

No. 240 Serie: Azul Fecha: Diciembre 2008

Comparación de modelos de predicción de Series de Tiempo

M. A. Paredes-Farrera¹, E. Castillo-Montiel¹, K. Ramírez-Amaro², C. Bustillo-Hernández³, & J. Figueroa Nazuno⁴.

RESUMEN

La contaminación atmosférica en la ciudad de México, es un problema importante que ocasiona efectos negativos en la salud de la población. El Ozono (O_3) es uno de los principales contaminantes atmosféricos nocivos, que debido a sus características, afecta de manera directa al sistema respiratorio de los seres humanos. Es por ello, que la predicción de dicho contaminante se vuelve muy imprescindible, ya que esta permitiría crear mecanismos para alertar a la población y tomar medidas preventivas. El siguiente trabajo presenta un análisis matemático-computacional de la comparación de diferentes técnicas de predicción, aplicadas a datos de niveles de concentración de O_3 del Sistema de Monitoreo Atmosférico (SIMAT) tomados entre 1986 y el 2006 en la ciudad de México. Los resultados demuestran que es posible, hacer predicción con alto grado <u>de</u> precisión analizando un combinatorial de parámetros de entrada de algunas técnicas de predicción, con los datos reunidos por RAMA (Red Automática de Monitoreo Atmosférico).

Palabras Clave: Ozono, Predicción, Espacio de Fase, Series de Tiempo.

¹ Alumno de la Maestría en Ciencias de la Computación del Centro de investigación en Computación (CIC).

² Profesor-Investigador de la Escuela Superior de Cómputo (ESCOM) del Instituto Politécnico Nacional (IPN).

³ Alumno de la Escuela Superior de Cómputo (ESCOM) del Instituto Politécnico Nacional (IPN).

⁴ Profesor-Investigador del Centro de investigación en Computación (CIC).

ÍNDICE GENERAL

1	INTRODUCCIÓN	1
2	OZONO (O ₃)	2
	2.1 Sistema de Monitoreo Atmosférico (SIMAT)	3
	2.2 Red Automática de Monitoreo Atmosférico (RAMA)	3
	2.3 Normas Oficiales para la medición del O ₃	4
	2.4 Efectos en la salud	6
3	FUNDAMENTOS TEÓRICOS	7
	3.1 Sistemas Dinámicos	7
	3.2 Serie de Tiempo (ST)	7
	3.3 Espacio de fase	9
	3.3.1 Predicción en Espacio de Fase	11
4	MODELOS DE PREDICCIÓN	13
	4.1 Nearest Neighbor (NN)	13
	4.2 Locally Constant (LC)	13
	4.3 Kernel Regresión (KR)	14
	4.4 Locally Linear (LL)	14
	4.5 Locally Weight Linear (LWL)	14
	4.6 Radial Basis Function (RB)	15
	4.7 Método de evaluación de los predictores	15
	4.7.1 Raíz Cuadrada del Error Cuadrático Medio (RMSE)	15
	4.7.2 Raíz Cuadrada del Error Cuadrático Normalizado (NRMS)	16
5	METODOLOGÍA	16
	5.1 Intervalos de entrenamiento y predicción	16
	5.2 Parámetros del Espacio de Fase	17
	5.3 Opciones del modelo de predicción	17
	5.4 Metodología	17
6	ANÁLISIS DE RESULTADOS	18
7	CONCLUSIONES	22
8	REFERENCIAS	23

APENDICES

A, Gráficas y tablas de mediciones de O_3	26
B, Tablas de Resultados de los Experimentos	30
C, Gráficas de los experimentos	41

ÍNDICE DE TABLAS

N٥	Título	Pág.
1	Contaminantes medidos en la estación RAMA	3
2	Distribuciones de las concentraciones máximas diarias de O3, 1996- 2006. Se observa en color gris el intervalo de medición que mostró el mayor número de días en el año	5
3	Condiciones en las cuales una persona empieza a manifestar efectos agudo en su salud	6
4	Distancias utilizadas en los experimentos, con su respectiva abreviatura	13
5	Opciones del número de vecinos disponibles	13
6	Opciones de kernel disponibles	14
7	Opciones de función local disponibles para el predictor LWL	15
8	Combinación de los mejores modelos de predicción y los errores obtenidos	20
A1	Distribución de las concentraciones máximas diarias de Ozono (O_3) de los años de 1986 a diciembre de 2006	29
B1	Resultados con el predictor Kernel Regresion (KR)	31
B2	Resultados con el predictor Locally Weigth Linear (LWL)	34
B3	Resultados con el predictor Nearest Neighbor (NN)	37
B4	Resultados con el predictor Locally Constant (LC)	37
B5	Resultados con el predictor Locally Linear (LL)	38
B6	Resultados con el predictor Radial Basis (RB)	39

ÍNDICE DE FIGURAS

N٥	Título	Pág.
1	Molécula de O_3 , que es un gas formado por 3 átomos de Oxígeno	2
2	Diferentes distribuciones del O_3 de acuerdo a la altura donde se encuentra en la atmósfera	2
3	Mapa de localización para la estación Merced, que se encuentra ubicada en la zona centro del Distrito Federal	4
4	Planta dañada por O3 (izquierda) y planta normal (derecha)	6
5	Serie de Tiempo de la función Seno	7
6	Ejemplo de la reconstrucción de la trayectoria en el espacio de fase. Como se puede observar, es posible pasar de la serie de tiempo al espacio fase y viceversa.	9
7	Ejemplo de la reconstrucción del espacio de fase con la técnica Tiempo de retardo de Takens	10
8	Gráfica de la serie \vec{X}_N , donde n son los intervalos de tiempo y \vec{X}_N el valor medido en ese intervalo de tiempo	10
9	Transformación de la serie \vec{X}_N , con dimensión embebida $m = 2$ y $h = 1$	10
10	Metodología para la predicción de los datos en espacio de fase	12
11	Metodología general de la experimentación para la predicción del O ₃	18
12	Resultado de la combinación NN, distancia BC	19
13	Resultados de la combinación: predictor NN, distancia E (izq) y distancia MN (der)	19
14	Resultados de la combinación: predictor RB, Función Local L, distancia E, vecindad 6 (izq) y función C, distancia E y vecindad 6 (der)	20
15	Resultado de la combinación LWL, Kernel B, distancia E y vecindario de 6 (izq); la misma combinación de parámetros, pero con vecindario de 21 (der)	21
A1	Máximo diario de Ozono (O_3) de los años de 1986 a diciembre 2006	27
A2	Distribución del máximo diario de Ozono (O ₃) de los años de 1986 a diciembre 2006	28
C1	Exp 280, Predictor: Nearest Neighbor	42
C2	Exp 282, Predictor: Nearest Neighbor	42
C3	Exp 281, Predictor: Nearest Neighbor	42
C4	Exp 284, Predictor: Nearest Neighbor	42

C5	Exp 325, Predictor: Radial Basis	43
C6	Exp 345, Predictor: Radial Basis	43
C7	Exp 349, Predictor: Radial Basis	43
C8	Exp 369, Predictor: Radial Basis	43
C9	Exp 307, Predictor: Locally Linear	44
C10	Exp 305, Predictor: Locally Linear	44
C11	Exp 315, Predictor: Locally Linear	44
C12	Exp 319, Predictor: Locally Linear	44
C13	Exp 288, Predictor: Locally Constant	45
C14	Exp 289, Predictor: Locally Constant	45
C15	Exp 299, Predictor: Locally Constant	45
C16	Exp 300, Predictor: Locally Constant	45
C13	Exp 19, Predictor: Kernel Regression	46
C14	Exp 20, Predictor: Kernel Regression	46
C15	Exp 95, Predictor: Kernel Regression	46
C16	Exp 115, Predictor: Kernel Regression	46
C17	Exp 148, Predictor: Locally Weight Linear	47
C18	Exp 182, Predictor: Locally Weight Linear	47
C19	Exp 264, Predictor: Locally Weight Linear	47
C20	Exp 217, Predictor: Locally Weight Linear	47

1 INTRODUCCIÓN

La contaminación atmosférica es la presencia en el aire de uno o más contaminantes o la combinación de éstos [12]. Los contaminantes atmosféricos que afectan el bienestar y la salud humana, cuentan con criterios para establecer o revisar límites máximos permisibles para los seres vivos; estos son denominados contaminantes atmosféricos criterio. Este término es adoptado de la definición que hace la Agencia de Protección Ambiental de los Estado Unidos (US EPA, por sus siglas en inglés) [13].

Los contaminantes criterio son: Ozono (O_3), Dióxido de Azufre (SO_2), Monóxido de Carbono (CO), Dióxido de Nitrógeno (NO_2), Plomo (Pb), y partículas suspendidas (cualquier material sólido o líquido con un diámetro que oscila entre 0.0002 y 500 micrómetros (μ m), que en conjunto se designan como Partículas Suspendidas Totales o PST) [13].

El O_3 es uno de estos contaminantes que afectan de manera directa a la población ya que es altamente oxidante, afectando materiales orgánicos e inorgánicos, siendo ésta una de las razones que hace necesaria la predicción de este contaminante para así poder tomar medidas preventivas y de ser posible alertar a la población [3].

Debido a lo anterior, uno de los objetivos de este trabajo es evaluar algunos modelos de predicción aplicados a datos de niveles de concentración de O_3 de la ciudad de México. Dichos datos fueron recopilados de la estación Merced, que pertenece al Sistema de Monitoreo Atmosférico (SIMAT) subred RAMA. Los datos recolectados comprenden desde el año de 1986 al 2006. A dicho conjunto de datos medidos de manera experimental, se les llama Series de Tiempo (ST).

Las técnicas de predicción buscan extraer la mayor cantidad de información en el proceso de aprendizaje sobre la dinámica de la ST y posteriormente, predecir el comportamiento de ésta [1]. Los modelos de predicción utilizados en este trabajo mapean los datos de la ST al espacio de fase. La ventaja de utilizar esta representación es que se conserva la dinámica del sistema, aún cuando desaparece el eje del tiempo. La metodología presentada en este trabajo no solo es aplicable a la predicción del O_3 , si no que es posible generalizarlo a otras ST.

El presente trabajo cuenta con 7 secciones distribuidas de la siguiente forma: en la sección 2, se explica lo que es O_3 , los efectos negativos que pueden presentar las personas al estar expuesto a este contaminante; también se explica el sistema de monitoreo por el cual este contaminante es medido. En la sección 3, se da una breve descripción sobre algunos fundamentos teóricos que fueron necesarios tomar en cuenta para la realización del presente trabajo.

En la sección 4, se definen los modelos de predicción empleados y la definición de los errores RMSE y NRMS, utilizados para evaluar los modelos. La metodología implementada para la predicción de la ST es descrita en la sección 5. El análisis de los resultados se describe en la sección 6 y por último, en la sección 7 se escriben las conclusiones del trabajo.

