

CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS

DISEÑO RACIONAL DE LA ENDOLISINA QUIMÉRICA PCNP-KZ144 CON POTENCIAL FRENTE A BACTERIAS GRAM-NEGATIVAS

TESIS

QUE PARA OBTENER EL GRADO DE

MAESTRÍA EN CIENCIAS EN MANEJO DE RECURSOS MARINOS

PRESENTA

MARINELYS CASTELLÓN AVALOS

LA PAZ, B.C.S., DICIEMBRE DE 2021

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

ACTA DE REVISIÓN DE TESIS

						г		-
En la Ciuda	ad de La Paz, B.C.S.	, siendo	las 12	^{2:00} horas	del día 09 c	lel mes de	Diciembre	
del 2021	se reunieron los	miembros de la	Comis	ión Reviso	ora de la Tesis	, designada	a por el Colegio	o de
Profesores	de Posgrado de:	CENTRO INTERDISO	CIPLINAR	NO DE CIENC	IAS MARINAS	para exam	inar la tesis titu	ulada:
"Diseño frente a	racional de la en bacterias Gram-	ndolisina quim negativas"	érica F	CNP-KZ	44 con potei	ncial	del (la) alumr	וס (a):
Apellido Paterno:	CASTELLÓN	Apellido Materno:	AVALO	DS	Nombre (s):	MARINELY	YS	
Número de	registro:	3 1 9 0 5	0 2					
Aspirante d	lel Programa Acad	lémico de Posgr	ado:	MAESTRÍ	A EN CIENCIAS EN	I MANEJO DE	E RECURSOS MAR	INOS
Una vez qu trabajo de t	ue se realizó un ar resis tiene <u>9</u>	nálisis de similitu _ % de similitud.	id de te . Se ad	exto, utiliza junta rep e	ando el softwa orte de softwa	re antiplagi I re utilizad	o, se encontró o .	que el
Después q textos de l trabajo SI [ue esta Comisión a tesis identificac NO E SE COI	revisó exhausti los como coinc NSTITUYE UN I	vamen identes POSIBI	te el conte s con otro L E PLAGI	enido, estructu s documentos O.	ira, intenció , concluyó	ón y ubicación que en el pr	de los esente
JUSTIFICA	CIÓN DE LA CON	NCLUSIÓN: (Por	ejemplo, e	l % de similitud s	se localiza en metodolog	ñas adecuadamen	te referidas a fuente ori	ginal)
<u>El porcen</u>	taje de similitud	(9%), se encu	Jentra	distribui	do en 62 fu	entes, de	las cuales al	gunas
son antec	edentes directo	os de trabajos	gener	ados en	nuestro misr	no grupo	de investigad	<u>ción.</u>
**Es responsa de similitud pa	abilidad del alumno con ara establecer el riesgo	mo autor de la tesis o o la existencia de	<u>la verifi</u> un posit	cación antip ole plagio.	lagio, y del Directo	or o Directore	s de tesis el anális	<u>sis del %</u>
Finalmente	y posterior a la le	ectura, revisión	individu	ual, así co	mo el análisis	e intercam	ibio de opinion	es, los
miembros o UNANIMID	de la Comisión ma	nifestaron APRO	DBAR d de los	SUS s motivos s	PENDER	NO APRO	BAR la te	sis por
"SATISFACE	LOS REQUISITOS SEÑ	ALADOS POR LAS	DISPOS	ICIONES RE	GLAMENTARIAS	VIGENTES"		
		COMISI		VISORA	DE TESIS			
	111						Λ	
-	Mata		\bigcirc	Angeo		/		>
DR. CÉSAR SA	LVADOR CARDONA FÉLI	X DRA.	CLAUDIA		NÁNDEZ	DR. MAU	RICIÓ MUÑOZ OCH	ΟΑ
Di Nomb	irector de Tesis re completo y firma		Nombre	completo y firm	na	No	mbre completo y firma	
Dark	n Jourgalen Poto	a			-			
DRA. BÁRBA Di	RA CONZÁLEZ ACOSTA	<u>A</u> DR	ANDRÉS Nombre	S ZÁRATE RO completo y firm	MERO na	DR. SERG	IO HERNANDEZ TR mbre completo y firma	UJILLO
Nomb	re completo y firma					PRESIC	DENTE DEL COLEGI PROFESORES	O DE

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

CARTA CESIÓN DE DERECHOS

En la Ciudad de	La Paz, B.C.S.,	el día <u>09</u>	del mes de	Diciembre	del año	2021
El (la) que suscribe	LIC.	MARINELYS CAS	STELLÓN AVALO	S Alı	umno (a) de	l Programa
	MAESTRÍA EI	N CIENCIAS EN M	MANEJO DE RECU	JRSOS MARINOS		
con número de regi	stro <u>B190502</u>	adscrito al	CENTRO INTE	RDISCIPLINARIO	DE CIENCIAS I	MARINAS
manifiesta que es autor(a) intelectual del presente trabajo de tesis, bajo la dirección de:						
D	R. CESAR SALVADOF	R CARDONA FÉLIX	y DRA. BÁRB	ARA GONZÁLEZ A	COSTA	
y cede los derechos	del trabajo titulac	lo:				

"Diseño racional de la endolisina quimérica PCNP-KZ144 con potencial frente a bacterias Gram-negativas"

al Instituto Politécnico Nacional, para su difusión con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Éste, puede ser obtenido escribiendo a la siguiente dirección: <u>marinelys.castellon89@gmail.com</u> - ccardona@ipn.mx - bgonzal@ipn.mx Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

LIC. MARINELYS CASTELLÓN AVALOS

Nombre y firma del alumno

Tesis_Marinelys_versión final_Para Turnitin.pdf 9 dic 2021 21417 palabras/145899 caracteres

Dr. Mario Alberto Castillo Soria

Tesis_Marinelys_versión final_Para Turnitin.pdf

Resumen de fuentes

9% SIMILITUD GENERAL

1	scriptieprijs.be INTERNET	1%
2	link.springer.com	<1%
3	www.facmed.unam.mx	<1%
4	hdl.handle.net	<1%
5	bmcgenomics.biomedcentral.com	<1%
6	homepage.ntu.edu.tw INTERNET	<1%
7	patents.google.com	<1%
8	granthaalayah.com	<1%
9	www.researchgate.net	<1%
10	repositoriodigital.ipn.mx INTERNET	<1%
11	tesis.ucsm.edu.pe	<1%

INTERNET

s6250e2cbcd1c88c4.jimcontent.com

Hung Nam Mai, Luis F. Aranguren Caro, Roberto Cruz-Flores, Arun K. Dhar. "Development of a Recombinase Polymerase Amplification ... CROSSREF

<1%

17	sedici.unlp.edu.ar	<1%
18	d-nb.info INTERNET	<1%
19	www.biorxiv.org	<1%
20	elifesciences.org	<1%
21	www.wjgnet.com	<1%
22	repository.javeriana.edu.co	<1%
23	Fuente de preimpresión Carlos Omar Lomelí-Ortega, Alexis de Jesús Martínez-Sández, Diana Barajas-Sandoval, Francisco Javier Magallón-Barajas et al. "Char CONTENIDO DISPONIBLE EN CROSSREF	<1%
24	Amala Bhagwat, Monica Mixon, Cynthia H. Collins, Jonathan S. Dordick. "Opportunities for broadening the application of cell wall lytic CROSSREF	<1%
25	rabida.uhu.es INTERNET	<1%
26	Golnar Rahimzadeh, Pooria Gill, Majid Saeedi, Maryam Ghasemi et al. "Evaluation of bacteriophage products against burn wound Met CROSSREF	<1%
27	core.ac.uk INTERNET	<1%
28	lib.dr.iastate.edu INTERNET	<1%
29	repositorio.upch.edu.pe	<1%
30	eprints.ucm.es	<1%
31	documents.mx INTERNET	<1%
32	s3.amazonaws.com INTERNET	<1%
33	1library.co Internet	<1%
34	Aiping Liu, Yuping Wang, Xingzhe Cai, Shan Jiang et al. "Characterization of endolysins from bacteriophage LPST10 and evaluation of	<1%

<1%

<1%

<1%

<1%

https://ipn.turnitin.com/viewer/submissions/oid:14652:120411617/print?locale=es

16:31	Tesis_Marinelys_version final_Para Turnitin.pdf - Dr. Mario Alberto Castillo Soria	
40	orion.cecalc.ula.ve	<1%
	INTERNET	
41	Ana M. Olave, Jairo A. Mesa, Jorge H. Botero, Edwin B. Patiño, Gisela M. García, Juan F. Alzate. "Producción y evaluación del antígeno CROSSREF	<1%
42	repositorio.unap.edu.pe	<1%
43	serval.unil.ch INTERNET	<1%
	www.docsity.com	. 1 0/
44	INTERNET	<1%
45	www.int-res.com	<1%
	IN I ERNE I	
46	www.lanacion.com.ar	<1%
47	bibliotecavirtual.unl.edu.ar:8080	<1%
	INTERNET	
48	epdf.pub	<1%
	INTERNET	
49	repositorio.ug.edu.ec	-1%
	INTERNET	~ 1 /0
50	sword.cit.ie	-10/
50	INTERNET	<1⁄0
	www.frontiersin.org	-10/
51	INTERNET	<1%
	www.scribd.com	.10/
52	INTERNET	<1%
	bioone.org	. 1 0/
53	INTERNET	<1%
	cibnor.repositorioinstitucional.mx	. 1 0/
54	INTERNET	<1%
	es.scribd.com	4.07
55	INTERNET	<1%
	revistas.uned.ac.cr	
56	INTERNET	<1%
	www.coursehero.com	
57	INTERNET	<1%

<1%

<1%

<1%

Se excluyeron los depósitos de búsqueda:

Ninguno

Excluido del Informe de Similitud:

Bibliografía

Citas textuales

Citas

Coincidencias menores (10 palabras o menos)

Se excluyeron las fuentes:

Ninguno

DEDICATORIA

A mis padres: María del Carmen y Eduardo Berto

"Nuestra recompensa se encuentra en el esfuerzo y no en el resultado.

Un esfuerzo total es una victoria completa"

Mahatman Gandhi

El presente trabajo de investigación se desarrolló en el período comprendido entre agosto de 2019 a diciembre de 2021, en el laboratorio de Microbiología y Biología Molecular del Centro Interdisciplinario de Ciencias Marinas del Instituto Politécnico Nacional (IPN-CICIMAR), bajo la dirección del Dr. César Salvador Cardona Félix, Catedrático CONACyT comisionado al referido Centro de Investigación y la Dra. Bárbara González Acosta, Profesora-Investigadora del IPN-CICIMAR. También bajo la asesoría del Dr. Andrés Zárate Romero, Catedrático CONACyT comisionado al Centro de Nanociencias y Nanotecnología, UNAM; la Dra. Claudia Judith Hernández Guerrero y el Dr. Mauricio Muñoz Ochoa, ambos Profesores-Investigadores del IPN-CICIMAR.

AGRADECIMIENTOS

A mis directores de tesis: Dra. Bárbara González Acosta y al Dr. César Salvador Cardona Félix por sus valiosas enseñanzas, su apoyo y la gran paciencia que me tuvieron.

Al Instituto Politécnico Nacional y al Centro Interdisciplinario de Ciencias Marinas por darme la oportunidad de realizar mis estudios y superarme tanto profesional como personalmente.

A los profesores involucrados en los proyectos SIP20196320, SIP20202347, 20211843; por permitir mi contribución en el desarrollo de estos proyectos.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT) y a la Beca de Estímulo Institucional de Formación de Investigadores (BEIFI) por los apoyos económicos que contribuyeron a alcanzar las metas propuestas.

A los miembros del comité de tesis: Dra. Claudia Judith Hernández Guerrero, Dr. Andrés Zárate y al Dr. Mauricio Muñoz Ochoa por sus valiosos aportes y recomendaciones durante el desarrollo de la investigación.

A los profesores investigadores del CICIMAR por compartir sus conocimientos y experiencias que sin duda contribuyeron con mi formación profesional.

A mis compañeros de laboratorio, especialmente a Lina Angélica Zermeño Cervantes.

Al personal de servicios escolares y administrativos por su ayuda con todos los trámites realizados.

A mi esposo Ramón Cuellar Peña por su apoyo y confianza en todos los momentos.

A mi muy querida y gran familia y a mis amigos por su infinita disposición de ayudarme.

Muchas Gracias!!!

ÍNDICE GENERAL

INDICE DE FIGURASI
INDICE DE TABLAS III
GLOSARIOIV
ABREVIATURAS Y SÍMBOLOSVI
RESUMEN
ABSTRACT
I. INTRODUCCIÓN
I.1 Patógenos Gram-negativos de importancia en los cultivos de camarón1
I.2 Alternativas antibacterianas2
I.3 Enzimas muralíticas codificadas por bacteriófagos2
I.3.1 Organización estructural y especificidad de las endolisinas
I.4 Endolisinas como agentes terapéuticos5
I.5 Membrana externa de bacterias Gram-negativas como barrera natural contra las endolisinas6
I.6 Estrategias para superar la membrana externa8
I.6.1 Ingenierización de las endolisinas8
I.7 Péptidos catiónicos9
I.8 Predicción estructural y modelado de proteínas9
II. ANTECEDENTES
II.1 Endolisinas de vibriófagos10
II.2 Endolisina KZ14412
II.3 Endolisinas quiméricas13
III. PLANTEAMIENTO DEL PROBLEMA 14
IV. PREGUNTA DE INVESTIGACIÓN 15
V. HIPÓTESIS
VI. OBJETIVOS
VII. MATERIALES Y MÉTODOS
VII.1 Diseño y análisis bioinformático de las estructuras terciarias de las moléculas
VII.1.1 Diseño in silico de la endolisina PCNP-KZ144
VII.1.1.1 Gen codificante de la endolisina quimérica (pcnp-kz144)

