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Abstract 
The starting point in the study of the heat transfer and their applications is the solution of the heat diffusion equation 
with a particular boundary conditions kind congruent to the physical circumstances of the problem under consideration. 
Here, we calculate the solutions of the heat diffusion equation by means of the Green’s functions technique, constrained 
by Dirichlet, Neumann and Robin’s boundary conditions; making a comparison between the obtained solutions and 
discussing the behavior of the thermal response for every case. The calculations were done for an ideal homogonous 
solid sample, with a cylindrical symmetry, under the consideration of an arbitrary periodical heat source on one face of 
the sample. Finally, considering the particular case of a sinusoidal heat source, commonly used for the standard models 
in the field of the Photothermal science and techniques, the thermal response for each case of the three boundary 
conditions kind, is discussed. 
 
Keywords: Diffusion equation, homogenous solid, photoacoustic technique, periodical function, sinusoidal modulation, 
thermal diffusivity, thermal wave. 
 

Resumen 
El punto de partida en el estudio de la transferencia de calor y sus aplicaciones es la solución de la ecuación de difusión 
de calor bajo condiciones de frontera particulares congruentes con las circunstancias físicas del problema bajo 
consideración. Aquí, calculamos las soluciones de la ecuación de difusión del calor, mediante la técnica de las funciones 
de Green, restringidas por condiciones de frontera del tipo Dirichlet, Neumann y Robin; realizando una comparación 
etre las soluciones obtenidas y discutiendo el comportamiento de la respuesta térmica en cada caso. Los cálculos fueron 
realizados para una muestra sólida ideal y homogénea, con una simetría cilíndrica y bajo la consideración de una fuente 
de calor arbitraria periódica en una cara de la muestra. Por último, considerando el caso particular de una fuente de calor 
sinusoidal, comúnmente utilizada por los modelos estándares en el campo de las ciencias y técnicas Fototérmicas, la 
respuesta térmica, en cada caso y bajo los tres tipos de condiciones de frontera, es discutida. 
 
Palabras clave: Ecuación de difusión, sólida homogénea, técnica fotoacústica, función periódica, modulación 
sinusoidal, difusividad térmica, onda térmica. 
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I. INTRODUCTION 
 
Given a problem of heat transfer, many times the 
mathematical task of solving the heat diffusion equation 
(HDE) may be complicated or accessible, depending on the 
choice of the boundary conditions kind and the solution 
method to be used, among other no less important things 
like the symmetry, the number of degrees of freedom and 
the characteristics of the heat sources involved in the 
problem. 

The HDE is a partial differential equation of fist order in 
time and second order in the spatial coordinates, therefore, 
is necessary to specify one condition in time, the initial 
condition, and two boundary conditions for each coordinate 
necessary in the description of the system, the boundary 

conditions of the problem. There are three kinds of 
boundary conditions generally used in problems of heat 
transfer. Dirichlet condition, also called first kind boundary 
condition, corresponds when the temperature surface is 
known. Neumann condition, or second kind boundary 
condition, corresponds when the heat flux is known. And 
Robin condition, also known as third kind boundary 
condition or newton law of cooling, corresponds to the 
existence of convection heating (or cooling) at the surface1. 
The choice of which boundary condition will be applied 
depends of the physical conditions existing at the 
boundaries of the medium. Of course, these three types of 
boundary conditions don’t describe, nevertheless, all real 
conditions that occur in practice, such as body heating and 
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cooling by radiation, the melting or freezing of bodies or 
complex heat transfer. 

Since its introduction in 1828, Green's functions method 
have been widely used as a fundamental mathematical 
technique for solving boundary value problems in many 
areas of physics and engineering, of course, including the 
heat transfer area. Basically, in this method, for a given 
geometry, any field satisfying given source distributions 
and arbitrary initial conditions and boundary conditions can 
be constructed in the form of space and time integrals over 
the solution to the most elementary problem associated with 
the given geometry: that in which the source is in the form 
of a Dirac delta function in space and time, and the initial 
and boundary conditions are homogeneous everywhere2, 3.  

In this paper, the main goal is to solve the heat diffusion 
equation for the problem of an homogeneous slab with an 
arbitrary periodical heat source on one of its faces due to 
the light absorption, restricted to the most common 
boundary conditions (meaning Dirichlet, Neumann and 
Robin) used in heat flux problems, in order to obtain the 
differences among the thermal response for every case, 
which will be very useful in many experimental setups of 
the photothermal science and techniques. 