2 OZONO (O₃)

El O₃ es un gas formado por tres átomos de Oxígeno (O₂), que se forma al disociarse los 2 átomos que componen al gas de Oxígeno (ver Fig. 1) y reacciona por la acción de la luz solar. El O₃ a temperatura y presión ambientales es un gas color ocre e incoloro, que en grandes concentraciones puede volverse azulado.

Figura 1. Molécula de O₃, que es un gas formado por 3 átomos de Oxígeno.

En la estratosfera (entre 12 y 50 Km. a partir del suelo), el O_3 se encuentra en forma natural de Oxígeno, creando una capa protectora que rodea a la tierra, que la protege de la radiación solar ultravioleta y de otras partículas energéticas. A esta capa se le conoce como ozonósfera o capa de ozono (ver Fig. 2).

Sin embargo, en la troposfera (de 0 a 12 Km. a partir de la superficie terrestre), el O_3 se produce por la reacción fotoquímica de Óxidos de Nitrógeno (NOX) y compuestos orgánicos volátiles, que reaccionan con la luz solar, produciendo un átomo libre de Oxígeno (O_2) el cual se asocia a un átomo de Oxígeno (O_2), formando así el O_3 . Este proceso está condicionado a la intensidad de la radiación solar.

Figura 2. Diferentes distribuciones del O₃ de acuerdo a la altura donde se encuentra en la atmósfera.

2.1 Sistema de Monitoreo Atmosférico (SIMAT)

México cuenta con organizaciones que vigilan y evalúan la calidad del aire, como medida de prevención y protección de la salud de los habitantes. Una de estas organizaciones es el Sistema de Monitoreo Atmosférico de la Ciudad de México (SIMAT). El SIMAT se encarga de vigilar y evaluar el estado de la calidad del aire⁵ para informar oportunamente a los habitantes y fortalecer la toma de decisiones en programas de prevención y mejoramiento de la calidad del aire [29].

Ésta realiza mediciones de O_3 usando la medida de partes por millón (ppm), que es la unidad de medición utilizada para conocer concentraciones diminutas de elementos presentes por unidad de volumen. Para el O_3 su equivalente en unidades de peso por volumen es igual a 1,960 microgramos por metro cúbico, a 25° C de temperatura con una atmósfera de presión [15].

El SIMAT está integrado por 4 subsistemas especializados, que son:

- RAMA: Red Automática de Monitoreo Atmosférico.
- REDMA: Red Manual de Monitoreo Atmosférico.
- REDDA: Red de Depósito Atmosférico.
- REDMET: Red Meteorológica.

El subsistema que se utilizará en este trabajo es RAMA, que es el encargado de realizar las mediciones de los contaminantes (entre ellos el O_3).

2.2 Red Automática de Monitoreo Atmosférico (RAMA)

La RAMA es uno de los subsistemas del SIMAT, que cuenta con analizadores para contaminantes específicos, que operan en base a las propiedades fisicoquímicas de cada contaminante. En la Tabla 1, se encuentran algunos de los contaminantes que mide dicha red.

Ozono (O ₃)
Óxidos de Nitrógeno (NO, NO ₂ , NOx)
Dióxido de Azufre (SO ₂)
Monóxido de Carbono (CO)
Partículas menores a 10 micrómetros (PM10)
Partículas menores a 2.5 micrómetros (PM2.5)
Ácido Sulfhídrico (H2S)

 Tabla 1. Contaminantes medidos en el subsistema RAMA.

⁵ Calidad del aire: características del aire ambiente con relación al tipo de sustancias, la concentración de las mismas y período en que se presentan en un lugar y tiempo determinado [13].

La RAMA cuenta con 36 estaciones de monitoreo ubicadas en lugares estratégicos de la Ciudad de México. Veinticuatro de las estaciones están localizadas en el Distrito Federal y 12 en el Estado de México. Entre ellas se encuentra la estación Merced (ver Fig. 3); estación de la cual se tomaron los datos para la elaboración del presente trabajo. Se seleccionó está estación por su ubicación estratégica dentro de la Ciudad de México y es la que posee datos históricos desde 1986.

Figura 3. Mapa de localización para la estación Merced, que se encuentra ubicada en la zona centro del Distrito Federal.

La información que proporciona cada una de las estaciones, es primordial en la evaluación oportuna de la calidad del aire en la ciudad y es difundida, a través del Índice Metropolitano de la Calidad del Aire (IMECA). Este índice es un valor de referencia para que la población conozca los niveles de contaminación prevalecientes en su zona de residencia, de manera precisa y oportuna, para que tome las medidas pertinentes de protección [16].

Cuando el IMECA de cualquier contaminante rebasa alguna norma oficial, es necesario alertar a la población y/o aplicar algún programa de prevención y mejoramiento de la calidad del aire.

2.3 Normas Oficiales para la medición del O₃.

Una norma oficial es una regulación técnica, expedida por dependencias competentes u organismos nacionales o internacionales que en términos de la ley establezcan reglas que se refieren a su cumplimiento o aplicación. Las normas oficiales ambientales en las cuales se encuentra regulado el O_{3} , establecen los criterios para evaluar la calidad del aire ambiente con respecto a dicho contaminante.

La Norma Oficial Mexicana NOM-020-SSA1-1993, sobre salud ambiental, establece los valores permisibles de concentración de O_3 en el aire ambiente⁶ para la protección de la salud humana [15].

⁶ Aire ambiente: a la mezcla de elementos y compuestos gaseosos, líquidos y sólidos, orgánicos e inorgánicos, presentes en la atmósfera [13].

Esta norma establece como límite de protección a la salud, una concentración de 0.11 ppm promedio de una hora, la cual puede rebasarse una vez al año en un período de tres años.

De los datos obtenidos de la estación Merced para el contaminante O_3 , se observó que entre los años 1986 y 1999 esta norma fue rebasada en más del 90% de las veces (ver Tabla 2). En la Tabla 2, se encuentra el número de días por año que rebasaron el límite permitido de 0.11 ppm; además, se puede observar que la cantidad de días que rebasaron dicha norma han ido disminuyendo de 317 en el año de 1996, hasta llegar a 209 en el año 2006.

Los intervalos de concentración de O_3 , en los cuales se encuentra el mayor número de días también han ido disminuyendo aunque, el número de días ha ido en aumento. Por ejemplo, de 1996 a 1999 el intervalo de 0.171 a 0.202 es el que tiene un mayor número de días, con valores entre 77 a 87 días.

Mientras que, del 2004 al 2006 el intervalo con mayor número de días es el de 0.055 a 0.110, y el número de días se encuentra entre los valores de 117 a 125 días. En el anexo A, Tabla A1 se encuentra la tabla completa de las distribuciones de O_3 desde el año 1986 hasta el 2006.

Intervalo	1000	4007	4000	4000		0004			0004	0005	
año	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
(0.0, 0.055] ppm	8	11	12	25	6	18	18	18	24	26	31
(0.055, 0.110] ppm	41	43	48	54	52	74	66	94	117	118	125
(0.110, 0.141] ppm	33	51	52	45	56	76	82	97	116	110	122
(0.141, 0.171] ppm	67	77	62	68	102	86	104	107	76	83	74
(0.171, 0.202] ppm	87	86	77	84	90	77	59	41	31	25	12
(0.202, 0.208] ppm	16	19	18	15	13	8	5	0	0	2	0
(0.208, 0.233] ppm	57	40	46	47	37	20	23	7	2	1	1
(0.233, 0.257] ppm	30	19	31	19	7	4	7	1	0	0	0
(0.257, 0.282] ppm	19	15	14	5	3	2	0	0	0	0	0
(0.282, 0.294] ppm	5	2	2	1	0	0	1	0	0	0	0
(0.294, 0.355] ppm	3	2	3	2	0	0	0	0	0	0	0
> 0.355 ppm	0	0	0	0	0	0	0	0	0	0	0
Días arriba del valor límite (0.110 ppm)	317	311	305	286	308	273	281	253	225	221	209

 Tabla 2. Distribuciones de las concentraciones máximas diarias de O₃, 1996-2006. Se observa en color gris el intervalo de medición que mostró el mayor número de días en el año.

La mayoría de los estudios realizados para evaluar el efecto del O_3 en la salud de la población expuesta a este contaminante, indican que produce una variedad de efectos agudos (graves y de corta duración) y probablemente crónicos (de larga duración o habituales) [17].

Sin embargo, aún cuando las concentraciones de O_3 son menores, es decir de 0.08, ppm, también causan un efecto agudo en las personas si estas tienen una exposición prolongada o una actividad moderada o baja. Y en concentraciones de 0.12 ppm en adelante, cuando las personas realizan alguna actividad moderada o intensa (ver Tabla 3). En relación con los efectos crónicos, aún no existe evidencia concluyente.

Contaminante	Concentración (ppm)	Actividad		
0	Iguales o mayores a 0.12 ppm	Ejercicio moderado o intenso		
O_3	0.08 ppm (exposiciones prolongadas)	Ejercicio moderado o bajo		

 Tabla 3. Condiciones en las cuales una persona empieza a manifestar efectos agudos en su salud.

2.4 Efectos en la salud

Es importante mencionar que aún cuando el O_3 es indispensable en la tierra, cuando baja a nivel de la superficie (troposfera) es uno de los principales contaminantes nocivos. Éste produce ciertos efectos negativos en la salud de los seres vivos, ya que es altamente oxidante afectando a los tejidos vivos (ver Fig. 4); además de que se asocia con diversos padecimientos en la salud humana.

Figura 4. Planta dañada por O₃ (izquierda) y planta normal (derecha).⁷

Personas que viven expuestas a concentraciones altas de O_3 , presentan diversos síntomas como son: irritación ocular, de nariz y garganta, tos, dificultad y dolor durante la respiración profunda, opresión en el pecho, náuseas y dolor de cabeza. Diversos estudios realizados en animales muestran que los daños producidos por este contaminante sobre el pulmón en distintas especies, son similares, además de que la respuesta depende fundamentalmente de la dosis de exposición [15]. Existen individuos más sensibles que otros a este contaminante y tanto los síntomas como los daños pueden variar según algunas condiciones, como las que se mencionan en la norma oficial.

Entre los grupos de la población con mayor susceptibilidad por exposición a concentraciones de O₃ destacan[20]:

• *Niños y adultos mayores*: Grupo más vulnerables a los efectos del O₃ debido a la susceptibilidad de su sistema inmunológico.

⁷ Imagen cortesía de Gene Daniels/U.S. EPA, obtenida de http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=1119. Último acceso: 28, Agosto de 2008.