VII.1.1.2 Predicción de la estructura terciaria de la endolisina quimérica	18
VII.1.2 Selección en el PDB de la estructura cristalográfica de la endoli	isina 10
VII 1 3 Diseño de los modelos de fragmento de pared bacteriana	20
VII.1.4 Acoplamiento molecular del modelo de la endolisina PCNP-KZ144 los fragmentos de pared bacteriana diseñados	20 21
VII.1.4.1 Preparación de las moléculas: endolisina KZ144 silvestre y la variante quimérica PCNP-KZ144	21
VII.1.4.2 Preparación de los ligandos: hexasacárido y heteropolímero	22
VII.1.4.3 Sistemas de Acoplamiento molecular Endolisina-Ligando	22
VII.1.4.4 Predicción de la naturaleza de las interacciones en los acoplamientos rígidos PCNP-KZ144_hexasacárido y PCNP- KZ144_heteropolímero	23
VII.2 Elaboración de construcciones con los vectores pJET1.2 y pColdI	23
VII.2.1 Diseño de los oligonucléotidos	23
VII.2.2 Cepas bacterianas, enzimas, plásmidos y oligonucleótidos	26
VII.2.3 Elaboración de la construcción pcnp-kz144+pJET1.2	26
VII.2.3.1 Amplificación del gen pcnp-kz144	26
VII.3.2 Clonación del gen pcnp-kz144 en el vector de clonación pJET1.2/blunt	27
VII.3.3 Transformación de células competentes DH5α	28
VII.3.4 Selección de clonas transformantes por PCR de colonia	28
VII.3.5 Digestión del plásmido recombinante pcnp-kz144+pJET1.2	30
VII.3.6 Digestión y purificación del amplicón pcnp-kz144	31
VII.4.3 Obtención de la construcción pcnp-kz144+pColdl	32
VIII. RESULTADOS	35
VIII.1 Secuencia aminoacídica y modelos de la estructura terciaria de la endolisina PCNP-KZ144	35
VIII.2 Modelos de fragmento de pared bacteriana	39
	39
VIII.3 Acoplamiento molecular de las endolisinas con los ligandos del fragme de pared bacteriana	nto 39
VIII.3.1 Interacción endolisina_hexasacárido (rígido-rígido)	39
VIII.3.2 Interacción endolisina_heteropolímero (rígido-rígido)	42

VIII.3.3 Predicción de la naturaleza de las interacciones en los sistemas acoplamiento rígido-rígido PCNP-KZ144_hexasacárido y PCI KZ144_heteropolímero	de NP- . 43
VIII.4 Obtención de las construcciones con los vectores pJET1.2 y pColdI	49
VIII.4.1 Construcción pcnp-kz144+pJET1.2	. 49
VIII.4.1.1 Amplificación del gen pcnp-kz144	49
VIII.4.1.2 Clonación del gen pcnp-kz144 en el vector de clonación pJET1.2/blunt	49
VII.4.1.3 Digestión de la construcción pcnp-kz142+pJET1.2 y purificación amplicón pcnp-kz144	del 52
IX. DISCUSIÓN	56
X. CONCLUSIONES	62
XI. RECOMENDACIONES	62
XII. REFERENCIAS	64
XIII. MATERIAL SUPLEMENTARIO	72

INDICE DE FIGURAS

Figura 1. Estructura básica del peptidoglicano de la pared celular bacteriana 5
Figura 2. Representación gráfica de la composición del complejo de envolturas
celulares de las bacterias Gram-negativa7
Figura 3. Gen codificante de la endolisina quimérica PCNP-KZ144 18
Figura 4. Representación esquemática de los ligandos diseñados de pared celular
bacteriana21
Figura 5. Secuencia del gen pcnp-kz144 para amplificar y de los oligonucleótidos
pcnp-kz144-sd y pcnp_kz144-sr25
Figura 6. Secuencia de aminoácidos de la endolisina PCNP-KZ144 obtenida con la
herramienta ExPASy
Figura 7. Predicción del Factor-B normalizado obtenido en I-TASSER
Figura 8. Diagrama Ramachandran de la endolisina PCNP-KZ144 obtenido en
Swiss-Model
Figura 9. Modelos de la estructura 3D de la endolisina PCNP-KZ144 obtenidos por
I-TASSER y visualizados en el programa AutoDock 4.2
Figura 10. Modelos de un fragmento de pared bacteriana. A) hexasacárido y B)
heteropolímero
Figura 11. Afinidad de los sistemas de acoplamiento rígido endolisina-hexasacárido.
Figura 12. Imágenes de acoplamiento de las endolisinas con el ligando
hexasacárido
Figura 13. Afinidad de los acoplamientos (rígido-rígido) endolisina-heteropolímero.
Las secciones A, B, C corresponden a los enlaces que se establecieron rotables en
el heteropolímero. A: los primeros 32 enlaces, B: los 40 enlaces centrales y C: los
últimos 32 enlaces rotables
Figura 14. Imágenes de acoplamiento de la endolisina PCNP-KZ144 con el ligando
heteropolímero. Las endolisinas se representaron en forma de listón y el ligando
heteropolímero en forma de cilindros. Se representan en la estructura de las
endolisinas el Glu140 (amarillo) y PCNP (verde)

Figura 15. Representación esquemática de la interacción del hexasacárido con la Figura 16. Representación esquemática de la interacción del heteropolímero (1-32 Figura 17. Representación esquemática de la interacción del heteropolímero (40 Figura 18. Representación esquemática de la interacción del heteropolímero (25-67 Figura 19. Electroforesis en gel de agarosa 1% en TBE 1X, de los productos de Figura 20. Electroforesis en gel de agarosa al 1% con TBE1X, en dónde se visualizan los productos de PCR de colonia, con la ligación pcnp-kz144+pJET1.2. Figura 21. Electroforesis en gel de agarosa al 1% con TBE1X de las muestras del ensayo de digestión de la construcción pcnp-kz144+pJET1.2 proveniente de la Figura 22. Electroforesis en gel de agarosa al 1% en TBE1X de las muestras obtenidas durante el proceso de obtención del gen digerido pcnp-kz144. M: marcador de peso molecular (pb), 1: construcción pcnp-kz144+pJET 1.2 extraído mediante el protocolo GeneJET Plasmid Miniprep, 2: pcnp-kz144 amplificado con polimerasa Phusion Flash-High-Fidelity y 3: gen pcnp-kz144 purificado con el kit Figura 23. Electroforesis en gel de agarosa 1% en TBE1X de los productos amplificados con ADN Taq polimerasa, empleando ADN de las colonias # 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; provenientes de la transformación bacteriana con el plásmido recombinante pcnp-kz144+pColdl......53 Figura 24. Electroforesis en gel de agarosa al 1% en TBE1X de las muestras antes y después de la reacción de digestión del ADN plasmídico PCNP-KZ144+pColdl de los cultivos celulares provenientes de las clonas positivas. Muestras después de la digestión: carril 1 (clona 6), carril 2 (clona 7) y carril 3 (clona 11). Muestras antes de

INDICE DE TABLAS

Tabla I. Mezcla de reacción y programa de PCR para la amplificación del gen pcnp-
kz144 con la ADN polimerasa Phusion Flash-High-Fidelity (Thermo Scientific) 27
Tabla II. Mezcla de reacción para la reacción de ligación del gen pcnp-kz144 en el
vector pJET1.2/blunt
Tabla III. Mezcla de reacción y programa de PCR para la amplificación del gen pcnp-
kz144 con ADN polimerasa Taq
Tabla IV. Mezcla de reacción para la digestión del amplicón pcnp-kz144
Tabla V. Valores de concentración y relación de Abs 260/280 nm de las extracciones
de ADN plasmídico, correspondientes a las clonas positivas de la transformación de
células de <i>E. coli</i> DH5α con el plásmido pcnp-kz144+pJET1.251

GLOSARIO

Bacteria Gram-negativa: Describe a la célula bacteriana que, durante la tinción de Gram, no retiene el colorante básico en su pared debido a que es muy delgada. Por lo que es teñida con el colorante secundario. Estas células bacterianas presentan una membrana externa compuesta de lipopolisacárido que recubre la capa de peptidoglicano (López *et al.*, 2014).

Bacteriófago o fago: Virus que infecta y se replica dentro de células bacterianas (Kutter & Sulakvelidze, 2004).

Diseño *in silico*: Metodología que emplea la química computacional, donde se aplican modelos y algoritmos matemáticos a través de software, para ayudar a estudiar y resolver problemas relacionados con las estructuras moleculares (Smith & Sutcliffe,2007).

Endolisina: Enzima codificada por bacteriófagos (de ADN de doble cadena) durante la etapa final de su ciclo lítico, la cual degrada el peptidoglicano (Borysowski *et al.*, 2006).

Ingeniería de proteínas: Tecnología mediante la cual se introducen cambios en la secuencia de aminoácidos de una proteína existente para adecuar sus propiedades a determinadas condiciones de uso (Kazlauskas & Bornscheuer, 2009).

Pared celular bacteriana: Estructura que rodea la membrana citoplasmática bacteriana y que entre sus funciones tiene, mantener la presión osmótica interna y permitir el intercambio selectivo de ciertas sustancias con el medio exterior.

Péptido catiónico: Tipo de clasificación de los péptidos antimicrobianos en relación a su carga. Se caracterizan por presentar carga positiva (+2 a +9), importante en la atracción electrostática con las cargas negativas de los fosfolípidos de la membrana (Yeaman & Yount, 2003).

Peptidoglicano o mureína: Es el principal componente estructural de la pared celular bacteriana. Es un heteropolímero formado por unidades repetidas del disacárido N-acetilglucosamina (NAG) y N-acetilmurámico (NAM), unidos por enlaces glicosídicos (ß1-4). A las cadenas de disacáridos se unen covalentemente péptidos cortos, por medio del grupo lactilo del ácido N-acetilmurámico. Los

péptidos a su vez se entrecruzan uniendo las cadenas de disacáridos para formar la estructura de "red o esponja" (São-José, 2018; Vollmer & Bertsche, 2008).

Proteína quimérica: Nueva molécula obtenida por combinaciones de genes que originalmente codifican proteínas independientes y que usualmente posee las propiedades funcionales de ambas (São-José, 2018).

Prueba T-Student: Método estadístico usado para determinar el grado de significancia de la diferencia entre medias (Upton & Cook, 2014).

Secuenciación de ADN: Metodología que se emplea para determinar la secuencia del ADN de un gen o fragmento de este (Rentería, 2007).

ABREVIATURAS Y SÍMBOLOS

Abs	Absorbancia
Amp	Ampicilina
°C	Grados centígrados
DO	Densidad óptica
kDa	Kilodalton
L	Litro
λ	Longitude de onda
Μ	Molar
mg	Milígramo
mM	Milimolar
min	Minuto
mL	Mililitro
hð	Microgramo
μL	Microlitro
nm	Nanómetro
pb	Pares de bases
рН	Potencial de Hidrógeno
R	Resistente
rpm	Revoluciones por minuto
ТМ	Temperatura de hibridación, del inglés "Melting Temperature"

RESUMEN

El creciente problema de la resistencia bacteriana unido a las restricciones en el uso de antibióticos, ha conducido hacia la evaluación de las endolisinas fágicas como un potencial agente que coadyuve con el uso de los antibióticos para el control de múltiples bacterias patógenas, principalmente de tipo Gram-positivas. Sin embargo, debido a las limitaciones que poseen contra bacterias Gram-negativas por la baja permeabilidad de su membrana externa, se ha propuesto el desarrollo de diferentes estrategias, entre las que destacan las endolisinas "quiméricas" para mediar el paso por la membrana externa y acceder a la pared celular. El objetivo de este trabajo, fue obtener una variante quimérica de la endolisina KZ144 con capacidad bactericida contra V. parahaemolyticus. La endolisina KZ144 es una enzima codificada por el gen 144 del bacteriófago ϕ KZ, que infecta a la bacteria Gramnegativa Pseudomonas aeruginosa, la cual tiene capacidad enzimática en condiciones marinas. La estrategia consistió en fusionar en su extremo N-terminal, un nanopéptido policatiónico (PCNP) con capacidad de desestabilizar la membrana de bacterias Gram-negativas, manteniéndose estable a altas externa concentraciones de NaCl y en un amplio intervalo de pH. Se realizó un modelado tridimensional de la endolisina quimérica (denominada PCNP-KZ144), empleando diversas herramientas bioinformáticas. El análisis in silico mostró que la fusión no afectaría negativamente el plegamiento o la actividad de la endolisina. Posteriormente se procedió al diseño de la construcción. El gen sintético fue clonado en el vector de propagación pJET1.2, y subclonado en el vector de expresión pColdI, obteniéndose la construcción PCNP-KZ144+pColdI.

VII

ABSTRACT

The growing problem of bacterial resistance, together with the restrictions in the use of antibiotics, has led to the evaluation of phage endolysins as a potential agent that helps with the use of antibiotics for the control of multiple pathogenic bacteria, mainly of the Gram-positive type. However, due to the limitations of Gram-negative bacteria due to the low permeability of their outer membrane, the development of different strategies has been proposed, among which the "chimeric" endolysins stand out to mediate the passage through the outer membrane and access to the cell wall. The objective of this work was to obtain a chimeric variant of endolysin KZ144 with bactericidal capacity against V. parahaemolyticus. Endolysin KZ144 is an enzyme encoded by gene 144 of bacteriophage φ KZ, which infects the Gram-negative bacterium *Pseudomonas aeruginosa*, which has enzymatic capacity under marine conditions. The strategy consisted of fusing at its N-terminal end, a polycationic nanopeptide (PCNP) with the ability to destabilize the outer membrane of Gramnegative bacteria, remaining stable at NaCl concentrations and in a wide pH range. First, a three-dimensional modeling of the chimeric endolysin (called PCNP-KZ144) was carried out, using various bioinformatic tools. Analysis in silico showed that fusion would not adversely affect the folding or activity of endolysin. Subsequently, the construction design was carried out. The synthetic gene was cloned in the propagation vector pJET1.2, and subcloned in the expression vector pColdl, obtaining the construction PCNP-KZ144+pColdI.

I. INTRODUCCIÓN

La acuicultura es el sector de producción de alimentos de más rápido crecimiento a nivel global. La creciente demanda de pescado y marisco, ha sido uno de los factores determinantes en el desarrollo de este sector (FAO, 2018). En particular, el cultivo de camarón blanco *Litopenaeus vannamei* es la principal actividad acuícola nacional y de exportación en México (FAO, 2018). Sin embargo, la intensificación de los cultivos, aunado a otros factores ha generado condiciones favorables para el surgimiento de brotes infecciosos, así como para la aparición y diseminación de nuevas enfermedades (Lafferty *et al.*, 2015).

I.1 Patógenos Gram-negativos de importancia en los cultivos de camarón

Diferentes agentes causales de enfermedad en los cultivos de camarón, tales como: virus, bacterias, parásitos y hongos han sido reportados. Numerosas publicaciones han abordado sobre las patologías en estos cultivos, donde informan que las enfermedades bacterianas son las más recurrentes (Varela y Peña, 2017). Las enfermedades causadas por especies del género Vibrio (conocidas como vibriosis), son las más frecuentes en la producción acuícola (Varela & Peña, 2017; Aranguren *et al.*, 2020). La aparición de la Enfermedad de la Necrosis Hepatopancreática Aguda (por sus siglas del inglés, AHPND) ha provocado mortalidad en las poblaciones de camarones afectadas. Esta enfermedad es causada por bacterias altamente patogénicas, donde inicialmente se identificó responsable la bacteria *Vibrio parahaemolyticus*, aunque se sospecha de otras especies del mismo género también responsables tales como *Vibrio harveyi* y *Vibrio campbellii* (Varela y Peña, 2017).