 
 

II. THE GENERAL MATHEMATICAL MODEL 
 
Consider a material sample with thickness ls, on which a 
modulated light beam impinges uniformly on its normal 
direction. If I(t,r) denotes the absorbed power density by the 
sample, and keeping in mind the Beer-Lambert Law:4 
 

0 ˆ( , ) (1 ) exp( ) ( ).I t R I tβ β= − − ⋅ Τr r u               (1) 
 
In Eq. (1), û is a unitary vector normal to the incidence 
surface, Τ(t) is the modulation function (not necessarily a 
periodic function), and R, β are the reflexion coefficient and 
the optical absorption coefficient of the sample, 
respectively. It is a known fact that β is related to the 
wavelength λ of the incident beam, and with the imaginary 
part of the refraction index, named here as κ, through the 
next expression: 
 

4 .πκβ
λ

=                                       (2) 

 
The absorbed power density will be transformed into heat 
by means of de-excitation processes. For crystalline and 
polycrystalline materials, some part of the energy absorbed 
is released by mechanical vibrations of the crystal lattice 
(this is the phonon contribution), and depending on the 
wavelength of the optical field, an excess of charge carriers 
could be produced (holes and electrons). These 
photogenerated charge carriers diffuse along the sample, 
recombining and possibly interacting among them and with 
phonons, producing extra contributions to the thermal 
relaxation of the sample. Some of these processes can be 
radiative, and some others non-radiative; this depends on 

the intensity of the absorbed power density, its wavelength 
and the excess charge density. In any case, an internal heat 
source G(t,r), containing all the contributions of the light-
heat conversion will appear5; but for the reach of the 
present paper, only the phonon contribution is considered. 
According to the heat diffusion equation 
 

( ) 0 ˆ( , ) ( , ) ( , ) (1 ) exp( ) ( ).c t k t G t R I t
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              (3) 
 
Here: ρ, c y k are the volumetric mass density, the specific 
heat and the thermal conductivity of the sample, 
respectively, η is the light-into-heat energy conversion 
efficiency, and Θ(t,r) is the variation of the sample’s 
temperature from the ambient temperature. The solutions of 
Eq. (3) are constrained by boundary conditions, which in 
the more general fashion are expressible as: 
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In Eq. (4), Aj, Bj are constants, and Ωj are functions that 
qualify the thermal contact of the sample with their 
surroundings and, if there is any, the losses through the 
sample’s surfaces Sj. When it’s necessary, the boundary 
conditions (4) can be substituted by regularity conditions 
over the temperatures variations or heat fluxes, to ensure 
stable solutions for Eq. (3). Since G becomes from the 
absorption of the power density I, it inherits the modulation 
of the light beam and so the temperature variation Θ are 
modulated too in the same way. 
 
 
III. THE HEAT DIFFUSION EQUATION 
 
This section deals with the problem of solving the heat 
diffusion equation for three of the most used boundary 
conditions, and some remarks on the behavior of the 
solution.  
 
A. Solutions to the heat diffusion equation 
 
Be a lineal, homogenous and isotropic medium, such that 
its geometry and the flux’s direction of the incident light 
beam sustain a cylindrical symmetry, as Fig. 1 schematizes. 
 

 
FIGURE 1. Scheme of the geometry of the system. 
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So, Eq. (3) reduces to Eq. (5), describing a mono 
dimensional heat diffusion process: 
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Where αs = ks(ρscs)-1 is the thermal diffusivity of the sample 
(s) (in units of cm2s-1), describing the “speed” which the 
heat diffuses along the samplea

 

. In addition, consider that 
the surroundings of the sample had an ambient temperature 
Tamb. Since the heat source (this is, the right member of Eq. 
(5)) had the same modulation than the optical power 
density, and for practical purposes the modulation function 
Τ(t) had an expansion in the Fourier basis, and so: 
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Here: Cm are the expansion coefficients of Τ in the Fourier 
basis, ωm ≡ 2mπf with f being the modulation frequency, 
and m an integer. Then, the main goal depends on the 
solution of the next boundary value problem: 
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In expressions (7), θ is the Unitary Fourier Transform 
(respect to time) of the temperature variation Θ, σs ≡ 
(1+i)/µs is defined by means of the thermal diffusion 
length6 µs ≡ (2αs/ω’)1/2, and the indexes {f, r} label the front 
(illuminated) and rear (non-illuminated) surfaces of the 
sample. At this work, homogenous boundary conditions 
were considered, i.e. Ωf = Ωr = 0. Using the Green’s 
functions technique, 3, 7 the solution to Eq. (7), can be 
written as: 
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Where: Κ is the Green function satisfying: 
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a This quantity is the analog to the diffusion coefficient in mass 

diffusion processes, as can be read it in: The Mathematics of 

Diffusion, J. Crank, Second edition, Oxford University Press (New 

York, 1975), pp 8-10. 