- Personas con enfermedades respiratorias: El estado de salud de este grupo de población puede empeorar si padecen enfermedades crónicas, como son enfisema pulmonar y bronquitis. Por su misma condición, sienten los efectos del O₃ incluso antes que las personas consideradas sanas. En personas que padecen enfisema pulmonar, la exposición a concentraciones entre 0.1 y 0.15 ppm disminuye el consumo y la cantidad de oxigeno arterial. En personas asmáticas se presentan ataques en días con concentraciones superiores a 0.13 ppm [20].
- Personas que realizan actividades al aire libre: Considerado un grupo potencial para padecer los efectos causados por la exposición al O₃. Algunas personas consideradas sanas pueden ser más susceptibles que otras. La exposición a concentraciones de 0.05 ppm provoca disminución en capacidad pulmonar y concentraciones de 0.03 ppm por períodos de 8 horas a en cualquier persona presentan irritación nasal y de garganta. En atletas la exposición a concentraciones de 0.3 durante una hora reduce su condición física [20].

3 FUNDAMENTOS TEÓRICOS

3.1 Sistemas Dinámicos

Los sistemas dinámicos son objetos matemáticos utilizados para modelar fenómenos físicos cuyos estados cambian con el tiempo. Dichos modelos son utilizados en predicciones financieras y económicas, modelos ambientales, diagnósticos médicos, diagnóstico de equipo industrial, entre otras aplicaciones

3.2 Serie de Tiempo (ST)

Una forma de estudiar los sistemas dinámicos es utilizando una ST que es una secuencia en el tiempo de valores del sistema x(t) que registra una secuencia de valores experimentales $x(t_1), x(t_2), x(t_3), ..., x(t_N)$ para un intervalo de tiempo t = N con $t_1 < t_2 < t_3 < ... < t_n$. Es decir, una ST es un conjunto de datos numéricos obtenidos a partir de una observación experimental de algún sistema dinámico, o mediante el cálculo numérico de las ecuaciones que lo generan (en el caso particular que sea posible calcular su solución). Un ejemplo de una ST se puede observar en la Fig. 5.

Figura 5. Serie de tiempo de la función Seno.

Las ST contienen información sobre las variables independientes de un sistema que determinan su dinámica. La extracción de esta información es un problema que se estudia mediante el análisis (caracterización), predicción y modelado de las ST.

De manera más general, los sistemas dinámicos están compuestos de tres partes[23]. La primera parte es el estado de un sistema, el cual es una representación de toda la información

sobre el sistema en algún momento en particular en el tiempo. En general, el símbolo $\vec{X}(t)$:

$$\vec{X}(t) = [x_1(t), ..., x_m(t)]$$
 (Ec. 3.1)

será utilizado para denotar el estado de un sistema en el tiempo t, donde m representa la dimensión del vector [23], [24], [25].

La segunda parte es el espacio de fase de un sistema. Éste es un conjunto que contiene todos los estados posibles al cual un sistema puede estar asignado. El símbolo Ω es utilizado para denotar el espacio de fase de un sistema dinámico y $\vec{X}(t) \in \Omega$

La tercera parte es la función de estado-transición, la cual es utilizada para actualizar y cambiar

el estado de un momento a otro. El símbolo T es utilizado para denotar la función de estadotransición que mapea un estado inicial, $\vec{X}(t)$ después de un período de tiempo h en un nuevo estado $\vec{X}(t+h)$:

$$\vec{X}(t+h) = T\left(\vec{X}(t), t, t+h\right)$$
(Ec. 3.2)

Sin importar qué función de estado-transición es asumida para ser una función diferenciable del tiempo, es posible definir un generador local como la siguiente derivada:

$$\frac{dT}{dt} = \lim_{h \to 0} \left(\vec{X}(t+h) - \vec{X}(t) \right) / h = f\left(\vec{X}(t), t \right)$$
(Ec. 3.3)

En resumen, dado un estado inicial $\vec{X}(0)$, el generador local es usado para generar una trayectoria, $\vec{X}(t)$ para todo t > 0. Suponiendo que el generador local cumpla con ciertas propiedades de suavidad, entonces, se garantiza que dicho generador local produce una única trayectoria desde alguna posición inicial. El objetivo del análisis de los sistemas dinámicos es entender todas las posibles trayectorias producidas por el generador local [23].

3.3 Espacio de fase

La ST de un sistema es una estructura de información a partir de la cual es posible recuperar la información necesaria para reconstruir la trayectoria dinámica del sistema, al menos de forma parcial. Lo anterior fue demostrado matemáticamente por Whitney en 1934 [26].

Posteriormente F. Takens en 1980, propuso y demostró una función para la reconstrucción de la trayectoria del atractor en el espacio fase a partir del embebido (*embedding*) de la ST (ver Fig. 6)[28].

Figura 6. Ejemplo de la reconstrucción de la trayectoria en el espacio de fase. Como se puede observar, es posible pasar de la serie de tiempo al espacio fase y viceversa.

La dinámica del sistema puede ser descrito como una trayectoria $\vec{X}_i \in R^m (i = 1, ..., N)$ en un espacio de fase *m*-dimensional [5]. Un método frecuentemente utilizado para la reconstrucción de la trayectoria \vec{X}_i , es el método de tiempo de retardo de Takens:

$$\vec{X} = (x(t_i), x(t_{i+h}), ..., x(t_{i+(m-1)h}))$$
 (Ec. 3.4)

donde:

m es la dimensión embebida que determina el número de los componentes en el vector reconstruido del estado del sistema. El método que empleamos para definir la dimensión embebida es Falsos Vecinos Cercanos (False Nearest Neighbor, FNN).

h el tiempo de retardo que determina la separación temporal de los componentes en el vector reconstruido del estado del sistema. El método utilizado en este trabajo para su cálculo es Información Mutua (Average Mutual Information).

La preservación de las estructuras topológicas de la trayectoria original está garantizada si $m \ge 2d + 1$, donde *d* representa la dimensión de la dinámica del sistema (ver Figura 7) [28].

Figura 7. Ejemplo de la reconstrucción del espacio de fase con la técnica Tiempo de retardo de Takens.

Si contamos con la siguiente ST $\vec{X}_N = [1, 4, 8, 2, 7, 6, 2, 3, 5]$ (ver Fig. 8). El espacio de fase, para una dimensión embebida m = 2 y h = 1 será (ver Fig. 9) y corresponde a los siguientes vectores:

$$\Omega = \begin{pmatrix} 1 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 8 \end{pmatrix}, \begin{pmatrix} 8 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \end{pmatrix}, \begin{pmatrix} 7 \\ 6 \end{pmatrix}, \begin{pmatrix} 6 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 (Ec. 3.5)

Figura 8. Gráfica de la serie $\vec{X}(t_N)$, donde N son los intervalos de tiempo y $\vec{X}(t_N)$ el valor medido en ese intervalo de tiempo.

Figura 9. Transformación de la serie $\vec{X}(t_N)$ con dimensión embebida m = 2 y h = 1.

3.3.1 Predicción en Espacio de Fase

La predicción en el espacio de fase consiste en estimar trayectorias que describen el comportamiento de un sistema; para predecir el punto $x(t_{N+1})$, se determina el último estado del sistema conocido representado por la ecuación 3.4.

El siguiente paso será buscar en la serie de tiempo *k* estados similares que hayan ocurrido en el pasado, donde "similar" es determinado por la distancia entre el vector \vec{X} y su vector vecino \vec{X} ' en la m-dimensión del espacio de fase. Si la señal observada fue generada por algún mapeo:

$$[x(t_N), x(t_{N-h}), x(t_{N-2h}), x(t_{N-(m-1)h})] = x(t_{i+(m-1)h})$$
(Ec. 3.6)

Este mapeo puede ser recuperado (reconstruido) de los datos buscando su comportamiento en el vecindario de \vec{X} . Se encontró la aproximación de dicho mapeo M mediante el ajuste de un polinomio (de orden bajo) el cual mapea k vecinos cercanos (estados similares) de \vec{X} , sobre sus valores inmediatos. Ahora podemos usar este mapeo para predecir $x(t_{N+1})$.

En otras palabras, podemos hacer la suposición de que M está ajustado aproximadamente a \vec{X} , y si un estado:

$$\vec{X}' = \left[x'(t_N), x'(t_{N-h}), x'(t_{N-2h}), x'(t_{N-(m-1)h}) \right]$$
Ec. 3.7)

se encuentra en el vecindario de \vec{X} , éste resulta similar al punto $x'(t_{N+1})$ en el pasado, entonces el punto $x(t_{N+1})$ a predecir, debe estar en algún lugar cercano a $x'(t_{N+1})$.

Un esquema general de la metodología para la predicción de una ST en espacio de fase, puede ser observada en la Figura 10.

Figura 10. Metodología para la predicción de los datos en espacio de fase

4 MODELOS DE PREDICCIÓN

Los modelos de predicción empleados en el presente trabajo, los cuales realizan la predicción mediante la reconstrucción del espacio de fase son:

- Nearest Neighbor.
- Locally Constant.
- Kernel Regression.
- Locally Linear.
- Locally Weight Linear.
- Radial Basis Function.

Los cuales serán descritos a continuación.

4.1 Nearest Neighbor (NN)

Es un método estadístico que no supone a priori ninguna distribución sobre los datos a modelar. Cada dato es clasificado calculando la distancia del vecino más cercano a algún otro dato (solo uno) que haya sido entrenado [21]. Las opciones de este predictor son las siguientes distancias:

Distancia	Abreviatura
Euclidean	E
Manhattan	М
Max Norm	MN
By Cosine	BC
By Correlation	BCR

Tabla 4. Distancias utilizadas en los experimentos, con su respectiva abreviatura.

4.2 Locally Constant (LC)

Esta técnica hace aproximaciones locales de la dinámica mediante una constante. Para realizar los experimentos con este predictor se escoge cualquiera de las distancias que se encuentran en la Tabla 5 y un número de vecinos. Entre las opciones de vecinos tenemos:

Tabla 5. Opciones del número de vecinos disponibles

No. de vecinos				
6				
11				
16				
21				

El número de experimentos con este predictor es el número de combinaciones obtenidas del número de distancias (ver Tabla 4) y el número de opciones de No. de vecinos (ver Tabla 5).

4.3 Kernel Regression (KR)

Es una técnica de estimación para ajustar los datos. Dado un conjunto de ellos (x, y) la idea es encontrar una función f(x, w) tal que esta función sea la que mejor se ajuste a los datos y con ello extrapolar los datos de la función obtenida para realizar una predicción.

El modelo de predicción Kernel Regression es considerado como no paramétrico ya que no asume una distribución para estimar la función de regresión. La idea del Kernel regression es asignar a cada vecino una función de distribución local para cada punto observado. El kernel asigna pesos a cada localización basada en la distancia de cada punto y el cálculo de la distribución puede llevarse acabo con alguno de los 8 kernels siguientes [22]:

Kernel	Abreviatura
Epanechnikov	EK
Gaussian	G
Tricube	В
Bisquare	TC
Exponencial	EX
Inverse	IN
Triangular	TR

Tabla 6. Opciones de Kernel disponibles.