Vibrio parahaemolyticus es una bacteria Gram-negativa, anaerobia facultativa, que naturalmente se encuentra en las aguas costeras, por lo que es común encontrarla asociada a la superficie y el tracto digestivo de los organismos sin provocarles daño (Wang *et al.*, 2016; Tan *et al.*, 2020). Sin embargo, es un patógeno oportunista, que en condiciones de cultivo prolifera debido a la alta concentración de materia orgánica en los estanques. Debido a las condiciones

ambientales no controladas que favorecen su persistencia, es capaz de estresar y deprime inmunológicamente a los organismos cultivados, lo que desencadena la aparición de brotes infecciosos (Madhumathi & Ramasamy, 2011). Por otro lado, *V. parahaemolyticus* es la principal especie del género *Vibrio* causante de gastroenteritis aguda en humanos debido al consumo de pescados y mariscos contaminados, de acuerdo a los reportes del sistema de Vigilancia del Cólera y Otras Enfermedades Causadas por *Vibrio* (COVIS, por sus siglas en inglés) del Centro de Control y Prevención de Enfermedades (CDC, por sus siglas en inglés) (Tan *et al.*, 2020).

I.2 Alternativas antibacterianas

El empleo inadecuado de antibióticos y desinfectantes en la camaronicultura, ha promovido la selección de bacterias resistentes, por lo que se ha restringido su uso en este sector. Es por lo anterior que se están explorando nuevas estrategias de control microbiano (Cheng *et al.*, 2014).

Una de las estrategias, es el uso de bacteriófagos (fagos) como método de tratamiento alternativo al empleo de antibióticos. Los fagos son los virus que en la naturaleza regulan poblaciones bacterianas (Kutter & Sulakvelidze, 2004). Gracias a su capacidad selectiva para causar infección de bacterias, es que se han aislado y estudiado aquellos fagos que naturalmente destruyen patógenos de interés. Numerosas investigaciones han evaluado a los fagos o algunos de los productos codificados en sus genomas, para el control de bacterias patógenas de importancia en salud humana, agrícola, veterinaria y también, para la preservación de alimentos (Doss *et al.*, 2017).

I.3 Enzimas muralíticas codificadas por bacteriófagos

Una de las enzimas codificadas por el genoma de los fagos más estudiadas por su actividad bactericida, son las endolisinas. Como su nombre lo indica, su función biológica consiste en lisar a la bacteria desde el interior. Participan en la etapa final del ciclo de infección de los fagos, una vez que los viriones están ensamblados y listos para ser liberados. Es entonces cuando las endolisinas; que usualmente no tienen secuencias señal para traslocarse del citoplasma al espacio periplásmico, son auxiliadas por las holinas (proteínas de membrana también codificadas por el genoma del fago). Las holinas son proteínas que abren poros en la membrana interna a través de los cuales las endolisinas acceden a la pared y escinden los principales enlaces del peptidoglicano, ocasionado la lisis bacteriana y la liberación de la progenie de fagos al medio para iniciar un nuevo ciclo de infección (Wang *et al.*, 2000).

I.3.1 Organización estructural y especificidad de las endolisinas

Atendiendo a la organización estructural, las endolisinas, pueden ser globulares o modulares. Las endolisinas globulares poseen un solo dominio (dominio catalítico), responsable de degradar un enlace específico del peptidoglicano, siendo codificadas exclusivamente por bacteriófagos que infectan a bacterias Gramnegativas.

Por otro lado, las endolisinas modulares poseen un dominio de unión a la pared celular; unido por una secuencia enlazante al dominio catalítico. Estas endolisinas en su mayoría provienen de bacteriófagos que infectan a bacterias Gram-positivas. Su configuración consiste en un dominio catalítico en el extremo N-terminal y un dominio de unión a sustrato en el extremo C-terminal. Sin embargo, existen algunas excepciones de endolisinas modulares provenientes de fagos que infectan a bacterias Gram-negativas, con el dominio catalítico en el extremo C-terminal y el dominio de unión en el extremo N-terminal (São-José, 2018).

El peptidoglicano sobre el que actúan las endolisinas, está formado por una fracción glucosídica y una fracción peptídica. La fracción glucosídica está constituida por unidades repetidas del disacárido N-aceltiglucosamina (GlucNAc) y ácido N-acetilmurámico (MurNAc), unidos por enlaces glicosídicos ß(1-4). A las

cadenas de disacáridos se unen covalentemente péptidos cortos, los cuales a su vez se entrecruzan uniendo las cadenas de disacáridos para formar la estructura de "red o esponja" característica del peptidoglicano (Vollmer & Bertsche, 2008).

Los dominios catalíticos de las endolisinas fágicas, poseen uno de los cinco tipos de actividad enzimática dependiendo del tipo de enlace que escinden en el peptidogligano. Estos cinco tipos se agrupan en tres categorías: **a**) glicosidasas, enzimas que cortan uno de los enlaces glicosídicos en la cadena de glicanos, éstas a su vez se subdividen en N-acetil-*b*-D-glucosaminidasas (glucosaminidasas), N-acetil-*b*-D-muramidasas (muramidasas o lisozimas) y transglicosilasas líticas; **b**) amidasas (N-acetilmuramoil-L-alanina amidasas), las cuales hidrolizan el enlace amida que une el MurNAc al primer residuo aminoacídico del tetrapéptido (generalmente L-Ala); y **c**) endopeptidasas, que rompen los enlaces intra e inter peptídicos en la fracción peptídica (**Figura 1**). Con excepción de las transglicosilasas líticas, todas estas enzimas son hidrolasas de mureína (Fischetti, 2005; Hermoso *et al.*, 2007).

Figura 1. Estructura básica del peptidoglicano de la pared celular bacteriana. El tipo de actividad enzimática de las endolisinas y los enlaces que cortan están indicados con flechas. En bacterias Gram-negativas, el enlace inter peptídico se establece entre el ácido meso-diaminopimélico (m-DAP) y el residuo D-Ala, mientras que en bacterias Gram-positivas, el m-DAP se une un residuo de L-Lys. Figura tomada y modificada de São-José (2018).

I.4 Endolisinas como agentes terapéuticos

En 1957 se evidenció por primera vez el efecto bacteriolítico de un lisado crudo libre de fagos, sobre un cultivo de estreptococos del grupo C, el cual fue obtenido tras la lisis de un cultivo de la misma cepa por el fago C₁ (Krause, 1957).

Posteriormente, Fischetti y colaboradores en 2001 retomaron esta investigación y demostraron por primera vez el potencial terapéutico de las endolisinas contra bacterias Gram-positivas, a través de un mecanismo de lisis desde el "exterior" causando rápidamente la lisis de estreptococos del grupo A, C y E, reduciendo la colonización de estreptococos del grupo A en la cavidad oral de ratones inoculados. Este hallazgo promovió el inicio de investigaciones dirigidas a obtener variantes recombinantes de estas enzimas, con fines terapéuticos para explotar su capacidad antimicrobiana (Fenton *et al.* 2010).

Desde la perspectiva como alternativa antibacteriana, las endolisinas ofrecen ventajas sobre los antibióticos convencionales. Una de ellas es que no ocasionan un impacto negativo sobre la microbiota del organismo, ni sobre la comunidad bacteriana del medio ambiente gracias a su elevada especificidad (Fischetti, 2005). Por otro lado, su mecanismo de acción basado en la lisis del peptidoglicano, reduce la probabilidad de seleccionar bacterias resistentes debido a que es un componente celular altamente conservado que difícilmente podría mutar sin causar la inviabilidad de la bacteria (Schuch *et al.*, 2002; Hermoso *et al.*, 2003; Fischetti, 2005; Borysowski *et al.*, 2006). Son eficaces contra bacterias resistentes a los antibióticos, porque su mecanismo de acción es diferente. Además, el efecto es instantáneo y al contacto con la pared celular. Por otro lado, se ha demostrado que no son tóxicas para células eucariotas, no son inmunogénicas y son biodegradables (Fischetti, 2005; Defraine *et al.*, 2016).

Otros de los aspectos por lo que las endolisinas son consideradas como alternativa antimicrobiana prometedoras, es que se ha demostrado que actúan sinérgicamente con antibióticos convencionales, reduciendo la dosis efectiva (Fenton, *et al.* 2010).

I.5 Membrana externa de bacterias Gram-negativas como barrera natural contra las endolisinas

A diferencia de las bacterias Gram-positivas, las bacterias Gram-negativas poseen una membrana externa que protege su pared celular, y que actúa como una barrera impermeable altamente selectiva que obstaculiza el paso de compuestos antibacterianos dañinos para la bacteria (Vaara, 1992).

De forma general, la membrana externa se compone de una cara externa hidrofílica formada de lipopolisacáridos (LPS) y una cara interna hidrofóbica

formada por fosfolípidos, a través de la cual sólo pueden atravesar moléculas menores a 600 Da a través de porinas que se encuentran insertadas en ella (**Figura 2**) (Shrivastava & Chng, 2019). Otra característica importante, es que los grupos fosfato de los LPS le confieren a la membrana externa un carácter aniónico, cuyas cargas son estabilizadas por cationes divalentes Mg²⁺ y Ca²⁺ que evitan la repulsión entre los LPS y le confieren un ordenamiento muy compacto (Vaara, 1992).

Por lo anterior, la membrana externa constituye un mecanismo de resistencia primario, intrínseco a este grupo de bacterias, que las vuelve insensibles el efecto de muchas sustancias hidrofóbicas y al efecto de muchos compuestos hidrofílicos de gran tamaño tales como las propias endolisinas cuyo sitio de acción va más allá de la membrana externa (Gerstmans *et al.*, 2018).

Figura 2. Representación gráfica de la composición del complejo de envolturas celulares de las bacterias Gram-negativa. Imagen creada con la herramienta BioRender.

I.6 Estrategias para superar la membrana externa

A pesar de su alta impermeabilidad, se han evaluado exitosamente diferentes estrategias para facilitar el paso de las endolisinas a través de la membrana externa.

Entre las estrategias evaluadas se encuentran el uso de permeabilizadores químicos (EDTA, ácidos orgánicos débiles y aceites esenciales) (Yang *et al.*, 2015; Oliveira *et al.*, 2016; Chang *et al.*, 2017), que permiten el acceso de las endolisinas a la capa de peptidoglicano. Así mismo, los liposomas catiónicos, ofrecen la capacidad de conducir a las endolisinas al interior de la bacteria a través de su fusión a la membrana (Bai *et al.*, 2019); y finalmente la fusión de péptidos permeabilizadores de membrana que facilitan el paso a través de la membrana externa (Briers *et al.*, 2014a; Briers *et al.*, 2014b).

I.6.1 Ingenierización de las endolisinas

La modificación de las endolisinas ha sido una de las estrategias más novedosas desarrolladas para potenciar la capacidad antimicrobiana de estas enzimas (Gerstmans *et al.* 2018). Esta estrategia se basa en la ingenierización de las endolisinas, empleando herramientas de biología molecular y modelado computacional, para modificar su secuencia aminoacídica fusionando péptidos u otros dominios de proteínas, con el propósito de obtener una variante quimérica con la capacidad de promover su paso por la membrana externa y lisar la pared celular sin la necesidad de aplicar algún agente permeabilizador externo.

La prueba de concepto fue planteada y demostrada por Briers *et al.*, (2014a y 2014b), quienes denominaron a sus variantes quiméricas como "Artilisinas". Se han evaluado diferentes fusiones a genes de diversas endolisinas. Algunas de ellas son secuencias que codifican péptidos catiónicos, hidrofóbicos o anfipáticos que desestabilizan la membrana externa (Briers *et al.*, 2014a; Briers *et al.*, 2014b; Defraine *et al.*, 2016). De igual forma se ha evaluado la fusión de porciones de

bacteriocinas que se unen a receptores específicos para la translocación de la endolisina al espacio periplásmico (Lukacik *et al.*, 2012; Yan *et al.*, 2017), así como la fusión de dominios de unión con carga fuertemente catiónica, que también desestabiliza la membrana externa y aumenta su permeabilidad (Wang *et al.*, 2017b).

I.7 Péptidos catiónicos

Debido a la naturaleza fuertemente aniónica de la membrana externa, la fusión de péptidos catiónicos a las endolisinas es una de las estrategias que ha mostrado mejores resultados para inducir el efecto bactericida contra algunos patógenos Gram-negativos (Briers *et al.*, 2014a; Briers *et al.*, 2014b; Defraine *et al.*, 2016).

Los péptidos catiónicos que se pueden fusionar a las endolisinas pueden ser péptidos que ya existen en la naturaleza (como algunos péptidos antimicrobianos), péptidos diseñados, o incluso péptidos ricos en aminoácidos catiónicos que forman parte de otra proteína. Entre más fuerte sea la carga positiva, se dará una mayor atracción electrostática del péptido con las cargas negativas de los fosfolípidos de la membrana externa y por lo tanto, se potenciará la desestabilización de la misma (Yeaman & Yount, 2003).

I.8 Predicción estructural y modelado de proteínas

La fusión de péptidos y de cualquier otro dominio a las endolisinas, requiere de análisis bioinformáticos para diseñarlas y analizar si la fusión de estos fragmentos, afectará negativamente a su plegamiento y/o actividad.

El conocimiento de la arquitectura de las endolisinas; así como de sus estructuras cristalográficas, han impulsado el diseño y creación de endolisinas quiméricas a través del diseño racional (o diseño *in silico*) y la ingenierización de dominios para proponer cambios que logren una determinada función (Martínez & Guevara, 2014; Tišáková & Godány, 2021).

II. ANTECEDENTES

II.1 Endolisinas de vibriófagos

Actualmente el estudio de las endolisinas enfocado en una potencial aplicación contra patógenos de importancia acuícola, se encuentra en sus etapas iniciales de investigación. En este sentido, se ha evidenciado la actividad enzimática de unas pocas endolisinas de vibriófagos (fagos que infectan a diferentes especies de *Vibrio*, y sólo algunas han sido caracterizadas. De estas, sólo dos endolisinas han sido evaluadas en ensayos bactericidas.

En evaluaciones de actividad enzimática con células sensibilizadas (bacterias muertas y pretratadas para exponer la pared celular), se demostró la actividad lítica de las endolisinas de los vibriófagos Lysqdvp001, LysVPp1 y LysVpKK5 contra *V. parahaemolyticus* (Wang *et al.*, 2016; Li *et al.*, 2018; Melo-López *et al.*, 2021), de la endolisina LysVPp1 contra *Vibrio campbellii*, *Vibrio azureus* (Li *et al.*, 2018) y la endolisina cwlQ contra *Vibrio algynolyticus* (Luo *et al.*, 2018).

