The total polyphenols and the antioxidant potentials of some selected cereals and pseudocereals

Sheila Gorinstein · Oscar J. Medina Vargas · Nicolas O. Jaramillo · Ines Arnau Salas · Alma Leticia Martinez Ayala · Patricia Arancibia-Avila · Fernando Toledo · Elena Katrich · Simon Trakhtenberg

Received: 18 April 2006 / Revised: 13 June 2006 / Accepted: 16 June 2006
© Springer-Verlag 2006

Abstract The objective of the present study was to investigate the effect of phenolic substances and proteins on the antioxidant potentials in some cereals and pseudocereals and to compare their bioactivity. The polyphenol dry matter extracts (PDME) from the investigated seeds of buckwheat, rice, soybean, amaranth and quinoa with 1.2 M HCl in 50% methanol/water (PDME50%HCl) exhibited higher inhibition of lipid peroxidation than the ones extracted with 50% methanol/water (PDME50%). and were comparable to the antioxidant activity of butylated hydroxyanisole at concentration of 0.2 mg mL⁻¹. The antioxidant activities of these seed extracts determined by 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate)-ABTS⁺⁺/K₂S₂O₈, β-carotene bleaching (β-carotene), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging methods showed high correlation coefficients (R²) such as 0.9515, 0.9058 and 0.8723, respectively, with the presence of total polyphenols estimated by Folin-Ciocalteu assay. These results indicate that the major antioxidant components in these extracts mostly derived from the polyphenols, and proteins showed only minimal values of bioactivity. Based on high contents of polyphenols, anthocyanins, flavonoids and their antioxidant activities pseudocereals such as buckwheat, quinoa and amaranth can be a substitute for cereals for common and atherosclerotic diets and sometimes in the allergic cases.

Keywords Seeds · Selected cereals · Pseudocereals · Antioxidants

Introduction

Celiac disease is owing to an intolerance of certain amino acid sequences of wheat gluten and corresponding fractions of other cereals. Certain cereals (rice, maize, sorghum and millet) and pseudocereals (amaranth, buckwheat and quinoa), rich in proteins and carbohydrates do not contain gluten. The grains and the products of these plants proofed their qualification and in some cases readiness for marketing was achieved [1, 2]. Therefore, in the last decade, the use

S. Gorinstein (✉) · E. Katrich
Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University-Hadassah Medical School, P.O. Box 12065, Jerusalem, 91120, Israel
e-mail: gorin@cc.huji.ac.il
Tel.: +972-2-6758690
Fax: +972-2-6757076

O. J. M. Vargas
Department of Food Chemistry, Universidad Pedagógica y Technológica de Colombia,
 Tunja, Colombia

N. O. Jaramillo
Facultad de Ciencias Exactas y Naturales, instituto de Biologia,
 Universidad de Antioquia,
 Medellin, Colombia

I. A. Salas
Centro de Investigacion de Bioquimica y Nutricion, Facultad de Medicina, Universidad Nacional Mayor de San Marcos,
 Lima, Peru

A. L. M. Ayala
Departamento de Biotecnologia, Centro de Desarrollo de Productos Bioticos, Instituto Politecnico Nacional,
 Morelos, Mexico

P. Arancibia-Avila · F. Toledo
Department of Basic Sciences, Universidad del Bio-Bio,
 Chillan, Chile

S. Trakhtenberg
Kaplan University Medical Center,
 Rehovot, Israel

© Springer