Under boundary conditions equivalent to (7), and: 
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So, the family of solutions of Eq. (9) is given by: 
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B. Solutions under Dirichlet boundary conditions 
 
In this case Af = Ar = 1 y Bf = Br = 0. The restriction implies 
the continuity of the temperature distribution across the 
interfacial surfaces, therefore, the Green function for this 
kind of boundary conditions is written as follows: 
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For demonstration purposes, in this paper will be 
considered that the only contribution to the internal heat 
source is the phonon contribution (as we mentioned at the 
beginning) and from Eq. (8), we obtain the response on the 
frequency domain to be: 
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By means of the Inverse Unitary Fourier Transform of Eq. 
(13), the temperature distribution (under Dirichlet boundary 
conditions) in time domain is: 
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C. Solutions under Neumann boundary conditions 
 
In this second case, Af = Ar = 0 y Bf = Br = ks, and so, the 
continuity of the heat flux across the interfacial surfaces is 
guarantee. In such case, the Green function is the following: 
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Substituting Eq. (16) into Eq. (8) we obtain the response on 
the frequency domain to be: 
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Where: 
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In similar way, applying the Inverse Unitary Fourier 
Transform to Eq. (17), the temperature distribution (under 
Neumann boundary conditions) in time domain is given 
then by: 
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D. Solutions under Robin boundary conditions 
 
This third case, also known as impedance boundary 
conditions, Ar = Af = h, and Br = Bf = ks. In this kind of 
boundary conditions, h represents the overall heat exchange 
coefficient, and depends on the surrounding medium as 
well the physical properties of the sample. So, the 
homogenous Robin boundary condition states that the total 
heat flux is conserved, taking into account the conductive, 
convective and radiative heat fluxes. 

Of course, the Green function expected for this kind of 
boundary conditions will be more complicate, and after 
some calculations is written as bellow: 
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In the past equation, es ≡ h(ksσs)-1. If we considered that the 
Biot number Βis ≡ hlsks

-1 is a simple index of the ratio of the 
heat transfer resistance of and at the surface of the sample 
(and therefore qualifies the ability of the sample to 
exchange heat through their surfaces), it is possible to 
rewrite es as: 
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The coefficient es is a dimensionless quantity, being a 
function not only of the solid sample and its surroundings, 
but also a function of the modulation frequency, 
diminishing at the time that the modulation frequency gets 
larger. 

Substituting Eq. (20) into Eq. (8) we obtain the response 
on the frequency domain to be: 
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In Eq. (22), , denotes the function composition operator, 
and the following definitions were used: 
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The temperature distribution, under Robin boundary 
conditions, in time domain is written finally as: 
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IV. SPECIAL CASE: SINUSOIDAL 
MODULATION 
 
This section presents the theoretical results for the most 
common modulation function used in experimental setups: 
The sinusoidal modulation. This kind of modulation is 
historically important because was the modulation used by 
Rosencwaig and Gersho8 in their earliest papers where the 
photoacoustic effect was explained for the first time, and 
since then, it has being used by the majority of the 
researchers in posterior models. Since the sinusoidal 
modulation is simple, offers solutions to the heat diffusion 
equation relatively easy to handle in minimum square 
fitting processes to experimental data; however, this 
modulation is an approximation to the actual experimental 
conditions. Frequently, a mechanical modulator (chopper) 
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of variable speed is used to modulate the continuous light 
beam emerging from a light source, and in this manner, 
what we have in reality is a train of square pulses i.e., a 
square wave modulation9, which will be treated in a 
subsequent work. 