Por otro lado, Lim *et al.* (2020) demostraron que la endolisina del vibriófago KF2_Lys posee la capacidad intrínseca de permeabilizar la membrana externa de la cepa KF1 de *V. parahaemolyticus* y provocar el efecto bactericida en ausencia de desestabilizadores de membrana. Sin embargo, es importante aclarar que esta evaluación bactericida fue realizada en regulador y no en agua de mar. *V. parahaemolyticus* es un patógeno marino y la alta concentración de iones Mg²⁺ y Ca²⁺ presentes en el agua de mar, contribuye a la estabilidad de su membrana externa.

En otro estudio realizado por Ning *et al.*, (2021) se demostró el efecto sinérgico de la endolisina Lysqdvp001 con el permeabilizador de membrana ε -polilisina para inhibir el crecimiento de múltiples cepas silvestres de *V*.

parahaemolyticus. Incluso esta combinación fue capaz de reducir la carga bacteriana en mariscos contaminados con *V. parahaemolyticus*, y de reducir la biopelícula formada por este patógeno en superficies en contacto con alimentos (poliestireno, vidrio y acero inoxidable), con lo que sugieren una potencial aplicación en el área de inocuidad alimentaria.

Continuando con el estudio de la endolisina Lysqdvp001, Srinivasan *et al.*, (2020) proponen que las endolisinas potencialmente podrían ser útiles en el control biológico de *V. parahaemolyticus* en organismos infectados. En este estudio, demostraron la capacidad de esta endolisina (renombrada por ellos como Vplys60) para reducir la mortalidad en *Artemia franciscana* tras el desafío con la cepa de referencia *V. parahaemolyticus* MTCC-415 (30% de mortalidad, contra 100% en el control infectado sin tratamiento después de 24 h). La reducción en la mortalidad fue acompañada de la reducción en la carga bacteriana de *V. parahaemolyticus*. Los autores expresaron la endolisina recombinante en la levadura *Pichia pastoris* X-33, y administraron la levadura como alimento a *Artemia franciscana*.

Como se puede observar, la investigación de las endolisinas como potencial tratamiento para el control de *Vibrio*, es muy reciente y se han estudiado pocos modelos; todos ellos derivados de vibriófagos. Sin embargo, la fuente de endolisinas con potencial bactericida contra estos patógenos marinos, no se restringe a aquellas endolisinas codificadas por vibriófagos.

Debido a que la pared celular de bacterias Gram-negativas es muy conservada, las endolisinas codificadas por cualquier fago que infecta a estas bacterias tendrá potencial actividad sobre la pared celular de cualquier bacteria Gram-negativa (Briers & Lavigne, 2015). Por otro lado, debido a que la actividad biológica de las endolisinas es intracelular, las endolisinas codificadas por vibriófagos no están expuestas a las condiciones marinas donde vive el hospedero, por lo que no debe esperarse que necesariamente desempeñen su actividad catalítica en estas condiciones de alta salinidad (Melo-López *et al.*, 2021).

II.2 Endolisina KZ144

Dicho lo anterior, la fuente de endolisinas potencialmente capaces de combatir *V. parahaemolyticus* y otros *Vibrios*, puede provenir de otros fagos que infectan bacterias Gram-negativas, y que además sean activas en condiciones de alta fuerza iónica y alcalinidad (0.5 M NaCl, pH 8, alta concentración de iones divalentes y otros iones).

Tal es el caso de la endolisina KZ144, codificada por el bacteriófago φKZ de la familia Myoviridae, que infecta a la bacteria Gram-negativa *Pseudomonas aeruginosa* (Fokine *et al.*, 2008). Esta endolisina es una transglicosilasa lítica, posee estructura modular, presenta su mayor actividad en altas concentraciones de NaCl (0.15 - 0.5 M) y en un intervalo de pH de 7 - 9 (Briers *et al.*, 2007). Además, se ha demostrado su efecto bactericida contra *P. aeruginosa* y *Acinetobacter baumannii* en conjunto con EDTA, como permeabilizador de membrana (Briers *et al.*, 2014; Defraine *et al.*, 2016).

En evaluaciones de actividad enzimática en agua de mar natural, se observó que no se inhibe, tampoco cuando fue evaluada en conjunto con permeabilizadores de membrana químicos. Fue entonces que se evaluó en ensayos bactericidas contra *V. parahaemolyticus* ATCC-17802 en conjunto con permeabilizadores de membrana, en diferentes condiciones. Sin embargo, en todos los ensayos se observó un efecto antagónico no reportado previamente en la literatura. La endolisina KZ144 se adsorbe a la superficie de *V. parahaemolyticus* y aparentemente interfiere con el efecto de los permeabilizadores (Zermeño-Cervantes, 2019).

Por lo anterior, en el presente trabajo se propuso como estrategia, diseñar una variante quimérica de la endolisina KZ144 a través de la fusión de un péptido policatiónico, que le permita atravesar la membrana externa de *V*.

parahaemolyticus, al mismo tiempo que sea estable en condiciones similares a las del medio marino.

La endolisina KZ144 es la más estudiada de las endolisinas evaluadas contra patógenos Gram-negativos. Además de las condiciones en las que desempeña su actividad enzimática (Briers *et al.*, 2007), y el efecto bactericida que provoca contra algunas bacterias Gram-negativas (Briers *et al.*, 2014a), se ha estudiado su estructura cristalográfica (Fokine *et al.*, 2008) y ha sido ingenierizada con diferentes péptidos capaces de permeabilizar la membrana externa de algunas bacterias Gram-negativas (Briers *et al.*, 2014a). Por lo anterior, es un buen modelo de estudio para realizar el diseño racional de la variante quimérica contra *V. parahaemolyticus*.

Realizando una búsqueda bibliográfica, se seleccionó el nanopéptido policatiónico (PCNP, del inglés **P**oli**c**ationic **N**ano**p**eptide,) sobre el cual ya se ha demostrado que su fusión con algunas endolisinas potencia su efecto bactericida contra patógenos Gram-negativos (Briers *et al.*, 2014b). Además, se ha demostrado que mantiene su actividad en un amplio intervalo de concentraciones de NaCl (0 - 1 M) y de pH (5 - 10) (Rodríguez-Rubio *et al.*, 2016).

II.3 Endolisinas quiméricas

Briers y colaboradores (2014b) emplearon siete péptidos de distinta naturaleza química (catiónicos, hidrofóbicos y anfipáticos) y los fusionaron a seis endolisinas de diferentes fagos que infectan bacterias Gram-negativas (OBPgp279, PVP-SE1gp146, 2012-1gp229, CR8gp3.5, P2gp09 y PsP3gp10), para obtener diferentes "Artilisinas", capaces de atravesar la membrana externa de *P. aeruginosa* y *A. baumannii*. La mayoría de estas variantes quiméricas mostraron mayor actividad antibacteriana comparada con su versión silvestre. Cabe destacar, que la fusión con el PCNP, resultó en el mayor efecto bactericida de todas las variantes quiméricas.

En otra investigación, Briers *et al.*, (2014a), obtuvieron una variante quimérica de la endolisina KZ144, denominada Art-175, fusionando la secuencia del péptido anfipático SMAP-29 (del inglés, SMAP: **S**heep **M**yeloid **A**ntimicrobial **P**eptide). Esta fusión, potenció el efecto bactericida de la endolisina contra bacterias persistentes de *P. aeruginosa* (reducción > 4 log). En otro estudio, esta misma variante quimérica fue evaluada contra diferentes cepas multiresistentes de *A. baumannii* y fue capaz de eliminar completamente la carga bacteriana (10⁸ UFC/mL), incluso de las bacterias persistentes. El efecto bactericida resultó superior a lo observado en los tratamientos con los antibióticos convencionales ensayados (ciprofloxacino y tobramicina) (Defraine *et al.*, 2016)

III. PLANTEAMIENTO DEL PROBLEMA

El potencial bactericida de las endolisinas contra patógenos Gram-negativos ha sido demostrado con unas pocas endolisinas, y en su mayoría únicamente contra algunos patógenos de importancia clínica para la salud humana. La investigación de las endolisinas como potencial tratamiento para el control de patógenos Gram-negativos apenas comienza, por lo que son necesarios más estudios para comprender los alcances y limitaciones que puede tener el control bacteriano con endolisinas contra estos patógenos.

A pesar de que el empleo de endolisinas contra patógenos Gram-negativos es limitado debido a las características de su membrana externa, la manipulación genética guiada por análisis bioinformático y el uso de técnicas moleculares, ha permitido la obtención de endolisinas quiméricas recombinante formadas por péptidos con potente actividad sobre bacterias Gram-negativas. En este trabajo se propuso diseñar la endolisina quimérica PCNP-KZ144, a partir de la endolisina KZ144 proveniente del bacteriófago *Myoviridae* φKZ, para conferirle actividad contra bacterias Gram negativas.

IV. PREGUNTA DE INVESTIGACIÓN

¿El nanopéptido policatiónico, fusionado al extremo N-terminal de la endolisina KZ144, limitará el acceso del sitio catalítico de la endolisina?

V. HIPÓTESIS

PREMISAS

- Las variantes quiméricas de la endolisina KZ144 con la fusión de un péptido desestabilizador de la membrana externa, favorece la lisis celular confiriendo un efecto bactericida contra patógenos Gram-negativos.
- La endolisina KZ144 es capaz de degradar la pared celular de células bacterianas Gram-negativas en condiciones marinas cuando la bacteria es sensibilizada, pero contrariamente no tiene la capacidad de atravesar su membrana externa para ejercer el efecto bactericida sobre células viables.
- El péptido policatiónico PCNP fusionado a diversas endolisinas confiere un efecto bactericida contra patógenos Gram-negativos, manteniendo su actividad en condiciones similares a las del medio marino.

HIPÓTESIS

Por lo tanto, se espera que el PCNP no obstruya el sitio catalítico de la endolisina quimérica, diseñada mediante herramientas bioinformáticas; y en consecuencia esta variante mantenga su actividad muralítica con un adicional efecto bactericida contra patógenos Gram-negativos.

VI. OBJETIVOS

Objetivo general

Evaluar mediante análisis *in silico*, el efecto que tiene la fusión del nanopéptido policatiónico PCNP en el extremo N-terminal de la endolisina KZ144, sobre su
plegamiento y actividad, como criterio para la elaboración de una construcción genética.

Objetivos específicos

- 1. Realizar modelos de la estructura de la endolisina PCNP y acoplamiento molecular con ligandos de fragmento de pared bacteriana
- 2. Obtener la construcción PCNP-KZ144 en el vector de expresión pColdl.

VII. MATERIALES Y MÉTODOS

VII.1 Diseño y análisis bioinformático de las estructuras terciarias de las moléculas

VII.1.1 Diseño <u>in silico</u> de la endolisina PCNP-KZ144 VII.1.1.1 Gen codificante de la endolisina quimérica (pcnp-kz144)

La construcción del gen codificante pcnp-kz144 se diseñó tomando como base la secuencia de la endolisina silvestre KZ144 (NP_803710 código de acceso NCBI). En el extremo N-terminal de la endolisina se fusionó el nanopéptido policatiónico (PCNP). Para lo anterior, el diseño del gen tomó en cuenta el sistema de expresión en la cepa de *E. coli* BL21(D3) y el vector de expresión pColdI.

El vector de expresión pColdI permite la expresión de la proteína recombinante con una fusión traduccional de seis histidinas en el extremo N-terminal de la endolisina, para facilitar su purificación posterior. En la **Figura 3A** se muestra una representación gráfica del gen codificante de la endolisina quimérica PCNP-KZ144, y su correspondiente secuencia (**Figura 3B**).

De esta manera, la secuencia codificante de la endolisina quimérica PCNP-KZ144 posee en el extremo N-terminal el codón ATG (secuencia iniciadora de la traducción); la secuencia AATCACAAAGTG, descrita como un elemento potenciador de la traducción TEE (del inglés Translation Enhancing Element); la secuencia CATCATCATCATCATCAT (secuencia codificante de la etiqueta de seis histidina); la secuencia ATCGAAGGTAGG (secuencia del sitio de corte del Factor Xa que permite eliminar la etiqueta de histidinas); secuencia CATATG (sitio de corte de la enzima de digestión Ndel); la secuencia AAACGCAAGAAACGTAAGAAACGCAAA, que codifica la secuencia del nanopéptido KRKKRKKRK del PCNP y finalmente en el extremo carboxilo la secuencia de la endolisina silvestre KZ144 y el codón de término TAA (codón de terminación de la traducción).

Una vez conformada la secuencia codificante de la proteína PCNP-KZ144, fueron optimizados los codones de acuerdo con el uso preferencial de *E. coli*.

Figura 3. Gen codificante de la endolisina quimérica PCNP-KZ144. **A**) Representación gráfica del gen codificante de la endolisina quimérica. **B**) Secuencia nucleotídica.

CGTAAGTAA

VII.1.1.2 Predicción de la estructura terciaria de la endolisina quimérica PCNP-KZ144

La secuencia aminoacídica de la endolisina quimérica PCNP-KZ144, se determinó mediante el Sistema Experto de Análisis de Proteínas (siglas del inglés "Expert Protein Analysis System", ExPASy - web.expasy.org/translate/), posterior a la optimización de codones. Se obtuvieron varias secuencias aminoacídicas correspondientes a diferentes marcos de lectura. Se aceptó únicamente la secuencia que permitía la obtención de la proteína completa con el marco de lectura número uno. También mediante este software, se determinó el punto isoeléctrico y peso molecular teórico de la endolisina quimérica (https://web.expasy.org/compute_pi/).

La secuencia aminoacídica seleccionada fue empleada para la obtención de modelos predictivos que describen la estructura terciaria de la proteína. La secuencia de aminoácidos se introdujo en el servidor Refinado Iterativo de Ensamblaje de modelos (siglas del inglés "Iterative Threading ASSEmbly Refinement", I-TASSER). Esta plataforma (https://zhanggroup.org/I-TASSER/) permite la generación automática de predicciones de alta calidad de la estructura tridimensional de una proteína a partir de sus secuencias de aminoácidos, siguiendo el protocolo de uso descrito por Ambrish Roy y colaboradores (Roy *et al.*, 2011).