Para realizar los experimentos con este predictor, se selecciona un kernel (cualquiera de las 7 opciones que se encuentran en la Tabla 6), una distancia (ver Tabla 4) y un número de vecinos (ver Tabla 5).

4.4 Locally Linear (LL).

Es un algoritmo de aprendizaje no supervisado capaz de descubrir la estructura global de superficies (manifolds) no lineales. LL utiliza simetrías locales y reconstrucciones lineales para calcular dimensiones menores. Para realizar los experimentos con este predictor, solo se selecciona una distancia (ver Tabla 4) y un número de vecinos (ver Tabla 5).

4.5 Locally Weighted Linear (LWL).

Este modelo es parametrizado y posee una memoria que permite la regresión alrededor de un punto estudiado usando solo los datos de entrenamiento de forma "local" a cada punto. Su objetivo es aproximarse usando funciones lineales a la función requerida. Para lo cual se requiere de un Kernel, que es una función de distancia usada para determinar el peso de cada caso durante el entrenamiento.

Es posible escoger uno de los 7 kernels (ver Tabla 6), una de las 5 distancias (ver Tabla 4) y un número de vecinos (ver Tabla 5).

4.6 Radial Basis Function (RB).

Es un paradigma neuro-computacional que utiliza una función local. Está técnica puede usar cualquiera de las funciones locales que se pueden observar en la Tabla 7. La clave para una implementación exitosa de este tipo de redes es encontrar los centroides adecuados para las funciones locales. La ventaja de la red neuronal RB es encontrar el mapeo de entrada-salida usando aproximadores locales. Usualmente el segmento supervisado es simplemente una combinación lineal de aproximadores.

Función local	Abreviatura		
Linear	L		
Cubic	С		
Thin Plate Spline	TPS		
Gaussian	G		
Multicuadratic	М		

Tabla 7. Opciones de función local disponibles para el predictor LWL

Para realizar los experimentos, además de seleccionar una Función local (ver Tabla 7), es necesario también seleccionar una distancia (ver Tabla 4) y una opción de vecinos (ver Tabla 5).

Existen diversas fórmulas para cuantificar el error en la predicción de ST, que van desde las tradicionales, hasta las especializadas definidas en función del tipo de técnica utilizada para predecir. Para evaluar los modelos de predicción descritos anteriormente, se utilizaron dos tipos de errores los cuales se describen a continuación.

4.7 Método de evaluación de los predictores

4.7.1 Raíz Cuadrada del Error Cuadrático Medio (RMSE):

Éste error representa la medida típica del error de predicción y realiza un promedio sobre el conjunto de datos predichos [6] y [7], es decir, obtiene un error de manera global y está definido como:

$$RMSE = \left[\frac{1}{L}\sum_{i=1}^{L} (x_i^p - x_i^o)^2\right]^{\frac{1}{2}}$$
(Ec. 4.1)

donde:

- *L* es el número de datos predichos (y es L = N + l donde *N* es el numero de puntos en la ST y *l* es el horizonte de la predicción)
- x_i^P corresponde al i-ésimo dato predicho,
- x_i^o corresponde al i-ésimo dato original y

4.7.2 Raíz Cuadrada del Error Cuadrático Normalizado (NRMS)

Este obtiene un error normalizado y esta definido como:

$$NRMS = \left[\frac{\sum_{i=1}^{L} (x_i^{p} - x_i^{o})^{2}}{\sum_{i=1}^{L} (x_i^{o} - x^{o})}\right]^{\frac{1}{2}}$$
(Ec. 4.2)

donde:

- *L* es el número de datos predichos (y es L = N + l donde *N* es el numero de puntos en la ST y *l* es el horizonte de la predicción)
- x_i^P corresponde al i-ésimo dato predicho,
- x_i^o corresponde al i-ésimo dato original y
- x^{o} es la media del conjunto de datos originales.

Por definición, el valor mínimo esperado de dichas métricas de predicción y los errores calculados es cero, lo que significa que hubo un ajuste exacto entre los valores actuales y los predichos. Por otro lado, mientras mayor sea el valor de los errores más deficiente es la predicción.

5 METODOLOGÍA

Para realizar los experimentos con los modelos de predicción descritos en el capitulo anterior, se dividió la metodología de la experimentación en tres etapas diferentes, las cuales son:

- 1) Intervalos de entrenamiento y predicción,
- 2) Parámetros del espacio de fase y
- 3) Selección del modelo de predicción y sus respectivos parámetros.

Cada una de las partes mencionadas será descrita en las siguientes sub-secciones.

5.1 Intervalos de entrenamiento y predicción

Los datos obtenidos de la red de monitoreo RAMA se concatenaron cronológicamente en una ST. Esta serie se dividió en dos conjuntos de datos diferentes. La primera parte es usada para ajustar el modelo, es decir, se utiliza como conjunto o datos de entrenamiento. Esta sección corresponde a los primeros puntos de la ST (aproximadamente el 99% del total de la ST).

La segunda parte se utilizó para la validación del modelo, esto es, el conjunto o datos de prueba compuesto de aproximadamente los últimos tres días (54 datos) de la ST para realizar la predicción.

5.2 Parámetros del espacio de fase

Para representar una ST al espacio de fase, como ya se explico anteriormente, se requieren dos parámetros, la dimensión embebida y el tiempo de retardo. Para la ST de O_3 dichos parámetros fueron calculados, obteniendo como valor óptimo de la dimensión 5 y tiempo de retardo óptimo de 13.

5.3 Opciones del modelo de predicción

Como se ha explicado brevemente en secciones anteriores, para realizar los experimentos, primero se selecciona alguno de los predictores, que son: NN, LC, KR, LL, LWL, y RB. Si el predictor tiene algún parámetro alterno (Kernel o Función Local), como el caso de KR y LWL se debe seleccionar el Kernel o la Función Local con el cual va a trabajar el predictor.

Cada modelo de predicción, utiliza un parámetro de distancia el cual mide la cercanía entre dos vectores (estados del sistema). Es posible elegir una de las cinco métricas de distancia disponibles: E, M, MN, BC y BCR.

Los modelos de predicción descritos, a excepción de excepto NN, utilizan además otro parámetro que controla el tamaño del vecindario en el cual se buscarán los vecinos cercanos. Se hicieron pruebas para este trabajo con cuatro vecindarios diferentes: 6, 11, 16 y 21.

5.4 Metodología

Para realizar cada experimento, fue necesario seleccionar, el predictor y su kernel en caso de que el predictor tenga esta opción; también se selecciona la distancia y el tamaño del vecindario. En sí, los experimentos son un combinatorial entre los predictores y sus parámetros, es decir, distancias y vecinos.

Como se muestra en la Fig. 9, al introducir los datos, es necesario realizar la selección de parámetro para cada experimento, ya que los predictores cuentan con diferentes opciones de configuración. Por ejemplo, uno de los experimentos puede ser la selección, predictor KR, kernel EK, distancia E, vecindad de 6. La salida por cada combinación, son los errores RMSE y NRMS.

Para cada experimento, se introducen como entrada las dos ST en espacio de fase (los datos de entrenamiento y los datos de prueba). Los errores generados al final, son obtenidos por la diferencia entre los datos predichos y los datos del conjunto de prueba. La metodología general, para realizar los experimentos se puede observar en la Fig. 10.

Figura 11: Metodología general de la experimentación para la predicción del O₃.

6 ANÁLISIS DE RESULTADOS

Para evaluar los modelos de predicción para el caso del la ST del O₃ se realizaron más de 400 experimentos, los cuales representan el número aproximado de las combinaciones posibles entre los modelos de predicción y sus respectivos parámetros. Los diferentes resultados fueron evaluados de acuerdo a los errores RMSE y NRMS obtenidos de cada una en las pruebas realizadas.

Entre menor son los errores obtenidos, la predicción es más eficiente; esto lo podemos observar en la Fig. 11, presenta la combinación del predictor Nearest Neighbor (NN) con distancia By Cosine (BC). En la imagen se puede observar que los 54 valores predichos (línea roja) se ajustan perfectamente con los 54 valores actuales (línea azul).

Figura 12. Resultados de la combinación NN, distancia BC.

Es importante mencionar, que los errores de predicción que se obtuvieron son cercanos a cero con una precisión de 10⁻⁵. Los modelos de predicción que arrojan un ajuste casi exacto entre los valores actuales y los predichos son los correspondientes a las siguientes combinaciones:

• El modelo de predicción Nearest Neighbor con las distancias E, MN, MB y BC arrojaron una muy buena predicción como se puede observar en la Tabla 8.

Figura 13. Resultados de la combinación: predictor NN, distancia E (izq) y distancia MN (der)

 El modelo de predicción Radial Basis con una combinación entre las funciones locales L, C y TPS, las distancias E, MB y MN y una vecindad de 6, arrojan errores muy bajos. Por otro lado, este mismo modelo con la función local G, las distancias MB, MN y BC y un vecindario de 6 también ofrece una muy buena predicción. Por último la combinación de la función local M, las distancias E y MB y un vecindario de 6, se obtienen errores de predicción muy pequeños.

Figura 14. Resultados de la combinación: predictor RB, Función Local L, distancia E, vecindad 6 (izq) y función C, distancia E y vecindad 6 (der).

En la Tabla 8, se muestran las mejores combinaciones de los modelos de predicción con sus respectivos parámetros, y los errores obtenidos. Como se puede observar en la Tabla, los mejores resultados (es decir, cercanos a cero) tienen un vecindario de 6.

Modelo	Kernel	RBF	Distancia	Vecinos	RMSE	NRMS
NN			E		0.00000	0.00000
NN			MN		0.00000	0.00000
NN			MB		0.00000	0.00000
NN			BC		0.00000	0.00000
RB		L	E	6	0.00000	0.00000
RB		L	MB	6	0.00000	0.00000
RB		L	MN	6	0.00000	0.00000
RB		С	E	6	0.00000	0.00000
RB		С	MB	6	0.00000	0.00000
RB		С	MN	6	0.00000	0.00000
RB		TPS	E	6	0.00000	0.00000
RB		TPS	MB	6	0.00000	0.00000
RB		TPS	MN	6	0.00000	0.00000
RB		G	MB	6	0.00000	0.00000
RB		G	MN	6	0.00000	0.00000
RB		G	BC	6	0.00000	0.00000
RB		М	E	6	0.00000	0.00000
RB		М	MB	6	0.00000	0.00000

 Tabla 8. Combinación de los mejores modelos de predicción y los errores obtenidos.

