FTIR and electrical characterization of a-Si:H layers deposited by PECVD at different boron ratios

A. Orduña-Diaza,*, C.G. Treviño-Palaciosa, M. Rojas-Lopezb, R. Delgado-Macuilb, V.L. Gayoub, A. Torres-Jacomea

a Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No. 1, Tonantzintla, Puebla 72840, Mexico
b Centro de Investigación en Biotecnología Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197, Mexico

\begin{abstract}
Hydrogenated amorphous silicon (a-Si:H) has found applications in flat panel displays, photovoltaic solar cell and recently has been employed in boron doped microbolometer array. We have performed electrical and structural characterizations of a-Si:H layers prepared by plasma enhanced chemical vapor deposition (PECVD) method at 540 K on glass substrates at different diborane (B\textsubscript{2}H\textsubscript{6}) flow ratios (500, 250, 150 and 50 sccm). Fourier transform infrared spectroscopy (FTIR) measurements obtained by specular reflectance sampling mode, show Si–Si, B–O, Si–H, and Si–O vibrational modes (611, 1300, 2100 and 150 and 500 cm−1 respectively) with different strengths which are associated to hydrogen and boron content. The current–voltage curves show that at 250 sccm flow of boron the material shows the lowest resistivity, but for the 150 sccm boron flow it is obtained the highest temperature coefficient of resistance (TCR).
\end{abstract}

1. Introduction

Hydrogenated amorphous silicon was first studied during the 1950s and 1960s. One of the interesting properties of this material is its disordered structure and the presence of hydrogen which passivates the dangling bonds changing the structural morphology. When using boron as impurity improves not only the electrical and optical properties \cite{1,2}, but also to tailor the properties of the deposited film for an specific application as in photodetectors \cite{3}, thin film transistors (TFTs) \cite{4–6}, solar cell fabrication \cite{7,8} and array of microbolometers \cite{9}. In these applications, the boron doping has to be optimized in order to meet the properties for which the amorphous semiconductor is going to be used. These properties are related to the carriers density, transport, generation and recombination such as dark conductivity, photoconductivity, density of gap stated, mobility, lifetime \cite{3,15}. Among the different methods for depositing hydrogenated amorphous silicon, we used plasma enhanced chemical vapor deposition \cite{10} at low frequency. Our material (a-Si:H) is a semiconductor material in which the band structure is characterized by smooth variation of the density of states with energy in the band-edge zones, called band tails, and a high density of states in the midgap region. If the mobility of carriers in the band tails is high enough, the conduction mechanism is dominated by carriers activated from the midgap states to these band tails. The conductivity of a-Si:H is usually thermally activated, at least over a limited temperature range and is described by Eq. (1).

\begin{equation}
\sigma(T) = \sigma_0 \exp \left(\frac{-E_a}{kT} \right) = \sigma_0 \exp \left(-\frac{E_{IR} - E_F}{kT} \right)
\end{equation}

where \(\sigma\) is the conductivity, \(E_a\) is the activation energy, \(K\) is Boltzmann’s constant, \(E_{IR}\) is defined as the average energy of the conducting electrons, \(\sigma_0\) is the conductivity prefactor, \(T\) is the temperature and \(E_F\) is the Fermi level.

We have analyzed the electric properties of layers of a-Si:H doped with different flows of diborane as a source of boron, while keeping constant all the other deposition parameters. The \(I–V\) curves were used to determine conductivity and by observing the vibrational modes through FTIR reflectance measurements \cite{11}; we correlate the presence of the different vibration associated to the various boron concentration and electrical properties observed for each case. This is relevant because in a PECVD deposited film, the resulting properties are not only function of the relative gas flow ratios of the reactants, but of all the depositing conditions, and a good figure of merit independent of the system like the vibrational modes. In this work the FTIR vibrational analysis is proposed as a reliable and fast tool for quantifying the desired properties adjustments of the B-doped a-Si:H.

2. Sample preparation

A set of a-Si:H films doped with boron (named samples A, B, C and D) were prepared in an AMP 3300 PECVD deposition system;