Los cinco modelos generados en I-TASSER se visualizaron en AutoDock, para examinar cuál pudiera presentar la etiqueta de histidinas y la secuencia del PCNP (Lys 18-Lys 26) en una posición que obstruya el sitio catalítico de la enzima quimérica (Glu140). Se seleccionó el modelo de mejor puntuación C (C-score). A este modelo se le minimizó la energía aplicando el campo de fuerza AMBER ff14SB mediante el software *UCSF Chimera*, para lo cual sólo se agregaron los hidrógenos polares a la estructura. Finalmente, se guardó la molécula con todos estos cambios en un archivo con extensión ".pdb" y se visualizó la estructura en el software *UCSF Chimera* (https://www.rbvi.ucsf.edu/chimera).

VII.1.2 Selección en el PDB de la estructura cristalográfica de la endolisina KZ144

Se realizó una búsqueda de las estructuras cristalográficas de la endolisina KZ144 depositadas en la Base de Datos de Proteínas (del inglés **P**rotein **D**ata **B**ank, **PDB**) y se seleccionó la estructura con código de acceso 3BKH. Luego de evaluar las métricas de calidad de la estructura se procedió a acomodar las coordenadas de los residuos hacia la conformación de menor energía, para así mejorar la geometría y estereoquímica de la molécula. Para lo cual sólo se consideraron los estados de protonación estándar, se eliminaron todos los hidrógenos, se aplicó el campo de fuerza estándar AMBER ff14SB y se removieron los iones Ni²⁺ y (SO4)²⁻.

Finalmente, se guardó la molécula con todos estos cambios en un archivo con extensión ".pdb".

VII.1.3 Diseño de los modelos de fragmento de pared bacteriana

El diseño del ligando hexasacárido (**Figura 4A**) se realizó sobre la base de las determinaciones de Fokine y colaboradores (2008), donde se reportó que la cavidad del sitio catalítico presenta cinco regiones denominadas A, B, C, D y E, en las que se unen unidades repetidas de los azúcares. Se decidió diseñar el ligando compuesto por seis unidades sacarídicas formadas por tres unidades repetidas del disacárido N-aceltiglucosamina (NAG) y N-acetilmurámico (NAM), unidos por enlaces glicosídicos ß(1-4). Por otro lado, si bien se conoce que la endolisina KZ144 escinde los enlaces glicosídicos (ß1-4), se decidió diseñar otro ligando que representara en mayor extensión la pared bacteriana. A éste se le denominó heteropolímero (**Figura 4B**). Este ligando se constituyó de un disacárido formado por N-aceltiglucosamina (NAG) unido mediante el enlace glicosídico (ß1-4) al N-acetilmurámico (NAM). A su vez, este disacárido se halla unido a otro mediante un tetrapéptido. Ambos ligandos se diseñaron empleando el software Free Maestro Schrödinger.

Figura 4. Representación esquemática de los ligandos diseñados de pared celular bacteriana. **A**) hexasacárido y **B**) heteropolímero.

Las moléculas fueron construidas con fragmentos hallados en el panel de construcción del programa. Estos fragmentos son empleados para crear un marco de referencia sobre el cual se cambian los elementos para introducir los heteroátomos.

Durante la realización del heteropolímero, la región peptídica se conformó por la adición de cada uno de los residuos en la dirección N \rightarrow C, donde el ángulo φ (la rotación en torno al enlace C α -N) es aplicado en el nuevo residuo y el ángulo ψ (la rotación en torno al enlace C-C α) es aplicado al residuo por el cual se une el nuevo aminoácido, reemplazando de esta manera la unión N-C al añadir el nuevo residuo, el cual siempre quedó establecido a 180°.

VII.1.4 Acoplamiento molecular del modelo de la endolisina PCNP-KZ144 con los fragmentos de pared bacteriana diseñados

VII.1.4.1 Preparación de las moléculas: endolisina KZ144 silvestre y la variante quimérica PCNP-KZ144

Los archivos correspondientes a KZ144 y PCNP-KZ144 (ambos con extensión .pdb) fueron empleados, y mediante el programa *AutoDock Tools* se añadieron sólo los hidrógenos polares, se removieron las uniones "merge" de sus cargas con los átomos de carbono y se adicionaron las cargas Gasteiger. Estas cargas son campos de fuerza que utilizan paquetes que describen el diámetro y la carga de diferentes átomos dentro de una simulación. Todos estos cambios se guardaron en un archivo ".pdbqt" correspondiente, pues es la extensión necesaria para los experimentos de acoplamiento. Estos archivos .pdbqt fueron empleados para la confección de la región de acoplamiento (caja) previamente establecida.

VII.1.4.2 Preparación de los ligandos: hexasacárido y heteropolímero

En el caso del ligando hexasacárido, se añadieron todos los hidrógenos y se seleccionó el número máximo de enlaces rotables (32), garantizando la mayor flexibilidad en los enlaces centrales del ligando, correspondiente a los sitios D y E de la endolisina KZ144 por los que se unen los azúcares NAG y NAM. Por otro lado, también se añadieron todos los hidrógenos del heteropolímero. Este ligando constó de 67 enlaces rotables, por lo que resultó necesario guardar tres archivos del mismo, los cuales se diferencian en los enlaces que rotan de la estructura. Finalmente, el ligando hexasacárido y los ligandos correspondientes al heteropolímero se guardaron en un archivo ".pdbqt", los cuales fueron empleados en los experimentos de acoplamiento.

VII.1.4.3 Sistemas de Acoplamiento molecular Endolisina-Ligando

Estos archivos .pdbqt de las endolisinas y ligandos fueron empleados para construir las cajas de acoplamiento, siendo la caja una cavidad seleccionada de la endolisina, la cual guarda las coordenadas (centro x, y, z) y dimensiones del área de búsqueda de interacción. Las cajas se construyeron con el programa AutoGrid.

Se realizaron los acoplamientos rígidos empleando el hexasacárido (KZ144_hexasacárido y PCNP-KZ144_hexasacárido) y el heteropolímero (KZ144_heteropolímero y PCNP-KZ144_heteropolímero).

Para el acoplamiento rígido de cada una de las endolisinas con los diferentes ligandos, las cajas fueron orientadas en la región próxima del aminoácido involucrado en la catálisis; en la endolisina KZ144 silvestre el aminoácido esencial en la catálisis es el Glu115 y en la endolisina quimérica PCNP-KZ144 este aminoácido se ubicó en la posición 140. Lo anterior debido a la fusión traduccional de la etiqueta de seis histidinas, PCNP y sitio de corte del Factor Xa en el extremo N-terminal de la endolisina. Adicionalmente, en los acoplamientos rígidos PCNP-

KZ144_hexasacárido PCNP-KZ144_heteropolímero, las cajas contemplaron las coordenadas del Glu140 y la región (Lys18 a Lys27) correspondiente al segmento del nanopéptido policatiónico.

Los experimentos de acoplamientos se realizaron mediante *AutodockVina* siguiendo las instrucciones del software (Trott & Olson, 2010). Se establecieron diez modos de unión y un rango de energía ideal igual a 3 para todos los acoplamientos. Los resultados de todos los acoplamientos fueron visualizados mediante el software *UCSF Chimera* y los valores de afinidad determinados en los acoplamientos fueron expresados en valores de afinidad (kcal/mol). Una vez obtenidos el conjunto de valores de afinidad de los acoplamientos se realizaron comparaciones estadísticas entre los valores de acoplamientos rígido KZ144_hexasacárido y los obtenidos en PCNP-KZ144_hexasacárido. También se realizaron comparaciones estadísticas entre los valores de acoplamiento rígido KZ144_heteropolímero y los obtenidos en PCNP-KZ144_heteropolímero. Estos análisis estadísticos se realizaron utilizando la función *t.test* (t de Student) incluida en el paquete *stats* versión 4.2.0 del software R (R Core Team, 2021) y se consideró un nivel de significancia de 0.05.

VII.1.4.4 Predicción de la naturaleza de las interacciones en los acoplamientos rígidos PCNP-KZ144_hexasacárido y PCNP-KZ144_heteropolímero

Una vez realizados los acoplamientos moleculares descritos en el apartado VII.1.4.3 se procedió a predecir la naturaleza de las interacciones en la región catalítica de la endolisina quimérica con los ligandos hexasacárido y heteropolímero. Estos análisis se realizaron empleando el software LigPlot+ (Código de acceso: 21919503, PubMed) (Laskowski R A & Swindells M B, 2011).

VII.2 Elaboración de construcciones con los vectores pJET1.2 y pColdl VII.2.1 Diseño de los oligonucléotidos

El oligonucleótido con sentido directo se denominó pcnp_kz144-sd y se conformó de 23 nucleótidos. En sentido 5'→3' se ubicaron los nucleótidos (GGTCGGAATTC) justo delante de la secuencia de reconocimiento de la enzima de digestión *Nde*l (CATATG). Esta secuencia adicional cercana al sitio de corte se situó para aumentar la probabilidad de reconocimiento del ADN por las enzimas de digestión. El sitio de reconocimiento de la enzima de digestión *Nde*l contiene el codón iniciador de la traducción. Posterior se situó los nucleótidos codificantes al nanopéptido policatiónico PCNP (AAACGCAAGAAACGTAAGAAACGCAAA), esta secuencia de nucleótidos se obtuvo mediante traducción reversa usando la utilería bioinformática en http://www.bioinformatics.org/sms2/rev_trans.html. Hacia el extremo 3' se ubicaron los nucleótidos codificantes para los primeros cinco aminoácidos de la endolisina silvestre KZ144 (**Figura 5**).

El oligonucleótido con sentido reverso se denominó kz144-sr y se conformó de 27 nucleótidos. En sentido 5' \rightarrow 3' se ubicaron los nucleótidos (GGTTGG), justo delante de la secuencia de reconocimiento de la enzima de digestión *Bam*HI, por las razones antes comentadas. A continuación, se ubicó la secuencia GGATCC, la cual es inversa complementaria al sitio de digestión *Bam*HI. Hacia el extremo 3' se ubicó la secuencia CTTATTTCTATGTGC, la cual es la inversa complementaria de la secuencia codificante para los últimos cinco aminoácidos de la endolisina silvestre KZ144 (**Figura 5**).

Se determinó la temperatura de hibridación de la reacción de PCR con la herramienta Tm Calculator (<u>https://www.thermofisher.com/</u>) con la enzima ADN polimerasa Phusion High-Fidelity. Esta herramienta tiene su base en el método termodinámico modificado de Allawi y Santa Lucia (1997) empleado para el cálculo de la Tm y la temperatura de hibridación de las reacciones con las ADN polimerasas Platinum SuperFi, Phusion y Phire. También se calculó el tiempo de extensión de la reacción utilizando la siguiente fórmula: *tiempo de extensión* = $\frac{15 s}{1 \text{ kb del gen de interés}}$ según las recomendaciones del fabricante (www.thermoscientific.com/onebio).

Figura 5. Secuencia del gen pcnp-kz144 para amplificar y de los oligonucleótidos pcnp-kz144-sd y pcnp_kz144-sr. **A)** Representación esquemática de los oligonucleótidos y la secuencia del gen pcnp-kz144. En dirección 5' \rightarrow 3'del oligonuclétido con sentido directo se ubica el sitio de digestión de la enzima *Nde*l, seguido la secuencia iniciadora de la traducción, luego la secuencia correspondiente al PCNP. En dirección 5' \rightarrow 3' del oligonuclétido con sentido inverso se ubicó los últimos nucleótidos codificantes a la endolisina KZ144 y a continuación el sitio de digestión de la enzima *Bam*HI. **B)** Secuencia de los oligonucleótidos y del gen pcnp-kz144.

VII.2.2 Cepas bacterianas, enzimas, plásmidos y oligonucleótidos

El gen que codifica para la endolisina KZ144 (NP_803710 código de acceso NCBI) y la secuencia del nanopéptido policatiónico PCNP fueron optimizados para su expresión en *E. coli* (BL21). El gen pcnp-kz144 que codifica la endolisina quimérica PCNP-KZ144 fue sintetizado por la empresa IDT (EE.UU.UA). Las enzimas de digestión Ndel, BamHI (NEB) y la T4 ADN Ligasa (NEB) fueron empleadas para realizar la clonación del gen en el vector de propagación pJET1.2/blunt (Thermo Scientific) y para subclonar en el vector de expresión pColdl (Takara). La propagación de las construcciones se realizó con la cepa *E. coli* DH5a. Mientras que para la expresión de las enzimas se utilizó la cepa *E. coli* BL21(D3). Para la amplificación por PCR se utilizó la ADN polimerasa Phusion Flash High-Fidelity PCR Master Mix (Thermo Scientific) y la Tag ADN polimerasa Tag (Thermo Scientific). El 5'oligonucleótido sentido directo "pcnp-kz144-sd" GGTCGGAATTCCATATGAAACGC-3'; y el oligonucleótido sentido reverso "kz144sr* 5'- GGTTGGGGATCCTTACTTACGATGAGC-3' fueron sintetizados en el Instituto de Biotecnología de la UNAM.

VII.2.3 Elaboración de la construcción pcnp-kz144+pJET1.2 VII.2.3.1 Amplificación del gen pcnp-kz144

Mediante la reacción en cadena de la polimerasa (PCR) se amplificó el gen pcnpkz144 para su clonación en el vector pJET 1.2 (mapa del vector en Material Suplementario).

Se realizó una PCR en gradiente de temperaturas de hibridación para seleccionar la mejor condición (60, 60.8, 62.1, 64, 66.2, 68.1, 69.4 y 70°C). La reacción de amplificación se realizó como se describe en la **Tabla I**. Se empleó como control positivo el gen sintético pcnp-kz144, mientras que como control negativo se agregó agua libre de nucleasas en lugar de ADN.

Tabla I. Mezcla de reacción y programa de PCR para la amplificación del gen pcnp-kz144 con la ADN polimerasa Phusion Flash-High-Fidelity (Thermo Scientific).

Componentes	Concentración	Volumen	Etana	Temperatura	Tiempo	Ciclos
	final	(µL)	стара	(°C)		
Oligo sentido	0.5 µM	1 µL	Desnaturalización	98	10 s	1
			Inicial			
Oligo reverso	0.5 µM	1 µL	Desnaturalización	98	1 s	
ADN pcnp-kz144	50 ng	2.5 µL	Hibridación	60-70	5 s	30
2X Phusion Flash Mix	1X	10 µL	Extensión	72	15 s	
Agua libre de nucleasas	-	5.5 µL	Extensión Final	72	1 min	1
Volumen de reacción						
20 µL						

Los productos de amplificación se mezclaron regulador de carga (razón 1:2) (10 mM Tris-HCI (pH 7.6), 0.03% bromofenol azul, 0.03% cianol xileno FF, 0.15% naranja G, 60% glicerol y 60 mM EDTA) y fueron aplicados en un gel de agarosa 1% en tampón Tris/Ácido Bórico/EDTA 1X (TBE1X). Se empleó un marcador de peso molecular de 100 pb (Thermo Scientific). Luego de la corrida electroforética, los productos de amplificación fueron visualizados con la ayuda de un fotodocumentador (Molecular Imager gel DocTM XR, BIO-RAD). Basado en la intensidad de las bandas se seleccionó la temperatura óptima de hibridación.