De los resultados experimentales, se observó que entre mayor era el radio del vecindario, el ajuste de los datos predichos con los datos de prueba (valores reales) suelen ser más inexactos; esto se puede observar en la Fig. 14, que es el resultado de la combinación de utilizar la combinación siguiente: predictor Locally Weigth Linear (LWL), con un kernel Bisquare (B), una distancia By Correlation (BCR) y un vecindario de 21.

Figura 15. Resultado de la combinación LWL, Kernel B, distancia E y vecindario de 6 (izq); la misma combinación de parámetros, pero con vecindario de 21 (der).

Los resultados completos de los experimentos, con los parámetros correspondientes de cada predictor y sus respectivos errores, se pueden encontrar de manera extendida en el apéndice B de este trabajo.

7 CONCLUSIONES

Este trabajo presentó un análisis experimental de distintos modelos de predicción. La finalidad de este análisis es determinar cual es el(los) modelo(s) que funciona(n) mejor con el contaminante Ozono (O3). La predicción de este contaminante es muy importante, ya que se pueden tomar medidas preventivas de acuerdo al nivel que se estime, debido a que dicho contaminante afecta de manera directa a la población ya que es altamente oxidante. La particularidad de dichos modelos de predicción es que, éstos primero transforman los datos temporales (series de tiempo) en una transformación en espacio. Dicho espacio es llamado espacio de fase.

Se observó que una de las ventajas de utilizar el espacio de fase para estudiar los sistemas dinámicos es que, permiten encontrar relaciones entre los estados del sistema dentro de una misma vecindad, es por ello que se observa en los resultados que las técnicas de predicción con una vecindad menor presentan los errores más bajos.

Los resultados experimentales muestran que los modelos de predicción probados difieren sustancialmente entre sí, esto es desde los clásicos (como regresión lineal) hasta los métodos basados directamente en redes neuronales (como RBF) y los modelos que funcionan de manera eficiente con una transformación de la serie de tiempo al espacio de fase fueron: Nearest Neighbor y Radial Basis Function. Obteniendo los mejores resultados, como era de esperarse, las redes neuronales usando una función de base radial, el cual depende en gran medida de los datos de entrada y que en este caso fueron los datos en el espacio, los que ayudaron a su rendimiento.

De lo anterior es posible concluir que, al trabajar los valores de las ST en representación de espacio de fase, los datos contribuyen sustancialmente a encontrar mejores modelos para predecir algún fenómeno, gracias a las ventajas que proporciona este tipo de representación. Entre las cuales se encuentra el hecho de que no se pierde información, si no por el contrario se enriquece, ya que se trabaja con la dinámica del sistema.

La metodología de evaluación utilizada en este trabajo, es posible implementarla para la predicción de muchos otros fenómenos en donde los datos se presentan como coordenadas en x, y de tipo temporal y en algunas ocasiones de tipo espacial.

8 REFERENCIAS

- [1] E.F. Bautista-Thompson (2004): **Medición de la predictibilidad de las series de tiempo: Un estudio experimental**, (tesis) Ph. D. en Ciencias de la Computación, Centro de Investigación en Computación, México, D.F.
- [2] J. C. Sport (2003): Chaos and Time-Series Analysis, Oxford University Press, ISBN: 0-19-850840-9 2003.
- [3] M. Garfias Vázquez, J. Audry Sánchez and F. J. Garfias y Ayala, (2005): Tropospheric Ozone Prediction in Mexico City, J. Mex. Chem. Soc. 2005, 49(1), 2-9, Sociedad Química de México.
- [4] J.-P. Eckman, O.S. Kamphorst, D. Ruelle, (1987): Recurrence Plots of Dynamical Systems. Europhysics Letters 5, pp.973-977.
- [5] F.Takens (1981): **Detecting Strange Attractors in Turbulence**. Vol 898 of Lecture Notes in Mathematics. Springer, Berlin. pp.366-381.
- [6] H. Jiménez-Hernández, E. Bautista-Thompson, J. Figueroa-Nazuno, (2003): Descomposición empírica de Modos para el Análisis de Series de Tiempo. Decimocuarta Reunión de Otoño de Comunicaciones, Computación, electrónica y Exposición Industrial, IEEE ROC&C, Acapulco, Guerrero del 26 al 30 de Noviembre.
- [7] E. Bautista-Thompson, E. Guzmán-Ramírez, J. Figueroa-Nazuno (2004): Predicción de Múltiples Puntos de Series de Tiempo Utilizando Support Vector Machines. Revista Computación y Sistemas, Volumen (7) enero-marzo, número 3, páginas 148-155.
- [8] T. Pogio and F. Girosi, (1990): Networks for approximation and time series prediction with neural networks, Proc. IEEE 78(9), 1484-1487.
- [9] C. Bustillos Hernández y J. Figueroa Nazuno, (2006): Análisis y Predicción de niveles de concentración de Ozono en la Ciudad de México, XLIX Congreso Nacional de Física, San Luis Potosí, SLP, Octubre, ISSN: 0187-4713.
- [10] J. Moddy and C. J. Darken, (1989): Fast learning in networks of locally tuned processing units, Neural Computation", 1,281-294.
- [11] Castillo-Montiel, M.A. Paredes-Farrera, C. Bustillo-Hernández, K. Ramírez-Amaro, J. Figueroa-Nazuno, (2006): Evaluación de modelos de predicción de Series de Tiempo. Decimoséptima Reunión de Otoño de Comunicaciones, Computación, Electrónica y Exposición Industrial, IEEE ROC&C 2006, Acapulco, Guerrero. Del 28 de Noviembre al 3 de diciembre.
- [12] Ley General de Equilibrio Ecológico y la Protección al Ambiente. México. 12ª edición.

- [13] NADF-009-AIRE-2006 (2006): Norma Ambiental para el Distrito Federal que establece los requisitos para elaborar el Índice Metropolitano de la Calidad del Aire (IMECA), Gaceta Oficial del Distrito Federal, Décima Sexta época, 29 de noviembre, No. 141.
- [14] Sistema de Monitoreo Atmosférico de la ciudad de México, sección: partículas, http://www.sma.df.gob.mx/simat/pnparticulas.htm. Último acceso: 18 de agosto 2008.
- [15] NOM-020-SSA1-1993, "Modificación a la norma Oficial Mexicana NOM-020-SSA1-1993, Criterios para evaluar la calidad del aire ambiente con respecto al (ozono O₃)".
- [16] Sistema de Monitoreo Atmosférico de la ciudad de México, Índice Metropolitano de la Calidad del Aire, http://www.sma.df.gob.mx/simat/pnimeca.htm. Último acceso: 18 de agosto 2008
- [17] Cortez-Lugo M., Romieu I., Palazuelos-Rendón E., Hernández-Ávila M. (1995): Estudio de validación y reproducibilidad de monitores pasivos a ozono. Salud Pública, Méx. 37:219-223.
- [18] Yourdon, Edward, (1993): Análisis Estructurado Moderno, EUA, Prentice Hal.
- [19] Balacco, Hugo R. Maradona G. (2000): Señal de Caos en Series de tiempo financieras. El spectrum de Lyapunov en el análisis de 'sensibilidad a condiciones iniciales, FCE-UNCu, Mendoza-Argentina.
- [20] Sistema de Monitoreo Atmosférico de la ciudad de México, sección: Ozono, http://www.sma.df.gob.mx/simat/pnozono.htm#salud. Último acceso: 18 de agosto 2008
- [21] Cover, T. M. and Hart, P. E. (1967): **Nearest Neighbor pattern recognition**, IEEE Transaction on Information Theory, IT-13(1), pp. 21-27.
- [22] Definición de Kernel Regression http://people.revoledu.com/kardi/tutorial/Regression/KernelRegression/KernelRegression .htm. Ultimo acceso: 18 de agosto 2008
- [23] Strogatz, S. H. (1994): Nonlinear dynamics and chaos. Reading, MA: Addison Wesley.
- [24] Kantz, H. and Schreiber, T. (1997): **Nonlinear Time Series Analysis.** Cambridge, Cambridge University Pres.
- [25] Marwan N. (2003): Encounters with Neighbours: Current Developments of Concepts Based on Recurrence Plots and their applications. s.l. : Instituto de Física de la Universidad de Potsdam,. Ph. D. Thesis.
- [26] Whitney, H. (1934): Analitic extensions of differenciable functions defined in closed sets. s.l. : Trans. Am. Math. Soc. pp. 63-89. Vol. 36. [4]

- [27] Eckman, J.P., Kamphorst, O.S. and Ruelle, D. (1987): Recurrence Plots of Dynamical Systems. s.l. Europhysics Letters, pp. 973-977. Vol. 5.
- [28] Takens, F. (1981): **Detecting Strange Attractors in Turbulence**. [ed.] Springer. Berlin: Lecture Notes in Mathematics, pp. 366-381. Vol. 898.[6]
- [29] Sistema de Monitoreo Atmosférico de la ciudad de México, sección: SIMAT organización, http://www.sma.df.gob.mx/simat/pnestructura.htm. Último acceso: 18 de agosto 2008.

APENDICES

A. GRÁFICAS Y TABLAS DE MEDICIONES DE O₃

Figura A1. Máximo diario de Ozono (O₃) de los años de 1986 a diciembre de 2006^8 .

⁸ Secretaria del Medio Ambiente, Sistema de Monitoreo Atmosférico de la ciudad de México, subred RAMA.

