2rs cosh σsls]

; z′ > z

[cosh σs(z − ls) − rs sinh σs(z − ls)][cosh σsz′ + rs sinh σsz′]
σs[(1 + r2

s ) sinh σsls + 2rs cosh σsls]
; z′ < z.

(19)
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Figure 6. Theoretical calculation of the stationary temperature variation profile, at z = 0 (solid
line) and z = 8 cm (dashed line).

Here, K is the Green’s function and rs ≡ h(κsσ s)−1. Using equations (17) and (19) and the
inverse Fourier transform, the temperature variation profile is given by

�(t, z) = I0

κs

∑
m

Cm

σms

[
cosh σms(z − ls) − rms sinh σms(z − ls)[
(1 + r2

ms

)
sinh σmsls + 2rms cosh σmsls

]
]

exp(iωmt). (20)

Here σ ms
2 ≡ iωmαs

−1 and rms ≡ h(κs σ ms)−1. Note that in this case it was not necessary to
introduce any kind of approximation to obtain an analytical solution. In figures 6 and 7 the
temperature variations with time for some values of z are shown.

As can be seen from figures 6 and 7, there is an amplitude decrease (exponential, as shown
in figure 8) and a shift to the right of the maximal values of the temperature oscillations with
increasing z. This behaviour of the temperature profile is consistent with experimental results
reported in the literature [7].

The small oscillations in the theoretical curves (especially for small values of z) observed
in figures 6 and 7 damp out with increasing number of harmonics taken in the calculation of
equation (18), but this will produce a notable increment in the computing time.

4. Calorimetric model

Imagine a homogeneous sample with constant thickness ls and cylindrical symmetry, heated by
the power P(t), modulated in amplitude by any periodic function with a modulation frequency
f . If the temperature gradient is negligible, the change in its heat energy Q is governed by the
following equation:

d

dt
Q(t) + R(t) = P0

∑
m

Cm exp (iωmt), (21)



144 J B Rojas-Trigos et al

Figure 7. Theoretical calculation of the stationary temperature variation profile, at positions z =
16 cm (solid line), z = 24 cm (dashed line) and z = 32 cm (dotted line).

Figure 8. Dependence of the temperature variation amplitudes as function of the axial position for
the developed temperature profile.

where R(t) is the total heat loss by radiation and/or convection, and P0 is the amplitude
of the absorbed excitation power. Bearing in mind that the rate of increase of the sample’s
temperature is small enough, we have

R(t) = 2hAs�(t), (22)
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Figure 9. Theoretical calculation of the temperature variations for a solid homogeneous sample by
means of the calorimetric model.

Q(t) = CsAsls�(t). (23)

In these equations As is the area of the illuminated surface, and Cs is the specific volume
heat capacity of the sample. Substituting equations (22) and (23) in equation (21) leads to

d

dt
�(t) + 2h (Csls)

−1 �(t) = I0 (Csls)
−1

∑
m

Cm exp(iωmt). (24)

It is important to keep in mind that equation (21) requires ls � κsh−1, that is the sample’s
thermal resistance to be much smaller than the thermal resistance associated with the heat
loss by radiation and/or convection. If the initial condition �(t = 0) = 0 is imposed on
equation (24), by means of the parameter variations technique [20], we obtain the following
general solution:

�(t) = I0

Csls

∑
m

Cm

iωm + us
[exp(iωmt) − exp(−ust)]. (25)

This model is frequently used in the thermal relaxation method [18], where the spatial
dependence of the temperature is neglected.

In figure 9, we show the theoretical predictions for the same aluminum sample as before,
considering that the Cm coefficients are the same of the periodic rectangular wave defined in
equation (1).

Now, the reader can compare equation (25) with equation (15) and conclude that the
expressions are exactly the same. Consequently, the calorimetric model is in fact a particular
result of the transient heat diffusion model, in the thermally thin sample approximation. This
is not surprising, since very small values for the Biot number imply an almost uniform
(in space) temperature distribution; which is the initial assumption of the calorimetric
model.
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(a) (b)

Figure 10. (a) Diagram of the measurement system. (b) Detail of the measurement cell, showing
the spreading of the thermocouples along the thermometric region.

5. Experimental results

For the general experimental arrangement, described in section 2, the measurement cell
consists of an aluminum rod (as a sample) of total thickness L equal to 40 cm, surrounded
by a polystyrene isolator. Figure 10(a) shows a schematic representation of the measurement
system. The electric resistance, the power supply and the thermocouples were interfaced to
a personal computer, through a programmable logic controller (PLC) [21], to control the
measurement system and for recording the obtained data.

As figure 10(b) shows, sets of thermocouples were introduced with equidistribution inside
the sample to get a thermal profile of the sample. In figure 11, a comparison between the
theoretical calculations and the experimental data obtained for z = 0 cm is shown.

It is clear from this figure that as time increases, resulting in a temperature rise,
the theoretical and experimental curves fit better and better. This can be attributed to
the temperature dependence of the heat exchange coefficient h, whose value increases as
the sample gets warmer. In figure 12 the graphs of the experimental data are presented for z =
0, 8 and 16 cm.

The experimental results are qualitatively consistent with the theoretical predictions for
the transient response of the sample. However, the separation between the experimental curves
for different z values, the temperature rise in the transient state and the amplitude of the
temperature oscillations do not correspond with the expected behaviour. This is a consequence
of the position of the temperature sensors. Since the sensors almost cross the sample, they
act as thermal barriers, dividing the sample in four regions, each one heated by a different
power density. Thus, what is really obtained instead of a temperature profile is the result of
simultaneous measurements made on four ‘different’ samples—each one acting as the heating
device of the next adjacent portion of the rod. In summary, the experimental setup must be
carefully prepared in order to not disturb the continuity and the homogeneity of the heat flux.
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Figure 11. Comparison between the experimental results (solid line) and the theoretical transient
response (dotted line) for z = 0 cm.

Figure 12. Experimental results obtained for an aluminum sample of 40 cm thickness, for z = 0 cm
(solid line), 8 cm (dashed line) and 16 cm (dotted line).

This requires a careful design that allows reading of the sample’s surface temperature in order
to satisfy the conditions of the model, without major disturbances in experimental results.

6. Conclusions

From the study of the transient state for periodical heating in heat diffusion, it can be possible
to obtain information about specific heat capacity and thermal effusivity, just by taking the
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mean value of the asymptotic temperature (with respect to the ambient temperature), that is,
the temperature close to the end of the transient state. As is demonstrated in section 4, when
the sample is such that it can be considered thermally thin (in the context of this paper), the
calorimetric model is appropriate to evaluate the specific heat capacity and the heat exchange
coefficient.

For samples between the thermally thin and thick regime, and when the transient state is
overcome, the analysis of the oscillations around the asymptotic value can serve to evaluate
the heat exchange coefficient and the thermal diffusivity, using equation (20). Of course, a
nonlinear fitting procedure will be necessary in this case. But, as the comparison between
the models and the experimental data shows, one must be very careful while positioning the
temperature sensors, and not alter, or even break the continuity of the heat flux.
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