VII.3.2 Clonación del gen pcnp-kz144 en el vector de clonación pJET1.2/blunt

El producto de PCR fue ligado directamente al vector de clonación pJET1.2/blunt del kit CloneJET PCR Cloning (Thermo Scientific). La relación inserto:vector se calculó siguiendo las especificaciones del fabricante.

En la **Tabla II** se muestra la mezcla de reacción. Una alícuota de 10 μ L de esta mezcla se incubó por 16 h a 4°C (*a1*), mientras que otra se incubó a temperatura ambiente (*a2*). Pasado el tiempo de incubación, la reacción se inactivó

a 65°C durante 10 min y las muestras se conservaron a -20°C hasta su siguiente uso.

Tabla II. Mezcla de reacción para la reacción de ligación del gen pcnp-kz144 en elvector pJET1.2/blunt.

Componentes	Volumen (μL)
Regulador de reacción 2X	10
producto de PCR (pcnp-kz144)	1
Vector pJET 1.2	1
T4 ADN ligasa	1
Agua libre de nucleasas	7
Volumen final de reacción	20 µL

VII.3.3 Transformación de células competentes DH5a

Se siguió el protocolo de transformación por choque térmico descrito por Mendel e Higa (1970) con algunas modificaciones. Las células competentes de *E coli* DH5α fueron transformadas con el plásmido recombinante pcnp-kz144+pJET1.2 de las dos reacciones de ligación (reacción a 4°C y a temperatura ambiente).

VII.3.4 Selección de clonas transformantes por PCR de colonia

Para verificar la presencia de la construcción pcnp-kz144+ pJET1.2 en las colonias seleccionadas, se realizó una PCR de colonia empleando la Taq ADN polimerasa (Thermo Scientific).

La reacción de PCR se realizó siguiendo el protocolo que se especifica en la **Tabla III**. Las colonias seleccionadas fueron numeradas y resembradas en agar LB/Amp (100 µg/mL). Por otro lado, se tomó una pequeña muestra de cada colonia

y se depositó de forma independiente en microtubos de 200 μ L con 15 μ L de agua libre de endonucleasas. Los tubos se incubaron a 95°C por 5 min. El lisado celular fue utilizado como templado en las reacciones de PCR.

Se preparó una sola mezcla de reacción (en ausencia del ADN) para todas las reacciones de PCR. Se dispensaron 9 μ L en 12 tubos; 10 para cada una de las transformantes, un control positivo (gen sintético) y un control negativo (agua). A cada microtubo, según lo correspondiente, se le adicionó 1 μ L de ADN o agua.

Los productos de amplificación fueron analizados mediante electroforesis en gel de agarosa 1% en TBE1X, tal como se describe en el apartado VII.2.3.1. De esta manera se seccionaron las transformantes portadoras de la construcción pcnp-kz144+pJET1.2. Luego, las clonas transformantes con la construcción pcnp-kz144+pJET1.2 fueron cultivadas en medio LB/Amp (100 µg/mL) por 16 h a 37°C con agitación orbital de 150 rpm. Posteriormente, se realizó la extracción de ADN plasmídico correspondiente a cada cultivo con el kit GeneJET Plasmid Miniprep (ThermoFisher Scientific), siguiendo las especificaciones del fabricante. A continuación, se determinó la concentración y pureza (relación Abs 260/280) del ADN de cada extracción empleando un NanoDrop 2000 (Thermo Scientific).

Tabla III. Mezcla de reacción y programa de PCR para la amplificación del gen pcnp-kz144 con ADN polimerasa Taq.

Componentes	Concentración	Volumon (ul.)	(ul.) Etono	Temperatura (°C)	Tiempo	No.
	Final	volumen (µL) Eta	стара			Ciclos
Tampón Taq 10X	1X	13	Desnaturalización Inicial	95	3 min	1
Mezcla dNTPs 10 mM	0.2 mM	2.6	Desnaturalización	95	30 s	
			Hibridación	61.3	30 s	
Oligo sentido directo	0.2 µM	2.6	Extensión	72	50 s	
Oligo sentido reverso	0.2 µM	2.6				30
ADN Taq polimerasa 5 U	1 U	3.25				
ADN pcnp-kz144+pColdl	-	13 µL				
Agua libre de nucleasas	-	82.55	Eutonolán Ein-I	72	5 min	1
Volumen final de reacción		130	Extension Final			

VII.3.5 Digestión del plásmido recombinante pcnp-kz144+pJET1.2

Se seleccionó la construcción pcnp-kz144+pJET1.2 (Clona 6) pues presentó mayor concentración de ADN. La construcción se restringió para corroborar que el gen pcnp-kz144 se insertó correctamente en el vector pJET1.2. Brevemente, la reacción consistió de 6 μ L agua libre de nucleasas, 1 μ L de la endonucleasa *Bam*HI, 1 μ L de la endonucleasa *Nd*el, 1 μ L del amortiguador 3.1 y 1 μ L de ADN plasmídico (245.6 ng). La mezcla de reacción se incubó a 37°C por 16 h, posteriormente se inactivó a 65°C durante 20 min y se almacenó a -20°C hasta su uso posterior. Una muestra de la construcción restringida y sin digerir, fueron visualizadas en gel de agarosa al 1% en TBE1X.

VII.3.6 Digestión y purificación del amplicón pcnp-kz144

Una vez verificada la presencia del inserto y su correcta digestión, se amplificó nuevamente el gen pcnp-kz144 en una reacción de 50 μ L con la polimerasa Phusion Flash-High-Fidelity, tal como se describe en el apartado VII.2.3.1. Posteriormente, el producto de PCR fue digerido en una reacción de 60 μ L siguiendo el procedimiento descrito en la **Tabla IV**. La mezcla de reacción se incubó a 37°C durante 16 h, posteriormente las enzimas se inactivaron a 65°C durante 20 min, y la muestra fue almacenada a -20 °C.

Se tomaron alícuotas del producto de PCR pcnp-kz144 digerido y sin digerir y se visualizaron en una electroforesis en gel de agarosa 1% en TBE1X, para verificar su calidad e integridad.

Componentes de la reacción	Volumen
Producto de PCR pcnp-kz144	44 µL
Enzima <i>Nd</i> el	2 µL
Enzima <i>Bam</i> HI	2 µL
Tampón 3.1	5.5 µL
Agua libre de nucleasas	6.5 µL

Tabla IV. Mezcla de reacción para la digestión del amplicón pcnp-kz144.

El producto digerido fue purificado para eliminar todos los componentes de las reacciones previas de amplificación, siguiendo las especificaciones del kit GeneJET[™] PCR Purification (ThermoFisher Scientific). Se tomó una alícuota para visualizar la calidad del ADN en un gel de agarosa al 1% en TBE1X. La cuantificación de ADN y la pureza (Abs 260/280) fueron analizados en un NanoDrop 2000 (Thermo Scientific). El ADN purificado disuelto en el regulador tampón de elusión se almacenó a -20°C hasta su uso. En los extremos 5' y 3' del producto de PCR se generaron extremos cohesivos con las enzimas *Nde*l y *Bam*HI respectivamente para realizar la clonación posterior en el vector de expresión pColdI.

VII.4.3 Obtención de la construcción pcnp-kz144+pColdI VII.4.3.1 Linearización del vector de expresión pColdI

El vector pColdI fue obtenido a partir de otra construcción transformada en DH5 α . La transformante DH5 α con la construcción pCold-MS50 fue cultivada a partir de una colonia, en 10 mL de caldo LB (100 µg/mL) a 35°C, con agitación orbital de 150 rpm, 16 - 18 h. Pasado este tiempo las células fueron cosechadas a 10 000 rpm durante 5 min. El ADN plasmídico fue extraído con el kit GeneJET Plasmid Miniprep, tal como se describe en las indicaciones del fabricante.

A continuación, se realizó la linearización del vector pColdl. La reacción consistió de 5.5 μ L agua libre de nucleasas, 2 μ L de la endonucleasa *Bam*HI, 2 μ L de la endonucleasa *Nd*el, 5.5 μ L del amortiguador 3.1 y 40 μ L de ADN plasmídico (6,924.8 ng). La mezcla de reacción se incubó a 37°C por 16 h, posteriormente se inactivó a 65°C durante 20 min para inactivar las enzimas, y se almacenó a -20°C hasta su uso posterior.

Una muestra de la construcción digerida y sin digerir fueron visualizadas en gel de agarosa al 1% en TBE1X. Una vez separadas las bandas, se continuó con la purificación del vector pColdl (libre del inserto) del gel de agarosa con el kit Zymoclean Gel DNA Recovery (Zymo Research).

VII.4.3.2 Clonación del gen pcnp-kz144 en el vector pColdI

El producto de PCR pcnp-kz144 digerido y purificado (obtenido en el apartado VII.3.6), fue ligado al vector de expresión pColdI. La relación inserto: vector se calculó siguiendo las especificaciones del fabricante. En la mezcla de reacción se

emplearon 50 ng del vector pColdl y la concentración del inserto se calculó mediante la siguiente ecuación, con una relación molar $\frac{vector}{inserto} = \frac{1}{21}$

Ecuación:

$$\frac{ng \ de \ vector \ * \ kb \ del \ inserto}{kb \ del \ vector} * proporción\left(\frac{Inserto}{vector}\right) = ng \ del \ inserto$$

La reacción de ligación consistió en 1 µL de amortiguador de reacción de la T4 DNA Ligasa ligación 10 X, 2.5 µL del vector pColdI linearizado (50 ng), 1 µL de ADN pcnp-kz144 (78.4 ng), 1 µL de T4 DNA Ligasa y 4.5 µL de agua libre de nucleasas. El volumen de la mezcla de reacción se dividió en dos microtubos de 1.5 mL. Una alícuota se incubó durante 16 h a 4°C y la otra en un contenedor con hielo hasta alcanzar gradualmente la temperatura ambiente. Posteriormente, la enzima de las ligaciones se inactivó a 65°C durante 10 min, y fueron almacenados los productos de ligación a - 20°C.

Enseguida se transformaron células competentes de *E. coli* DH5 α con 2 µL de cada una de las reacciones de ligación de acuerdo con el apartado VII.3.3 y se seleccionaron clonas positivas por PCR de colonia de acuerdo al apartado VII.3.4. Algunas de las clonas portadoras de la construcción pcnp-kz144+pColdl fueron cultivadas por separado en 5 mL de caldo LB/Amp (100 µg/mL) a 35°C, con agitación orbital de 150 rpm, 16 - 18 h. Posteriormente se realizó la extracción de ADN plasmídico en cada uno de los cultivos con el kit GeneJET Plasmid Miniprep. A continuación, a cada una de las extracciones se cuantificó el ADN plasmídico y visualizaron en un gel de agarosa al 1% en TBE 1X, como se ha descrito anteriormente, y se almacenó a -20°C.

VII.5 Secuenciación del inserto pcnp-kz144 en los vectores pJET1.2 y pColdI

La fidelidad de la secuencia del gen pcnp-kz144 clonado en el vector de expresión fue verificada por secuenciación (MacroGen, Korea)

33

(http://dna.macrogen.com/eng). Las muestras enviadas consistieron en 100 ng de la construcción pcnp-kz144+pColdl y 5 pmoles de oligo contenido en 15 μL. Se envió a secuenciar la construcción pcnp-kz144+pColdl, proveniente de una clona positiva en el ensayo PCR de colonias. Una vez recibidos los resultados de la secuenciación, se realizó un alineamiento con la secuencia del gen pcnp-kz144 enviada a sintetizar.

Luego de analizar los resultados de secuenciación y detectarse una deleción en el gen pcnp-kz144 se decidió realizar nuevamente todo el proceso hasta la obtención de nuevas construcciones pcnp-kz144+pJET1.2 y pcnp-kz144+pColdl, provenientes de clonas positivas en el ensayo de PCR de colonias. También se verificó la secuencia del gen pcnp-kz144 clonado en los vectores pJET1.2 y pColdl por secuenciación en la Unidad de Síntesis y Secuenciación del Instituto de Biotecnología de la UNAM. Para cubrir todo el gen, fueron secuenciadas la cadena sentido y sentido reverso en reacciones independientes cada una con sus respectivos oligonucleótidos. Las muestras enviadas consistieron en 500 ng de la construcción determinada y 10 pmoles de oligo contenido en 16 µL. Se realizó nuevamente un alineamiento con las secuencias recibidas.

Los resultados de la secuenciación fueron analizados mediante el programa MUSCLE (del inglés, **MU**Itiple **S**equence **C**omparison by Log- Expectation) (<u>https://www.ebi.ac.uk/Tools/msa/muscle/</u>), así se realizó un alineamiento múltiple de las secuencias para evaluar la homología de las secuencias génicas. A través del alineamiento se compararon las secuencias pcnp-kz144 de cada una de las clonas positivas con la secuencia del gen pcnp-kz144 sintetizado por IDT, siguiendo la metodología de esta plataforma (Edgar, 2004).

34

VIII. RESULTADOS

VIII.1 Secuencia aminoacídica y modelos de la estructura terciaria de la endolisina PCNP-KZ144

La secuencia aminoacídica (**Figura 6**) de la endolisina PCNP-KZ144, así como los parámetros físico-químicos fueron obtenidos mediante la herramienta ExPASy, luego de introducir la secuencia génica codificante. Esta endolisina se constituyó de 285 aminoácidos, de los cuales 27 son residuos cargados negativamente (Asp + Glu) y 43 cargados positivamente (Arg + Lys). Los aminoácidos Lys, Ala, Leu, Thr, Gly, y Asn; fueron los más abundantes con composición relativa igual a 9.8, 8.1, 7.7, 7.4, 7.4, 6.0%, respectivamente. La molécula presentó un peso molecular de 32,029.66 Da y un punto isoeléctrico (pl) igual a 9.83.

Figura 6. Secuencia de aminoácidos de la endolisina PCNP-KZ144 obtenida con la herramienta ExPASy.

Luego de la introducción de la secuencia aminoacídica en la plataforma I-TASSER se obtuvo el Factor-B normalizado, para indicar el grado de movilidad térmica inherente de los residuos / átomos en la proteína; permitiendo predecir 12 α -hélices y una hoja-ß como las estructuras secundarias que componen a la proteína (**Figura 7**).

Figura 7. Predicción del Factor-B normalizado obtenido en I-TASSER.