Figura A2. Distribución del máximo diario de Ozono (O₃) de los años de 1986 a diciembre de 2006⁸.

intervalo / año	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
(0.0, 0.055] ppm	7	8	6	4	6	0	7	4	0	7	8	11	12	25	6	18	18	18	24	26	31
(0.055, 0.110] ppm	50	50	34	40	24	10	28	39	25	39	41	43	48	54	52	74	66	94	117	118	125
(0.110, 0.141] ppm	35	61	29	48	26	17	31	35	18	22	33	51	52	45	56	76	82	97	116	110	122
(0.141, 0.171] ppm	39	43	45	97	62	34	38	59	65	40	67	77	62	68	102	86	104	107	76	83	74
(0.171, 0.202] ppm	20	44	73	85	65	46	67	76	81	75	87	86	77	84	90	77	59	41	31	25	12
(0.202, 0.208] ppm	5	9	18	11	19	14	16	16	14	16	16	19	18	15	13	8	5	0	0	2	0
(0.208, 0.233] ppm	13	32	50	41	54	59	64	61	74	81	57	40	46	47	37	20	23	7	2	1	1
(0.233, 0.257] ppm	13	14	46	14	38	52	35	28	45	44	30	19	31	19	7	4	7	1	0	0	0
(0.257, 0.282] ppm	10	10	21	10	31	41	29	29	30	27	19	15	14	5	3	2	0	0	0	0	0
(0.282, 0.294] ppm	3	4	8	0	7	16	5	3	9	8	5	2	2	1	0	0	1	0	0	0	0
(0.294, 0.355] ppm	10	9	13	6	18	49	23	12	4	6	3	2	3	2	0	0	0	0	0	0	0
> 0.355 ppm	11	0	5	1	5	7	9	1	0	0	0	0	0	0	0	0	0	0	0	0	0
Días arriba del valor límite (0.110	159	226	308	313	325	335	317	320	340	319	317	311	305	286	308	273	281	253	225	221	209

Tabla A1. Distribución de las concentraciones máximas diarias de Ozono (O_3) de los años de 1986 a diciembre de 2006⁸

Dic

B. TABLAS DE RESULTADOS DE LOS EXPERIMENTOS

	PREDICTOR: Kernel Regresión (KR)										
		RE	Г ARDO: 13	EMBE	BIDO: 5						
G: Ga	ussian			MB: Manhattan Block							
B: Bis	quare			MN: M	ax Norm						
TC: T	ricube			BC: Co	sine						
EX: E	xponentia	ıl		BCR: E	By Correlation						
IN: In	verse			EK: Ep	anechnikov						
TR: T	riangular			E: Eucl	idean						
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS					
1	EK		Е	6	0.009715	0.244937					
2	EK		Е	11	0.012945	0.434874					
3	EK		Е	16	0.014913	0.577167					
4	EK		Е	21	0.016006	0.664921					
5	EK		MB	6	0.010173	0.268592					
6	EK		MB	11	0.013992	0.508112					
7	EK		MB	16	0.015202	0.599789					
8	EK		MB	21	0.016314	0.690761					
9	EK		MN	6	0.009392	0.228908					
10	EK		MN	11	0.011754	0.358572					
11	EK		MN	16	0.014114	0.517001					
12	EK		MN	21	0.01618	0.679397					
13	EK		BC	6	0.019684	1.005605					
14	EK		BC	11	0.024412	1.54665					
15	EK		BC	16	0.026723	1.853315					
16	EK		BC	21	0.02793	2.024571					
17	EK		BCR	6	0.024561	1.565553					
18	EK		BCR	11	0.028034	2.0397					
19	EK		BCR	16	0.02998	2.332685					
20	EK		BCR	21	0.030472	2.409894					

TABLA B1. Resultados con el predictor Kernel Regresión.

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
21	G		Е	6	0.013044	0.441605
22	G		Е	11	0.015741	0.643081
23	G		Е	16	0.016202	0.681312
24	G		Е	21	0.017284	0.775275
25	G		MB	6	0.013138	0.447985
26	G		MB	11	0.016054	0.668877
27	G		MB	16	0.01689	0.740354
28	G		MB	21	0.017581	0.802163
29	G		MN	6	0.013721	0.48864
30	G		MN	11	0.015768	0.645296
31	G		MN	16	0.01705	0.754425
32	G		MN	21	0.017997	0.840606
33	G		BC	6	0.022751	1.343301
34	G		BC	11	0.026001	1.754598
35	G		BC	16	0.027712	1.993099
36	G		BC	21	0.027904	2.020761
37	G		BCR	6	0.025936	1.745763
38	G		BCR	11	0.029588	2.272013
39	G		BCR	16	0.030148	2.358901
40	G		BCR	21	0.031269	2.537603
41	В		Е	6	0.00645	0.107964
42	В		Е	11	0.009165	0.218023
43	В		Е	16	0.011796	0.361125
44	В		Е	21	0.01333	0.461134
45	В		MB	6	0.007143	0.132408
46	В		MB	11	0.01072	0.298232
47	В		MB	16	0.012523	0.406997
48	В		MB	21	0.013904	0.501715

	PREDICTOR: Kernel Regresión (KR)											
		RE	FARDO: 13	EMBE	BIDO: 5							
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS						
49	В		MN	11	0.008276	0.17776						
50	В		MN	16	0.010777	0.301414						
51	В		MN	21	0.01322	0.453605						
52	В		BC	6	0.016754	0.72851						
53	В		BC	11	0.021542	1.204361						
54	В		BC	16	0.025328	1.664936						
55	В		BC	21	0.026931	1.882371						
56	В		BCR	6	0.022507	1.314755						
57	В		BCR	11	0.026152	1.774977						
58	В		BCR	16	0.028755	2.14589						
59	В		BCR	21	0.02956	2.267771						
60	TC		Е	6	0.006737	0.11779						
61	TC		Е	11	0.009231	0.221173						
62	TC		Е	16	0.011837	0.363653						
63	TC		Е	21	0.013356	0.462955						
64	TC		MB	6	0.007372	0.141054						
65	TC		MB	11	0.010777	0.301415						
66	TC		MB	16	0.012672	0.416783						
67	TC		MB	21	0.014022	0.510248						
68	TC		MN	6	0.006716	0.117077						
69	TC		MN	11	0.008441	0.184924						
70	TC		MN	16	0.010828	0.304275						
71	TC		MN	21	0.0132	0.452208						
72	TC		BC	6	0.017629	0.806575						
73	TC		BC	11	0.022046	1.261377						
74	TC		BC	16	0.025896	1.740388						
75	TC		BC	21	0.027393	1.947485						

TABLA B1. I	Resultados	con el	predictor	Kernel	Regresión.
-------------	------------	--------	-----------	--------	------------

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
76	TC		BCR	6	0.023342	1.4141
77	TC		BCR	11	0.026638	1.841593
78	TC		BCR	16	0.029189	2.211276
79	TC		BCR	21	0.02999	2.334254
80	EX		Е	6	0.01265	0.415313
81	EX		Е	11	0.015483	0.622178
82	EX		Е	16	0.015958	0.660926
83	EX		Е	21	0.017123	0.760984
84	EX		MB	6	0.012713	0.419477
85	EX		MB	11	0.015757	0.644385
86	EX		MB	16	0.016673	0.721492
87	EX		MB	21	0.017413	0.786963
88	EX		MN	6	0.013405	0.46639
89	EX		MN	11	0.015603	0.631803
90	EX		MN	16	0.016931	0.743944
91	EX		MN	21	0.017891	0.830753
92	EX		BC	6	0.021873	1.241623
93	EX		BC	11	0.025325	1.664457
94	EX		BC	16	0.027232	1.924674
95	EX		BC	21	0.02739	1.94705
96	EX		BCR	6	0.024889	1.607649
97	EX		BCR	11	0.028957	2.17614
98	EX		BCR	16	0.029479	2.25536
99	EX		BCR	21	0.030829	2.466668
100	IN		Е	6	0.013819	0.495614
101	IN		Е	11	0.016298	0.689422
102	IN		Е	16	0.016537	0.709745
103	IN		Е	21	0.017602	0.804118
104	IN		MB	6	0.013857	0.49833

	PREDICTOR: Kernel Regresión (KR)											
		RE	FARDO: 13	EMBE	BIDO: 5							
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS						
105	IN		MB	11	0.016554	0.71117						
106	IN		MB	16	0.017269	0.773992						
107	IN		MB	21	0.017893	0.830899						
108	IN		MN	6	0.014657	0.557525						
109	IN		MN	11	0.01645	0.70233						
110	IN		MN	16	0.017567	0.800912						
111	IN		MN	21	0.018396	0.878276						
112	IN		BC	6	0.023697	1.457378						
113	IN		BC	11	0.026482	1.820057						
114	IN		BC	16	0.028054	2.042548						
115	IN		BC	21	0.027997	2.034266						
116	IN		BCR	6	0.026499	1.82241						
117	IN		BCR	11	0.03011	2.35289						
118	IN		BCR	16	0.030276	2.378941						
119	IN		BCR	21	0.031557	2.584457						
120	TR		Е	6	0.007308	0.138589						
121	TR		Е	11	0.010627	0.29312						
122	TR		Е	16	0.013049	0.441889						
123	TR		Е	21	0.014438	0.541044						
124	TR		MB	6	0.007901	0.162008						
125	TR		MB	11	0.011887	0.366695						
126	TR		MB	16	0.013438	0.468645						
127	TR		MB	21	0.01481	0.569279						
128	TR		MN	6	0.007154	0.132839						
129	TR		MN	11	0.009476	0.233037						
130	TR		MN	16	0.012098	0.379878						
131	TR		MN	21	0.014475	0.543809						

TABLA B1. Resulta	idos con el	predictor	Kernel	Regresión.
-------------------	-------------	-----------	--------	------------

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
132	TR		BC	6	0.016635	0.718198
133	TR		BC	11	0.021941	1.249374
134	TR		BC	16	0.025138	1.640082
135	TR		BC	21	0.026697	1.849713
136	TR		BCR	6	0.021932	1.248425
137	TR		BCR	11	0.026085	1.765876
138	TR		BCR	16	0.028544	2.114535
139	TR		BCR	21	0.029306	2.228995

	PREDICTOR: Locally Weigth Linear (LWL)										
		RE	TARDO: 13	EMBE	BIDO: 5						
EK: E	panechni	kov		E: Euclidean							
G: Ga	ussian			M: Ma	anhattan Block						
B: Bis	quare			MN: M	ax Norm						
TC: T	ricube			BC: Co	osine						
EX: E	xponentia	ıl		BCR: E	By Correlation						
IN: In	verse										
TR: Triangular											
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS					
140	EK		Е	6	0.000013	0					
141	EK		Е	11	0.002518	0.016457					
142	EK		Е	16	0.00634	0.104312					
143	EK		Е	21	0.008773	0.199765					
144	EK		MB	6	0.000012	0.00000					
145	EK		MB	11	0.0022	0.012558					
146	EK		MB	16	0.005765	0.086254					
147	EK		MB	21	0.008483	0.186779					
148	EK		MN	6	0.000002	0.00000					
149	EK		MN	11	0.001951	0.009879					
150	EK		MN	16	0.00552	0.079075					
151	EK		MN	21	0.007963	0.164587					
152	EK		BC	6	0.000042	0.000005					
153	EK		BC	11	0.005598	0.081339					
154	EK		BC	16	0.010873	0.306848					
155	EK		BC	21	0.012391	0.398468					
156	EK		BCR	6	0.000591	0.000905					
157	EK		BCR	11	0.006165	0.098627					
158	EK		BCR	16	0.013293	0.458599					

TABLA B2H	Resultados con el	predictor 1	Locally \	Weigth I	Linear	(LWL).
-----------	-------------------	-------------	------------------	----------	--------	--------

