Morphological transformation and kinetic analysis in the aluminum-mediated a-Si:H crystallization

M. Rojas-López a,*, A. Orduña-Díaz a, R. Delgado-Macuil a, V.L. Gayou a, R.E. Pérez-Blanco b,c, A. Torres-Jacome c, J. Olvera-Hernández d

a Centro de Investigación en Biotecnología Aplicada (CIBA), IPN, Tlaxcala, Tlax. 72197, Mexico
b Universidad Autónoma de Ciudad Juárez, Cd. Juárez, Chih, A.P. 1594-D, Mexico
c Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Tonantzintla, AP 51 Puebla, Pue. CP 72000, Mexico
d Centro de Investigación en Dispositivos Semiconductores (CIDS), BUAP, Puebla, Pue. 72570, Mexico

Received 19 July 2005; received in revised form 9 November 2005
Available online 22 December 2005

Abstract

We analyzed the amorphous–crystalline morphological transformation of a-Si:H films caused by applying an annealing treatment to the Al/a-Si:H system at low temperature (250 °C) during several hours. Optical micrographs show the growth of Si nuclei formed on the amorphous matrix and also a t^2 dependence of the average area of these crystalline grains, which suggest a bidimensional growth. Also was investigated the growth kinetics in the μc-Si:H films considering the annealing time dependence of the crystalline fraction. The application of the Avrami equation showed a good description of the experimental results during this morphological and structural transformation. The low growth velocity measured $V_g = 7.2 \times 10^{-3} \mu m/min$ is a direct consequence of the low annealing temperature applied (250 °C), which reduces the silicon diffusion across the interface Al/a-Si:H. Infrared reflectance measurements show a relative diminishing of the intensity for Si–H wagging mode with annealing time, suggesting effusion of hydrogen to the surface of the μc-Si:H films.

© 2005 Elsevier B.V. All rights reserved.
PACS: 61.43.Dq; 78.30.Ly; 81.10.Jt

Keywords: Silicon; Crystal growth; Optical microscopy; Reflectivity; FTIR measurements

1. Introduction

The development of suitable preparation techniques for large-grained microcrystalline silicon (μc-Si:H) films on low-temperature substrates is an important challenge for the photovoltaic research in the next years. This material has a recognized technological importance because of their high conductivity and low activation energy of conductivity. Heavily phosphorous-doped μc-Si:H films are being widely used as an ohmic contact layer in thin film transistors (TFTs) [1]. Plasma enhanced chemical vapor deposition (PECVD) method is one of the most popular technique utilized to prepare μc-Si:H films [2]. However, μc-Si:H also can be obtained through the metal induced crystallization (MIC) effect [3]. It is well known that metal deposition onto the a-Si:H film and its subsequent annealing, induces microcrystallization [4]. In this process also has been observed the formation of c-Si grains with considerable grain growth when noble metals are present [5]. In these grains of micrometric length, the internal structure change from the amorphous to the microcrystalline phase resulting in an a–μc phase transition metal-induced. This a–μc phase transition, has been...