So, if a sinusoidal modulation is used, by means of the 
orthogonality relationship of the Fourier basis, for Eq. (6) it 
must be considered that: 
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And therefore, in Eqs. (14, 18) and (23) the sum only 
covers the harmonics m = -1 and 1. For a better theoretical 
analysis, the calculations were done by considering the 
relative frequency ν, and relative position z*, defined as 
follows: 
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In Eq. (26), the quantity fc ≡ αs(πls

2)-1 is known as the 
characteristic frequency, and represents the value of the 
modulation frequency at which the thermal diffusion length 
equals the thickness of the sample. The characteristic 

frequency is strongly related to the definition of the thermal 
regimes. It says that a sample is thermally thin when its 
thickness is much smaller than its thermal diffusion length, 
i.e., f ≪ fc. On the contrary, it says that a sample is 
thermally thick when its thickness is much greater than its 
thermal diffusion length, i.e., fc ≪ f. The use of 
dimensionless variables allows reproduce the behavior of 
all solids, since the thermal and geometrical characteristics 
are not explicit. 

Figs. 2 and 3 show the amplitude and phase of the 
temperature variations θD, and θN as functions of relative 
position z* and frequency v, for the boundary conditions of 
Dirichlet and Neumann, respectively. In the calculations 
values of βls = 300 were considered (i.e., the sample is 
considered as optically opaque). In Fig. 2, θD is null at z* = 
0, for all values of v, as is expected from the boundary 
condition, reaching a maximum in the interior, and 
decreasing as function of v for a given z*. On the other 
hand, in Fig. 3, θN increases quickly when v goes to zero for 
each value of z*, and θN remains practically unchanged 
with z* for each value of v. These results reflect accurately 
the restrictions imposed by the Dirichlet and Neumann 
boundary conditions, that is, the continuity of the 
temperature distribution and the heat flux across the 
interfaces, respectively. 

 
 

 
 
FIGURE 2. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 
position and frequency. Dirichlet boundary conditions were considered. 
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FIGURE 3. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 
position and frequency. Neumann boundary conditions were considered. 
 
 
Figure 4 shows the amplitude and phase of the temperature 
variation θR as a function of relative position z* and 
frequency v, for Robin boundary condition. Here, values of 
βls = 300, and Bis = 0.5 were considered. Again, sinusoidal 
modulation was used for the theoretical calculation. In this 
case, the consideration of the convective heat flux leads to a 
greater change in θR, in comparison with the results 
obtained with the Neumann boundary condition. θR 
increases more quickly when v goes to zero for each value 

of z*, and θR increases when z* goes to zero for each value 
of v. 

The value for the Biot number used here for theoretical 
calculations could be considered as a huge one. This value 
was chosen only to show the influence of large Biot number 
on the solutions of the heat diffusion equation. This 
influence rapidly diminishes for relative small values for 
the Biot number (meaning Bis ≤ 10-2), however, 
manipulating the geometric parameters and the surrounding 
medium it is always achievable large values for Bis. 

 
 

 
FIGURE 4. Calculation of: (a) Amplitude of the temperature variations, and (b) Phase of the temperature variations, as function of relative 
position and frequency. Robin boundary conditions were considered. 
 
 
In fact, large values of Bis are related to the thermally thick 
regime in studies of the transient behavior for continuous 

illumination,10, 11 i.e., constant modulation, and so is an 
important factor in the transient behavior in the case of 
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modulated illumination.12 Here, because the general 
modulation is used in the mathematical model, the 
thermally regimens are (in the case of Robin boundary 
conditions) defined by both, the characteristic frequency 
and the Biot number, because they affect the Green’s 
function (see Eq. (19)) through the coefficients es and σs. 

Now, how much influence does the Bis number in the 
thermal response? The answer is not obvious from the Eqs. 

(19) to (24), because the influence of Bis appear through the 
coefficient es, where the size of Bis is in somehow 
modulated by the thermal diffusion length, which is a 
function of the modulation frequency. In Fig. 5, different 
values of Bis number are used for the calculation of the 
temperature distribution (at z* = 0.5), and the results are 
compared to the solutions under Neumann boundary 
condition, in the relative frequency domain. 

 
 

 
 
FIGURE 5. Comparison of the behavior of: (a) Amplitude and (b) Phase of the temperature variations as function of relative frequency, for 
sinusoidal wave modulation. The black line represents the solutions under Neumann boundary conditions. The calculations under Robin 
boundary conditions were performed for different values of Bis: 0.05(red dotted line), 0.5 (blue line) and 5 (pink line).  
 
 
It can be viewed, from Fig. 5, that the solutions are quite 
much alike for small values of the Biot number, and as the 
values of Bis increases, the differences increases too 
(especially in the phase). This is the expected behavior 
since large values of Bis are related to a greater contribution 
of the convection and radiation terms to the heat flux. 
However, for sufficient larges values of the relative 
frequency, the calculations tend to equalize, supporting the 
earlier comments on the modulation of the influence of the 
Bis number by the relative frequency. 
 