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
159	EK		BCR	21	0.015226	0.601654
160	G		Е	6	0.000042	0.000005
161	G		Е	11	0.006906	0.123773
162	G		Е	16	0.01105	0.316905
163	G		Е	21	0.012101	0.380064
164	G		MB	6	0.000036	0.000003
165	G		MB	11	0.006649	0.114746
166	G		MB	16	0.010783	0.301745
167	G		MB	21	0.012465	0.403253
168	G		MN	6	0.000061	0.00001
169	G		MN	11	0.006672	0.115536
170	G		MN	16	0.008913	0.206192
171	G		MN	21	0.010763	0.30064
172	G		BC	6	0.000223	0.00013
173	G		BC	11	0.009824	0.25049
174	G		BC	16	0.012139	0.38244
175	G		BC	21	0.013676	0.485393
176	G		BCR	6	0.001242	0.004001
177	G		BCR	11	0.010197	0.269855
178	G		BCR	16	0.014775	0.566571
179	G		BCR	21	0.016536	0.70968
180	В		Е	6	0.000006	0.0000
181	В		Е	11	0.000338	0.000296
182	В		Е	16	0.002533	0.016654
183	В		Е	21	0.004178	0.045311
184	В		MB	6	0.000007	0.0000
185	В		MB	11	0.000427	0.000473
186	В		MB	16	0.003092	0.024814

PREDICTOR: Locally Weigth Linear (LWL)								
RETARDO: 13 EMBEBIDO: 5								
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS		
187	В		MB	21	0.004451	0.051415		
188	В		MN	6	0.000001	0.00000		
189	В		MN	11	0.000356	0.000328		
190	В		MN	16	0.001313	0.004473		
191	В		MN	21	0.003803	0.037535		
192	В		BC	6	0.000024	0.000001		
193	В		BC	11	0.001846	0.008847		
194	В		BC	16	0.007028	0.128188		
195	В		BC	21	0.009729	0.245671		
196	В		BCR	6	0.000564	0.000825		
197	В		BCR	11	0.003031	0.023843		
198	В		BCR	16	0.009665	0.242452		
199	В		BCR	21	0.012509	0.406084		
200	TC		Е	6	0.000005	0.00000		
201	TC		Е	11	0.000253	0.000166		
202	TC		Е	16	0.002715	0.019127		
203	TC		Е	21	0.004568	0.054165		
204	TC		MB	6	0.000007	0.00000		
205	TC		MB	11	0.000391	0.000397		
206	TC		MB	16	0.003145	0.025673		
207	TC		MB	21	0.004653	0.056198		
208	TC		MN	6	0.000001	0.00000		
209	TC		MN	11	0.0003	0.000233		
210	TC		MN	16	0.001292	0.004334		
211	TC		MN	21	0.004337	0.048811		
212	TC		BC	6	0.000024	0.000001		
213	TC		BC	11	0.001978	0.010155		

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
214	TC		BC	16	0.007739	0.15544
215	TC		BC	21	0.010951	0.31127
216	TC		BCR	6	0.000564	0.000825
217	TC		BCR	11	0.003226	0.027014
218	TC		BCR	16	0.010557	0.289265
219	TC		BCR	21	0.013528	0.47497
220	EX		E	6	0.000042	0.000004
221	EX		Е	11	0.005737	0.085428
222	EX		E	16	0.009476	0.233023
223	EX		Е	21	0.010513	0.286856
224	EX		MB	6	0.000035	0.000003
225	EX		MB	11	0.005586	0.080979
226	EX		MB	16	0.00958	0.238167
227	EX		MB	21	0.011144	0.3223
228	EX		MN	6	0.000059	0.000009
229	EX		MN	11	0.005664	0.083261
230	EX		MN	16	0.007403	0.142251
231	EX		MN	21	0.009178	0.218605
232	EX		BC	6	0.000165	0.000071
233	EX		BC	11	0.008437	0.18473
234	EX		BC	16	0.010228	0.271528
235	EX		BC	21	0.011892	0.367051
236	EX		BCR	6	0.001105	0.003172
237	EX		BCR	11	0.008891	0.205181
238	EX		BCR	16	0.012955	0.435567
239	EX		BCR	21	0.014931	0.578561
240	IN		E	6	0.000044	0.000005
241	IN		E	11	0.008484	0.186798
242	IN		E	16	0.012921	0.433314

PREDICTOR: Locally Weigth Linear (LWL)										
	RETARDO: 13 EMBEBIDO: 5									
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS				
243	IN		Е	21	0.013312	0.459943				
244	IN		MB	6	0.000036	0.000003				
245	IN		MB	11	0.007916	0.162625				
246	IN		MB	16	0.012412	0.399804				
247	IN		MB	21	0.013569	0.477871				
248	IN		MN	6	0.000065	0.000011				
249	IN		MN	11	0.008612	0.192483				
250	IN		MN	16	0.01055	0.288889				
251	IN		MN	21	0.012127	0.381693				
252	IN		BC	6	0.000235	0.000144				
253	IN		BC	11	0.01109	0.319182				
254	IN		BC	16	0.012577	0.410559				
255	IN		BC	21	0.01424	0.526244				
256	IN		BCR	6	0.00134	0.004661				
257	IN		BCR	11	0.011678	0.353946				
258	IN		BCR	16	0.015333	0.610127				
259	IN		BCR	21	0.017239	0.771276				
260	TR		Е	6	0.000007	0.00000				
261	TR		Е	11	0.001038	0.002797				
262	TR		Е	16	0.003181	0.026261				
263	TR		Е	21	0.004918	0.062771				
264	TR		MB	6	0.000007	0.00000				
265	TR		MB	11	0.000882	0.002018				
266	TR		MB	16	0.003492	0.031648				
267	TR		MB	21	0.005211	0.070461				
268	TR		MN	6	0.000001	0.00000				
269	TR		MN	11	0.000732	0.001392				

TABLA B2 Predictor Locally W	eigth Linear (LWL).
-------------------------------------	---------------------

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
270	TR		MN	16	0.002454	0.015628
271	TR		MN	21	0.004324	0.048526
272	TR		BC	6	0.000024	0.000001
273	TR		BC	11	0.000024	0.000001
274	TR		BC	16	0.007199	0.13451
275	TR		BC	21	0.009087	0.214285
276	TR		BCR	6	0.000564	0.000827
277	TR		BCR	11	0.003589	0.033424
278	TR		BCR	16	0.009489	0.233707
279	TR		BCR	21	0.01188	0.366288

TABLA B3. Resultados con el pro	edictor Nearest Neighbor (NN	٧).
---------------------------------	------------------------------	-----

PREDICTOR: Nearest Neighbor (NN)										
RETARDO: 13 EMBEBIDO: 5										
E: Eu	E: Euclidean									
MB:	MB: Manhattan Block									
MN: N	Max Norn	1								
BC: B	y Cosine									
BCR:	By Corre	lation								
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS				
280			Е		0.000000	0.000000				
281			MB		0.000000	0.000000				
282			MN		0.000000	0.000000				
283			BC		0.000000	0.000000				
284			BCR		0,000809	0,001699				

TABLA B4. Resultados con el predictor Locally Constant (LC).

PREDICTOR: Locally Constant (LC)										
	RETARDO: 13 EMBEBIDO: 5									
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS				
285			Е	6	0.015616	0.632893				
286			Е	11	0.017505	0.79528				
287			Е	16	0.017334	0.77978				
288			Е	21	0.018332	0.87218				
289			MB	6	0.015592	0.630935				
290			MB	11	0.017734	0.816208				
291			MB	16	0.018141	0.854104				
292			MB	21	0.018612	0.899077				
293			MN	6	0.016736	0.72692				
294			MN	11	0.01784	0.826002				
295			MN	16	0.018619	0.899757				

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
296			MN	21	0.019234	0.960174
297			BC	6	0.026427	1.812592
298			BC	11	0.027917	2.022679
299			BC	16	0.02914	2.203722
300			BC	21	0.028537	2.113524
301			BCR	6	0.028448	2.10035
302			BCR	11	0.031769	2.61932
303			BCR	16	0.030949	2.485839
304			BCR	21	0.032539	2.747954

PREDICTOR: Locally Linear (LL)									
RETARDO: 13 EMBEBIDO: 5									
E: Euclidean									
MB: N	Manhattar	n Block							
MN: I	Max Norn	n							
BC: B	y Cosine								
BCR:	By Corre	lation							
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS			
305			Е	6	0.000047	0.000006			
306			Е	11	0.014742	0.56402			
307			Е	16	0.018455	0.883885			
308			Е	21	0.016932	0.744058			
309			MB	6	0.000045	0.000005			
310			MB	11	0.013132	0.447584			
311			MB	16	0.016685	0.722485			
312			MB	21	0.016652	0.719662			
313			MN	6	0.000071	0.000013			
314			MN	11	0.015641	0.634913			
315			MN	16	0.016204	0.681471			
316			MN	21	0.016484	0.705229			
317			BC	6	0.000306	0.000243			
318			BC	11	0.01541	0.616292			
319			BC	16	0.014575	0.551313			
320			BC	21	0.016697	0.723579			
321			BCR	6	0.001762	0.008062			
322			BCR	11	0.016088	0.671723			
323			BCR	16	0.017578	0.801942			
324			BCR	21	0.019778	1.015187			

TABLA B5. Resultados con el predictor Locally Linear (LL).

PREDICTOR: Radial Basis (RB)							
RETARDO: 13 EMBEBIDO: 5							
L: Lin	iear			E: Euclidean			
C: Cu	bic			MB: N	Aanhattan Bloo	xk	
TPS:	Thin Plate	e Spline	e	MN: M	ax Norm		
G: Ga	ussian			BC: Cosine			
M: M	ulticuadra	tic		BCR: By Correlation			
EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS	
325		L	Е	6	0.000000	0.000000	
326		L	Е	11	0.008659	0.1946	
327		L	Е	16	0.015204	0.599911	
328		L	Е	21	0.01398	0.507196	
329		L	MB	6	0.000000	0.000000	
330		L	MB	11	0.012724	0.420173	
331		L	MB	16	0.012656	0.415721	
332		L	MB	21	0.01288	0.430544	
333		L	MN	6	0.000000	0.000000	
334		L	MN	11	0.011645	0.351923	
335		L	MN	16	0.01567	0.637289	
336		L	MN	21	0.016104	0.673088	
337		L	BC	6	0.00008	0.000000	
338		L	BC	11	0.016587	0.714089	
339		L	BC	16	0.020005	1.03864	
340		L	BC	21	0.02529	1.659868	
341		L	BCR	6	0.006219	0.100376	
342		L	BCR	11	0.019277	0.964436	
343		L	BCR	16	0.027091	1.904707	
344		L	BCR	21	0.026542	1.828289	
345		С	Е	6	0.000000	0.000000	
346		С	Е	11	0.009745	0.246484	

TABLA B6. Resultados del	predictor	Radial Basis	(RB).
--------------------------	-----------	---------------------	--------------