También mediante el Diagrama Ramachandran, obtenido por Swiss-Model se determinó si los anclajes de los ángulos Psi y Phi de la estructura se encuentraban en una región favorecida o no (**Figura 8**). En esta figura los círculos color azul representan los ángulos actuales medidos para los aminoácidos que constituyen a la proteína. Las regiones verdes oscuras corresponden a conformaciones donde no existe impedimento estérico, es decir, son las regiones permitidas. Las áreas verdes claras muestran las regiones permitidas cuando son usadas en el cálculo radios ligeramente menores a los de las interacciones de van der Waals; es decir los átomos se encuentran más unidos entre sí. Las regiones blancas corresponden a conformaciones donde los átomos del polipéptido se hallan más cercanos que la suma de sus radios de van der Waals; estas regiones son estéricamente no permitidas para todos los aminoácidos menos para la glicina, pues este residuo carece de cadena lateral.

El análisis del diagrama permitió identificar que la mayor cantidad de residuos se hallan en regiones energéticamente favorables y se determinó el tipo de α -hélices y de hoja-ß que conforman la estructura de la endolisina PCNP-KZ144. De los cuales se identificaron abundantes aminoácidos que conforman estructuras α -hélices dextrógiras, constituídas por cuatro residuos por vuelta de la hélice, mientras que pocos aminoácidos conforman α -hélices levógiras. Por otro lado, se identificaron pocos aminoácidos que conforman hoja-ß.

36

Figura 8. Diagrama Ramachandran de la endolisina PCNP-KZ144 obtenido en Swiss-Model.

La secuencia aminoacídica fue empleada también para la obtención de los modelos de predicción de la estructura terciaria (3D) de la endolisina PCNP-KZ144, a través de la plataforma I-TASSER los cuales fueron visualizados con el software *UCSF Chimera*. En la **Figura 9** se muestran los cinco modelos obtenidos. Cada uno de estos modelos de predicción exhibió un valor de puntuación C, modelo A (-0.21), modelo B (-0.86), modelo C (-0.67), modelo D (-3.90) y modelo E (-2.83). Se seleccionó el modelo A pues presentó mayor puntuación C y fue empleado en los ensayos de acoplamiento con los modelos de fragmento de pared bacteriana. El valor de puntuación C (C-score) es una medida de confianza de los modelos que se obtienen tras las simulaciones por I-TASSER. Este valor es calculado basado en la

significancia de los alineamientos de los templados seleccionados y los parámetros convergentes de las simulaciones.

Figura 9. Modelos de la estructura 3D de la endolisina PCNP-KZ144 obtenidos por I-TASSER y visualizados en el programa AutoDock 4.2. La molécula se representó en forma de listón, donde sólo el residuo Glu140 se representó en esferas. Mediante círculos de colores se destacan los extremos (N-terminal y C-terminal, azul), la región correspondiente a la etiqueta de His (violeta) y la región correspondiente al PCNP con puntos amarillos.

VIII.2 Modelos de fragmento de pared bacteriana

Los dos modelos de fragmento de pared bacteriana, diseñados mediante el software Free Maestro Schrödinger, fueron visualizados en el software *UCSF Chimera*. En la **Figura 10** se presentan las imágenes correspondientes a cada modelo. En la sección A: modelo hexasacárido y en la sección B: modelo heteropolímero.

Figura 10. Modelos de un fragmento de pared bacteriana. A) hexasacárido y B) heteropolímero.

VIII.3 Acoplamiento molecular de las endolisinas con los ligandos del fragmento de pared bacteriana

VIII.3.1 Interacción endolisina_hexasacárido (rígido-rígido)

Mediante el software AutoDock Vina se realizó la predicción de la interacción rígida de la endolisina KZ144 silvestre_hexasacárido y la endolisina PCNP-KZ144_hexasacárido. Luego de realizar las 10 corridas en el programa AutoDock Vina, por cada acoplamiento se obtuvieron 10 valores de afinidad de interacción (kcal/mol) por cada modo de unión. De esta manera se obtuvieron un total de 100 valores de afinidad, para el sistema de interacción KZ144 silvestre_hexasacárido y 100 valores para el sistema PCNP-KZ144_hexasacárido.

La comparación entre las afinidades de los dos sistemas de acoplamiento se presenta en la **Figura 11**. Se reportaron diferencias significativas ($t_{(193.17, 200)} = -$

2.5858, p= 0.01045) con valores promedios de afinidad (kcal/mol) igual a - 6.433 (KZ144 silvestre_hexasacárido) y - 6.537 (PCNP-KZ144_hexasacárido).

Figura 11. Afinidad de los sistemas de acoplamiento rígido endolisinahexasacárido.

En la **Figura 12** se muestran los sistemas de interacción rígida PCNP-KZ144_hexasacárido (A) y KZ144_hexasacárido (B), visualizados con el software *UCSF Chimera*, donde se observa que el PCNP se halla localizado en una región lejana al sitio catalítico de la endolisina y expuesto a la superficie.

PCNP-KZ144_hexasacárido

KZ144_hexasacárido

Figura 12. Imágenes de acoplamiento de las endolisinas con el ligando hexasacárido. **A**) sistema PCNP-KZ144_hexasacárido, **B**) KZ144 silvestre_hexasacárido. Las endolisinas se representaron en forma de superficie y el ligando hexasacárido en forma de cilindros. Se representan en la estructura de las endolisinas el extremo N-terminal (amarillo), C-terminal (azul), PCNP (verde) y ácido glutámico catalítico (magenta).

VIII.3.2 Interacción endolisina_heteropolímero (rígido-rígido)

Posterior a la realización de 5 corridas por cada sistema de acoplamiento de endolisina_heteropolímero (con enlaces rotables del ligando: 1-32, 40 centrales, 25-67), se obtuvieron 10 valores de afinidad de interacción (kcal/mol) por cada modo de unión. De esta manera se obtuvieron un total de 150 valores de afinidad, para el sistema de interacción KZ144-silvestre_heteropolímero y 150 valores para el sistema PCNP-KZ144_heteropolímero.

La comparación entre las afinidades de los dos sistemas de acoplamiento se presenta en la **Figura 13**. Se reportaron diferencias significativas (t (90.622) = -7.9188, p = 0.000), (t (95.073) = -1.9896, p = 0.049), (t (97.236) = 2.7719, p = 0.007) al comparar los sistemas de acoplamiento endolisina KZ144_heteropolímero y endolisina PCNP-KZ144_heteropolímero, estableciendo diferentes enlaces rotables (1-32, 40 centrales, 25-67 enlaces rotables).

Figura 13. Afinidad de los acoplamientos (rígido-rígido) endolisina-heteropolímero. Las secciones A, B, C corresponden a los enlaces que se establecieron rotables en el heteropolímero. **A**: los primeros 32 enlaces, **B**: los 40 enlaces centrales y **C**: los últimos 32 enlaces rotables.

En la **Figura 14** se muestran imágenes del acoplamiento rígido-rígido PCNP-KZ144_heteropolímero, en este caso se ensayaron tres configuraciones del heteropolímero; las que se diferencian en los enlaces rotatorios: los primeros 32 enlaces, los últimos 32 enlaces y 40 enlaces centrales de la estructura. En todos los acoplamientos también el PCNP se halla localizado en una región distante al sitio catalítico de la endolisina y expuesto a la superficie.

Figura 14. Imágenes de acoplamiento de la endolisina PCNP-KZ144 con el ligando heteropolímero. Las endolisinas se representaron en forma de listón y el ligando heteropolímero en forma de cilindros. Se representan en la estructura de las endolisinas el Glu140 (amarillo) y PCNP (verde).

VIII.3.3 Predicción de la naturaleza de las interacciones en los sistemas de acoplamiento rígido-rígido PCNP-KZ144_hexasacárido y PCNP-KZ144_heteropolímero Las figuras que se presentan a continuación, exhiben una representación esquemática de la interacción de la endolisina quimérica PCNP-KZ144 con el hexasacárido (**Figura 15**) y con heteropolímero (**Figura 16, 17** y **18**). Los grupos funcionales de las cadenas laterales R, en su mayoría de los aminoácidos lle139, lle142, Thr151, Gln 159, Phe226; son los responsables de la interacciones van der Waals en todos los complejos enzima-ligando de los acoplamientos ensayados. En el acoplamiento PCNP-KZ144_hexasacárido se predijo puentes de hidrógenos, donde los aminoácidos Lys150, Thr151 y Asn255 establecen interacciones con el hexasacárido. Sin embargo, en los acoplamientos PCNP-KZ144_heteropolímero, el residuo His283 es el reponsable de las interacciones por puentes de hidrógeno con el heteropolímero.

Figura 15. Representación esquemática de la interacción del hexasacárido con la endolisina PCNP-KZ144.

Figura 16. Representación esquemática de la interacción del heteropolímero (1-32 enlaces rotables) con la endolisina PCNP-KZ144.

Figura 17. Representación esquemática de la interacción del heteropolímero (40 enlaces centrales rotables) con la endolisina PCNP-KZ144.

Figura 18. Representación esquemática de la interacción del heteropolímero (25-67 enlaces rotables) con la endolisina PCNP-KZ144.

VIII.4 Obtención de las construcciones con los vectores pJET1.2 y pColdl VIII.4.1 Construcción pcnp-kz144+pJET1.2 VIII.4.1.1 Amplificación del gen pcnp-kz144

Se determinó que 60°C es la temperatura óptima de alineamiento (Tm óptima) para amplificar el gen pcnp-kz144. Con el resto de las temperaturas evaluadas (60.8 - 70°C) se observaron múltiples bandas de amplificación inespecífica (**Figura 16**).

Figura 19. Electroforesis en gel de agarosa 1% en TBE 1X, de los productos de amplificación pcnp-kz144 a diferentes ™ (60 - 70°C). **C**⁻: control negativo; **C**⁺: control positivo; **M**: marcador de peso molecular (pb).

De esta manera se obtuvo múltiples copias del gen pcnp-kz144 para la etapa de ligación posterior. También este producto de amplificación fue empleado como control positivo en los procedimientos posteriores.

VIII.4.1.2 Clonación del gen pcnp-kz144 en el vector de clonación pJET1.2/blunt

Los productos de la ligación *a1, a2* con el vector pJET1.2 fueron empleados por separado para la transformación de células de *E. coli* genotipo DH5α.

De las 10 transformantes seleccionadas, cinco fueron positivas (colonia 3, 4, 5, 6 y 10). El análisis densitométrico del gel de agarosa, permitió detectar la presencia del gen pcnp-kz144 (836 pb) que se alinea con la banda del control positivo (**Figura 17**).

Figura 20. Electroforesis en gel de agarosa al 1% con TBE1X, en dónde se visualizan los productos de PCR de colonia, con la ligación pcnp-kz144+pJET1.2. **C**⁻: control negativo, **C**⁺: control positivo, **M**: marcador de peso molecular (pb).

En paralelo, las clonas positivas se propagaron por separado en caldo LB/Amp y se realizó la extracción de ADN plasmídico. En la **Tabla V** se presentan los valores de concentración de ADN y la relación Abs_{260/280} de cada extracción.

Tabla V. Valores de concentración y relación de Abs _{260/280} nm de las extracciones de ADN plasmídico, correspondientes a las clonas positivas de la transformación de células de *E. coli* DH5α con el plásmido pcnp-kz144+pJET1.2.

Muestra de ADN	Concentración (ng/µL)	Abs (260/280)
ADN Clona 3 (pcnp-kz144+pJET1.2)	44.6	1.87
ADN Clona 4 (pcnp-kz144+pJET1.2)	59.9	1.91
ADN Clona 5 (pcnp-kz144+pJET1.2)	43.7	1.89
ADN Clona 6 (pcnp-kz144+pJET1.2)	245.6	1.88

Se seleccionó la construcción pcnp-kz144+pJET1.2 proveniente de la clona # 6 pues presentó mayor concentración. Se verificó la correcta inserción del gen pcnp-kz144 dentro del vector pJET1.2 mediante el ensayo de digestión empleando las enzimas *Nde*l y *Bam*HI. La **Figura 18** muestra la imagen del gel de agarosa donde se observa la construcción pcnp-kz144+pJET1.2 antes y después de digerir. En la alícuota restringida se observa la liberación del inserto de 836 pb, que está ausente en la alícuota sin digerir.

Figura 21. Electroforesis en gel de agarosa al 1% con TBE1X de las muestras del ensayo de digestión de la construcción pcnp-kz144+pJET1.2 proveniente de la clona 6. 1: marcador de peso molecular (pb), construcción pcnp-kz144+pJET1.2 antes (2) y después (3) de digerir.
VII.4.1.3 Digestión de la construcción pcnp-kz142+pJET1.2 y purificación del amplicón pcnp-kz144

Una vez verificada la correcta inserción del gen pcnp-kz144 dentro del vector pJET1.2, se empleó este plásmido recombinante como templado para obtener múltiples copias del gen pcnp-kz144 mediante una amplificación con la enzima Phusion High-Fidelity (ThermoFisher Scientific). El gen pcnp-kz144 purificado tuvo una concentración de 78.4 ng/µL. En la **Figura 19** se muestra la imagen del gel de agarosa donde se observa la banda correspondiente a la construcción pcnp-kz144+pJET 1.2 que se alinea a 2500 pb, el producto de PCR del gen pcnp-kz144 sin digerir, y después de la digestión y la purificación del amplicón, con peso por debajo de 1000 pb, que corresponde con el peso del gen (836 pb).

Figura 22. Electroforesis en gel de agarosa al 1% en TBE1X de las muestras obtenidas durante el proceso de obtención del gen digerido pcnp-kz144. **M**: marcador de peso molecular (pb), **1**: construcción pcnp-kz144+pJET 1.2 extraído mediante el protocolo GeneJET Plasmid Miniprep, **2**: pcnp-kz144 amplificado con polimerasa Phusion Flash-High-Fidelity y **3**: gen pcnp-kz144 purificado con el kit GeneJET PCR luego de la digestión.

VIII.4.2 Construcción pcnp-kz144+pColdI

La reacción de ligación se realizó empleando el vector pColdI linearizado y el gen pcnp-kz144 previamente digerido. Los productos de la ligación *b1* y *b2* fueron empleados por separado para la transformación de células de *E. coli* DH5α. De las 11 colonias seleccionadas, tres de ellas (6, 7 y 11) incorporaron la construcción pcnp-kz144+pColdI como se observa en la **Figura 20**, donde el amplicón del gen pcnp-kz144 de 836 pb, corresponde con el control positivo. En paralelo, las clonas positivas se propagaron por separado en caldo LB/Amp y se realizó la extracción de ADN plasmídico. En la **Tabla VI** se presentan los valores de concentración de ADN y la relación Abs_{260/280} de cada extracción.