 
V. CONCLUSIONS 
 
The comparison among the results obtained for the thermal 
response determined by the application of Dirichlet, 
Neumann and Robin boundary conditions show that the 
selection of a particular kind of boundary condition is 
definitive in the predicted behavior of the thermal response, 
being the calculated phase difference the clearest 
visualization of this influence. Each boundary condition 
should be consistent to a particular problem to be solved, 
since each of them demands physical conditions that can be 
fulfilled by one type of boundary conditions. Of course, 
there are other kinds of boundary conditions (like mixed 

boundary conditions, usually used in radial heat flux) 
consistent to different geometrical, environmental and 
physical conditions. However, the general expression for 
the Green function given in Eq.(11) are suitable to be used, 
as long the parabolic form of the heat diffusion equation is 
maintained, and from Eq. (8) other contributions, in 
addition to the phonon contribution can be included in the 
heat diffusion process. Also, is remarkable the relationship 
between the values of the Biot number and the 
characteristic frequency (through the relative modulation 
frequency) in the thermal response of a studied sample, 
when modulated excitation is used in problems where are 
considered convection and/or radiation contributions to the 
total heat flux, changing the definitions of the thermal 
regimes for a solid sample. 

 
 

ACKNOWLEDGMENTS 
 
This work was partially supported by Consejo Nacional de 
Ciencia y Tecnología (CONACYT), México, Secretaría de 
Investigación y Posgrado del Instituto Politécnico Nacional 
(SIP-IPN) and Comisión de Operación y Fomento de 
Actividades Académicas del Instituto Politécnico Nacional 
(COFAA-IPN), México. 



J. B. Rojas-Trigos and A. Calderón 

Lat. Am. J. Phys. Educ. Vol. 5, No. 4, Dec. 2011 719 http://www.lajpe.org 
 

 
 
REFERENCES 
 
[1] Incropera, F. P., De Witt, D. P., Bergman, T. L., Lavine, 
A. S., Introduction to heat transfer, (Wiley, New York, 
2006). 
[2] Carslaw, H. S., Jaeger, J. C., Conduction of heat in 
solids, (Clarendon Press, Oxford UK, 2000). 
[3] Mandelis, A., Diffusion-wave fields. Mathematical 
methods and Green functions, (Springer Verlag, New York, 
2001). 
[4] Ingle, J. D. J. and Crouch, S. R., Spectrochemical 
Analysis, (Prentice Hall, New Jersey, 1988). 
[5] Rojas-Trigos, J. B., Calderón, A. and Marín, E., A 
practical model for the determination of transport 
parameters in semiconductors, J. Mater. Sci. 46, 7799-7805 
(2011). 
[6] Calderón, A., Muñoz Hernández, R.A., Tomas, S.A., 
Cruz-Orea, A., Sánchez Sinencio, F., Method for 
measurement of the thermal diffusivity in solids: 

Application to metals, semiconductors, and thin materials, 
J. Appl. Phys. 84, 6327-6329 (1998). 
[7] Friedman, B., Principles and techniques of applied 
Mathematics, (Dover Publications Inc., New York, 1990). 
[8] Rosencwaig and Gersho, A. Theory of the 
Photoacoustic effect in solids, J. Appl. Phys. 47, 64-69 
(1976). 
[9] Rojas-Trigos, J. B., Calderón, A. and Marín, E., 
Thermal diffusivity measurement in solids by means of the 
Photoacoustic technique. Mater. Res. Soc. Symp. Proc. 
1242, 33-39 Materials Research Society (2010). 
[10] Salazar, A., Apiñaniz, E., Mendioroz, A. and Oleaga, 
A. A thermal paradox: which gets warmer? Eur. J. Phys. 
31, 1053-1059 (2010). 
[11] Marín, E., Lara-Bernal, A., Calderón, A. and Delgado-
Vasallo, O. On the heat transfer through a solid slab heated 
uniformly and continuously on one of its surfaces, Eur. J. 
Phys. 32, 783-791 (2011). 
[12] Rojas-Trigos, J. B., Bermejo-Arenas, J. A. and Marín, 
E. On heat transfer through a solid slab heated uniformly 
and periodically: determination of thermal properties, Eur. 
J. Phys. 33, 135-148 (2012). 

 