EXP	Kernel RBF		Distancia	Neigh	RMSE	NRMS
347		С	Е	16	0.015662	0.636651
348		С	Е	21	0.014039	0.511551
349		С	MB	6	0.000000	0.000000
350		С	MB	11	0.010047	0.261973
351		С	MB	16	0.013923	0.503119
352		С	MB	21	0.015422	0.617288
353		С	MN	6	0.000000	0.000000
354		С	MN	11	0.00955	0.236702
355		С	MN	16	0.014538	0.548557
356		С	MN	21	0.016676	0.721732
357		С	BC	6	0.000008	0.000000
358		С	BC	11	0.020485	1.089083
359		С	BC	16	0.024754	1.590289
360		С	BC	21	0.026806	1.864915
361		С	BCR	6	0.001247	0.004037
362		С	BCR	11	0.021652	1.216737
363		С	BCR	16	0.030091	2.350045
364		С	BCR	21	0.028205	2.064669
365		TPS	Е	6	0.000000	0.000000
366		TPS	Е	11	0.005721	0.084948
367		TPS	Е	16	0.01348	0.471582
368		TPS	Е	21	0.015598	0.631472
369		TPS	MB	6	0.000000	0.000000
370		TPS	MB	11	0.012764	0.42282
371		TPS	MB	16	0.012748	0.421782
372		TPS	MB	21	0.013754	0.490983
373		TPS	MN	6	0.000000	0.000000
374		TPS	MN	11	0.009486	0.233552
375		TPS	MN	16	0.012694	0.418181

RETARDO: 13 EMBEBIDO: 5 EXP Kernel RBF Distancia Neigh RMSE NRMS 376 TPS MN 21 0.016284 0.688173 377 TPS BC 6 error error 378 TPS BC 11 error error 379 TPS BC 16 error error 380 TPS BC 21 error error 380 TPS BCR 6 0.001249 0.004048 382 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.00001 0.00000 385 G E 1 0.023135 1.389058 385 G E 10 0.01715 0.154469 387 G E 11 0.00000 0.00000	PREDICTOR: Radial Basis (RB)								
EXPKernelRBFDistanciaNeighRMSENRMS376TPSMN210.0162840.688173377TPSBC6errorerror378TPSBC11errorerror379TPSBC16errorerror380TPSBC21errorerror381TPSBCR60.0012490.004048382TPSBCR110.0202051.059507383TPSBCR160.0279242.02371384TPSBCR160.0012490.00000385GE60.0000010.00000386GE110.027151.54469387GE160.014160.539341388GGE160.014160.539341388GGE160.012220.387672389GMB110.009000.00000390GMB110.003690.256951391GMB110.003690.196252392GMB110.0152870.606523394GMN160.0152870.606523395GMN160.0152870.606523396GMN160.0152870.606523397GBC60.000000.00000398G </th <th colspan="9">RETARDO: 13 EMBEBIDO: 5</th>	RETARDO: 13 EMBEBIDO: 5								
376 TPS MN 21 0.016284 0.688173 377 TPS BC 6 error error 378 TPS BC 11 error error 379 TPS BC 16 error error 380 TPS BC 21 error error 381 TPS BCR 6 0.001249 0.004048 382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.027924 2.02371 384 TPS BCR 11 0.002005 1.389058 385 G E 6 0.000001 0.000000 386 G E 11 0.00715 0.154469 387 G E 16 0.014416 0.539341 388 G MB 11	EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS		
377TPSBC6errorerror 378 TPSBC11errorerror 379 TPSBC16errorerror 380 TPSBC21errorerror 381 TPSBCR60.0012490.004048 382 TPSBCR110.0202051.059507 383 TPSBCR160.0279242.02371 384 TPSBCR160.0279242.02371 384 TPSBCR210.0231351.389058 385 GE60.0000010.000000 386 GE110.0077150.154469 387 GE160.0144160.539341 388 GE210.0112190.32667 389 GMB60.000000.00000 390 GMB110.009950.256951 391 GMB160.012220.387672 392 GMN110.0086960.196252 395 GMN110.0086960.196252 395 GMN160.0152870.606523 396 GMN210.0155360.626423 397 GBC60.000000.00000 398 GBC160.210911.154501 400 GBC160.0216911.581932 4	376		TPS	MN	21	0.016284	0.688173		
378 TPS BC 11 error error 379 TPS BC 16 error error 380 TPS BC 21 error error 381 TPS BCR 6 0.001249 0.004048 382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.027924 2.02371 384 TPS BCR 21 0.023135 1.389058 385 G E 16 0.01000 0.00000 386 G E 11 0.007715 0.154469 387 G E 21 0.011219 0.32667 389 G MB 11 0.00995 0.256951 391 G MB 16 <td>377</td> <td></td> <td>TPS</td> <td>BC</td> <td>6</td> <td>error</td> <td>error</td>	377		TPS	BC	6	error	error		
379 TPS BC 16 error error 380 TPS BC 21 error error 381 TPS BCR 6 0.001249 0.004048 382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 16 0.023135 1.389058 385 G E 6 0.000001 0.00000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.000000 0.000000 390 G MB 16 0.012222 0.387672 391 G MB 16 0.013392 0.465473 393 G MN 11 <td>378</td> <td></td> <td>TPS</td> <td>BC</td> <td>11</td> <td>error</td> <td>error</td>	378		TPS	BC	11	error	error		
380 TPS BC 21 error error 381 TPS BCR 6 0.001249 0.004048 382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 21 0.023135 1.389058 385 G E 6 0.000001 0.000000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 11 0.00995 0.256951 391 G MB 16 0.012222 0.387672 392 G MB 16 0.012392 0.465473 393 G MN 6 0.000000 0.000000 394 G MN 11	379		TPS	BC	16	error	error		
381 TPS BCR 6 0.001249 0.004048 382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 21 0.023135 1.389058 385 G E 6 0.000001 0.000000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 16 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 16 </td <td>380</td> <td></td> <td>TPS</td> <td>BC</td> <td>21</td> <td>error</td> <td>error</td>	380		TPS	BC	21	error	error		
382 TPS BCR 11 0.020205 1.059507 383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 21 0.023135 1.389058 385 G E 6 0.000001 0.000000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.000000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.012222 0.387672 392 G MB 16 0.012222 0.387672 393 G MN 6 0.000000 0.00000 394 G MN 11 0.015287 0.606523 395 G MN 16<	381		TPS	BCR	6	0.001249	0.004048		
383 TPS BCR 16 0.027924 2.02371 384 TPS BCR 21 0.023135 1.389058 385 G E 6 0.000001 0.000000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.000000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 11 0.00995 0.256951 391 G MB 16 0.012222 0.387672 392 G MB 16 0.013392 0.465473 393 G MN 6 0.000000 0.00000 394 G MN 11 0.015287 0.606523 397 G BC 6	382		TPS	BCR	11	0.020205	1.059507		
384 TPS BCR 21 0.023135 1.389058 385 G E 6 0.00001 0.00000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.012222 0.387672 392 G MB 16 0.012222 0.387672 393 G MN 6 0.000000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6	383		TPS	BCR	16	0.027924	2.02371		
385 G E 6 0.00001 0.00000 386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 16 0.012222 0.387672 392 G MB 16 0.012222 0.387672 393 G MB 16 0.012222 0.387672 393 G MN 6 0.000000 0.000000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 397 G BC 6	384		TPS	BCR	21	0.023135	1.389058		
386 G E 11 0.007715 0.154469 387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 16 0.012222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G BC 6 0.000000 0.00000 398 G BC 11 0.017526 0.788133 399 G BC 16	385		G	Е	6	0.000001	0.000000		
387 G E 16 0.014416 0.539341 388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16	386		G	Е	11	0.007715	0.154469		
388 G E 21 0.011219 0.32667 389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 16 0.01222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.000000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BCR 6	387		G	Е	16	0.014416	0.539341		
389 G MB 6 0.00000 0.00000 390 G MB 11 0.00995 0.256951 391 G MB 16 0.012222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 16 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017526 0.788133 399 G BC 16 0.021091 1.154501 400 G BCR 6 0.001247 0.004038	388		G	Е	21	0.011219	0.32667		
390 G MB 11 0.00995 0.256951 391 G MB 16 0.01222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 16 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BCR 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	389		G	MB	6	0.000000	0.000000		
391 G MB 16 0.012222 0.387672 392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	390		G	MB	11	0.00995	0.256951		
392 G MB 21 0.013392 0.465473 393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BCR 6 0.001247 0.004038	391		G	MB	16	0.012222	0.387672		
393 G MN 6 0.00000 0.00000 394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BCR 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	392		G	MB	21	0.013392	0.465473		
394 G MN 11 0.008696 0.196252 395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	393		G	MN	6	0.000000	0.000000		
395 G MN 16 0.015287 0.606523 396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	394		G	MN	11	0.008696	0.196252		
396 G MN 21 0.015536 0.626423 397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	395		G	MN	16	0.015287	0.606523		
397 G BC 6 0.00000 0.00000 398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	396		G	MN	21	0.015536	0.626423		
398 G BC 11 0.017426 0.788133 399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	397		G	BC	6	0.000000	0.000000		
399 G BC 16 0.021091 1.154501 400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	398		G	BC	11	0.017426	0.788133		
400 G BC 21 0.024689 1.581932 401 G BCR 6 0.001247 0.004038	399		G	BC	16	0.021091	1.154501		
401 G BCR 6 0.001247 0.004038	400		G	BC	21	0.024689	1.581932		
	401		G	BCR	6	0.001247	0.004038		

TABLA B6. Resultados con el predictor Radial Basis (RB).

EXP	Kernel	RBF	Distancia	Neigh	RMSE	NRMS
402		G	BCR	11	0.01917	0.95375
403		G	BCR	16	0.026995	1.891238
404		G	BCR	21	0.027038	1.897385
405		М	Е	6	0.000000	0.000000
406		М	Е	11	0.00759	0.149499
407		М	Е	16	0.014693	0.560323
408		М	Е	21	0.011165	0.323522
409		М	MB	6	0.000000	0.000000
410		М	MB	11	0.009779	0.248212
411		М	MB	16	0.012559	0.409334
412		М	MB	21	0.013703	0.487308
413		М	MN	6	0.000003	0.000000
414		М	MN	11	0.008498	0.187404
415		М	MN	16	0.014705	0.561211
416		М	MN	21	0.015965	0.661495
417		М	BC	6	0.000059	0.000009
418		М	BC	11	0.018034	0.844027
419		М	BC	16	0.021921	1.247093
420		М	BC	21	0.025161	1.643012
421		М	BCR	6	0.001247	0.004038
422		М	BCR	11	0.019537	0.99064
423		М	BCR	16	0.028135	2.054337
424		М	BCR	21	0.027402	1.948792

C. GRAFICAS DE LOS EXPERIMENTOS

Figura C13. Exp 288, Predictor: Locally Constant

Figura C15. Exp 95, Predictor: Kernel Regression