Figura 23. Electroforesis en gel de agarosa 1% en TBE1X de los productos amplificados con ADN Taq polimerasa, empleando ADN de las colonias # 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11; provenientes de la transformación bacteriana con el plásmido recombinante pcnp-kz144+pColdl. C⁻: control negativo, C⁺: control positivo, M: marcador de peso molecular (pb).

En la **Tabla VI** se presentan los valores de concentración de ADN y la relación Abs_{260/280} de cada extracción.

Muestra de ADN	Concentración (ng/µL)	Abs (260/280)
ADN Clon 6 (pcnp-kz144+pColdI)	171.0	1.88
ADN Clon 7 (pcnp-kz144+pColdl)	283.0	1.88
ADN Clon 11 (pcnp-kz144+pColdl)	183.1	1.90

Posterior a la digestión de los plásmidos recombinantes pcnp-kz144+pColdl correspondientes a las clonas 6, 7 y 11, empleando las enzimas *Ndel* y *Bam*HI se verificó la correcta digestión del vector pColdl mediante electroforesis en gel de agarosa al 1% en TBE 1X. La **Figura 24** muestra la liberación del inserto pcnp-kz144 de 836 pb (carriles 1 a 3) de las construcciones restringidas, mientras que estas bandas están ausentes en las alícuotas sin digerir (carriles 4 a 6).

Figura 24. Electroforesis en gel de agarosa al 1% en TBE1X de las muestras antes y después de la reacción de digestión del ADN plasmídico PCNP-KZ144+pColdl de los cultivos celulares provenientes de las clonas positivas. Muestras después de la digestión: carril **1** (clona 6), carril **2** (clona 7) y carril **3** (clona 11). Muestras antes de

la digestión: carril **4** (clona 6), carril **5** (clona 7) y carril **6** (clona 11), Carril **7**: vector pColdl linearizado.

VII.6.8 Alineamiento múltiple de secuencias a partir de las construcciones pJET1.2 y pColdl

La primera construcción pcnp-kz144+pColdl obtenida, la cual se envió a secuenciar a MacroGen para verificar la secuencia de pcnp-kz144 fue rotulada como "MacroGen". Por otro lado, las construcciones de pcnp-kz144+pJET1.2 denominadas: J11, J12, J13 y tres construcciones pcnp-kz144+pColdl denominadas: C7, C11A y C17, fueron secuenciadas en la Unidad de Síntesis y Secuenciación del Instituto de Biotecnología de la UNAM (IBt-UNAM). Se obtuvieron dos secuencias correspondientes a cada una de las construcciones enviadas al IBt-UNAM, una secuencia usando el oligonucleótido con sentido directo (F) y otra secuencia con el oligonucleótido con sentido reverso (R). De esta manera se obtuvieron las secuencias J11F, J11R, J12F, J12R, J13F, J13R, C7F, C7R, C11AF, C11A, C17F y C17R. Sólo en el caso de las secuencias obtenidas empleando el oligonucleótido con sentido reverso se renombraron añadiendo los caracteres _RC (Reverso Complementaria). Finalmente se realizó un alineamiento múltiple con la herramienta MUSCLE (**Figura 25**).

La comparación entre la secuencia del gen pcnp-kz144 sintetizado por IDT con las secuencias correspondientes a las construcciones obtenidas en los vectores pJET y pColdl permitió detectar una deleción de la citosina de la posición 250 del gen pcnp-kz144 en todas las secuencias.

J12R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	634
C17R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	647
C11AR_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	646
J13R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	635
J11R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	657
C7R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	654
Gen_sintético	ATTCAGTAAATATTCCTCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	295
MacroGen	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	269
J11F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
C17F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	261
C7F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
J12F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
J13F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	256
C11AF	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	256

Figura 25. Alineamiento múltiple de las secuencias correspondientes a las construcciones pcnp-kz144+pJET1.2 y pcnp-kz144+pColdI secuenciadas en la Unidad de Síntesis y Secuenciación del Instituto de Biotecnología de la UNAM y MacroGen. En color rojo se presenta la citosina que sufrió deleción en estas construcciones.

IX. DISCUSIÓN

La demanda de candidatos antimicrobianos ha fomentado la búsqueda de nuevas aplicaciones para los compuestos ya conocidos. En este sentido, numerosas investigaciones se han enfocado en la modificación de la secuencia codificante de proteínas reportadas en el PDB, tal que se obtenga un repertorio de nuevas moléculas con aplicaciones de elevado interés en la industria biofarmacéutica (Allouche *et al.*, 2014).

Estas modificaciones estructurales en las proteínas, son desarrolladas mediante técnicas de ingeniería de proteínas auxiliadas de procedimientos automatizados de alto rendimiento. Por lo tanto, el conocimiento del arreglo tridimensional de las proteínas que se desean modificar es fundamental, pues la función está estrechamente relacionada con la conformación tridimensional definida por la secuencia de aminoácidos que la componen (Allouche *et al.*, 2014).

Una vez realizada la predicción estructural de la molécula quimérica diseñada, resultó necesario predecir qué afectación podría traer consigo la fusión del PCNP al interactuar con la pared bacteriana. El software Free Maestro de Schrodinger (https://www.schrodinger.com/products/maestro) constituyó una útil herramienta para construir estas estructuras dada a su capacidad de procesar una gran variedad de formatos. El diseño de los ligandos hexasacárido y heteropolímero se realizó debido a que no se encontraron estructuras completas que simularan un fragmento de pared bacteriana la base de datos PubChem en (https://pubchem.ncbi.nlm.nih.gov/).

Desde el comienzo, la investigación estuvo dirigida hacia la búsqueda de una endolisina proveniente de un fago que infecte a bacterias Gram-negativas. Aunado a lo anterior, la endolisina KZ144 silvestre reunió otros criterios fundamentales para el diseño computacional de una variante quimérica; pues se conoce su arquitectura modular (Briers *et al.*, 2007); así como su estructura cristalográfica (Fokine *et al.*, 2008). Por otro lado, se han descrito las condiciones favorables que median su actividad enzimática óptima (Briers *et al.*, 2007). Adicionalmente, análisis comparativos han identificado cierta similitud del dominio catalítico de la endolisina KZ144 con el dominio catalítico de la transglicosilasa Slt70 de *E.coli* y de las lisozimas (Fokine *et al.*, 2008).

El diseño computacional de la endolisina quimérica PCNP-KZ144 estuvo facilitada desde su inicio, por el hecho de hallarse la estructura cristalográfica de la endolisina KZ144 silvestre en complejo con el tetrámero de NAG en el PDB (Fokine *et al.*, 2008). De esta manera, el software I-TASSER permitió la generación de modelos que permitieron determinar con elevada precisión la estructura tridimensional de la variante quimérica. Lo anterior fue posible pues el servidor I-TASSER identifica templados estructurales de mayor puntuación mediante LOMETS (del inglés: Local Meta-Threading Server) del PDB, los cuales se emplean para obtener la topología de los modelos (Zhang, 2008). De esta manera, de los cinco modelos obtenidos para PCNP-KZ144, se seleccionó el modelo A con

puntuación C (-0.21). Este valor se halla dentro del rango [-5,2] y es el mayor valor registrado en comparación con los demás modelos. Lo anterior informa que el modelo A presentó los mejores valores obtenidos, referidos a los parámetros de convergencia de las simulaciones del ensamblaje de la estructura. Entonces se concluyó que la estructura tridimensional de la endolisina quimérica es explicada con elevado grado de confianza por el modelo A (**Figura 9A**).

La visualización de los modelos tridimensionales de la variante quimérica PCNP-KZ144, obtenidos mediante I-TASSER (**Figura 9**), permitió observar que el nanopéptido policatiónico se halla localizado distante del residuo Glu140, por lo que se presume baja probabilidad de impedimento de la catálisis enzimática, razón por la cual se predice que la función de la endolisina no debiera estar comprometida con la modificación realizada.

Por otro lado, en la cavidad donde ocurre la catálisis, además de hallarse los aminoácidos catalíticos, se encuentran otros aminoácidos necesarios tanto para activar a los residuos catalíticos, así como para propiciar la unión del sustrato a través de numerosas interacciones débiles (Chavez-Planes et al, 2006). Por lo que, mediante el análisis de las energías de afinidad del acoplamiento, pudiera predecirse si existe afectación de la actividad muralítica de la endolisina al fusionarse con el PCNP. Las diferencias significativas entre los valores de afinidad de los sistemas de acoplamiento endolisina quimérica_ligando y endolisina silvestre_ligando, empleando como ligando el hexasacárido (Figura 11) o el heteropolímero (Figura 13), pueden ser explicadas por las diferentes dimensiones del área de búsqueda en los ensayos de acoplamiento y no deberse a que la fusión del PCNP contribuye a una conformación tridimensional tal que interrumpa el sitio catalítico de la endolisina. Si bien los ensayos de acoplamiento son muy útiles, definitivamente los ensayos de actividad enzimática serían los recomendados para evaluar si la fusión del PCNP modifica la función de la enzima. Aún si se observase disminución de la actividad enzimática en la variante quimérica; en los modelos predictivos, la misma puede mostrar efecto antibacteriano. Los resultados obtenidos

en determinaciones experimentales de la actividad antibacteriana de variantes quiméricas con fusión de PCNP, reportan actividad antimicrobiana en ausencia de permeabilizadores, por lo que sugieren los investigadores que el PCNP media la inserción de la endolisina en la pared bacteriana hasta tener acceso al peptidoglicano (Briers *et al.*, 2014b).

También se predice mayor probabilidad de que la endolisina quimérica guarde una conformación donde el PCNP se halle expuesto a la superficie (**Figura 12**). El propósito de fusionar el PCNP al extremo amino terminal de la endolisina KZ144 es favorecer la entrada de la enzima a través de la pared celular de *V. parahaemolyticus* sin afectación de la actividad muralítica. De esta manera, se puede inferir que el nanopéptido, probablemente localizado de manera accesible al entorno, pudiera interactuar electrostáticamente con las cargas negativas de los fosfolípidos de la membrana externa conllevando a la desestabilización de esta, tal como explican Yeaman & Yount (2003).

Los detalles estructurales de la endolisina silvestre KZ144, expuestos por Fokine y colaboradores (2008), sirvieron como para el diseño de los ligandos empleados en el acoplamiento en esta investigación. Además, estos hallazgos mediaron la búsqueda localizada de interacción endolisina-ligando en los ensayos de acoplamiento, la cual estuvo dirigida en la región próxima al residuo catalítico de la enzima. De esta manera, se logró una exploración exhaustiva de energías de acoplamiento endolisina-ligando, con menor esfuerzo de búsqueda.

Briers y colaboradores (2014b) obtuvieron variantes quiméricas y evaluaron la actividad enzimática para determinar si la fusión del péptido o dominio en la estructura de la endolisina pudiera modificar su función, en lugar de realizar análisis predictivos estructurales previos a los ensayos *in vitro*. No obstante, los análisis *in silico* facilitarían ensayar una biblioteca de variantes en corto tiempo, seleccionando aquellas más factibles para ser evaluadas en los ensayos experimentales. En este sentido, recientemente se diseñó una la plataforma VersaTile mediante la cual se diseñan, construyen y se examinan un número ilimitado de combinaciones de lisinas

en corto tiempo (Gerstmans *et al.*, 2020). Por lo que el empleo de esta plataforma pudiera ser muy satisfactorio en los análisis estructurales predictivos a futuro.

Respecto a la naturaleza, se predijo numerosas interacciones van der Waals y pocas interacciones por puentes de hidrógeno en los acoplamientos PCNP-KZ144_hexasacárido (**Figura 15**) y PCNP-KZ144_heteropolímero (Figura 16, 17 y 18). Los residuos involucrados en estas interacciones débiles son considerados importantes en la catálisis enzimática. Pues se conoce que, los aminoácidos involucrados en las interacciones débiles permiten fijar la molécula de sustrato al centro activo en la posición adecuada para que los aminoácidos catalíticos puedan actuar (Chávez-Planes *et al.*, 2006).

Por otro lado, para la obtención de la construcción pcnp-kz144+pColdl, a pesar de elegir la enzima ADN polimerasa Phusion High-Fidelity por su elevada fidelidad, procesividad y baja tasa de error (4.4×10⁻⁷errores/bp por ciclo de PCR) (McInerney *et al.*, 2014), se obtuvieron amplificaciones inespecíficas (información no mostrada). Lo anterior, es un aspecto importante a considerar en las etapas iniciales de clonación pues luego, estas amplificaciones inespecíficas podrían afectar la reproducibilidad de las técnicas posteriores (Alejos-Velázquez *et al.*, 2014). Razón por la que se exploró un gradiente de temperatura de alineamiento, seleccionando la temperatura de 60°C como óptima para la obtención de múltiples copias de este gen con la menor probabilidad de ocurrencia de amplificaciones inespecíficas (**Figura 19**). Por lo que se recomienda incluir la exploración de temperaturas de alineamiento como procedimiento rutinario en las etapas iniciales de amplificación.

Por otro lado, el cultivo de las células transformadas con la construcción pcnp-kz144+pJET1.2, en medio agar LB/Amp+, permitió seleccionar aquellas colonias que incorporaron el vector. Se decidió utilizar el vector pJET1.2 ya que no requiere del sistema de selección de colonias blancas/azules para detección de clonas positivas (<u>https://www.thermofisher.com/</u>). Lo anterior es posible debido a que este vector contiene un gen letal (eco47IR) que se activa en caso de que el vector no incorpore el gen de interés, provocando la muerte de las bacterias

transformadas que no hayan incorporado el inserto. No obstante, durante el proceso de clonación se obtuvieron clonas que no resultaron positivas luego del ensayo de verificación mediante el PCR de colonia (**Figura 20**), resultado contrario a lo esperado. No obstante, este vector es idóneo para incorporar insertos de 6 pb a 10 kpb y pueden ligarse directamente los productos de PCR, con extremos romos generados por la corrección de pruebas de algunas ADN polimerasas (https://www.thermofisher.com/).

La obtención de la construcción pcnp-kz+pColdl estuvo más dificultada en comparación con la obtención de la construcción pcnp-kz+pJET1.2. En estudios previos, investigadores afirman que el empleo de ADN plasmídico con mayor grado de pureza favorece la eficiencia de transformación (Ohse et al. 1995). En nuestra investigación ambos ADN plasmídicos (pcnp-kz+pJET1.2 y pcnp-kz+pColdl), empleados en las transformaciones, presentaron óptima calidad con valores similares en la relación Abs 260/280, por lo que las diferencias en la eficiencia de transformación se suponen que guarden relación con otros factores. En este sentido, Ohse y colaboradores (1995) luego de evaluar la relación entre la talla del vector y la eficiencia de transformación de células intactas de Bacillus subtilis ISW1214, empleando vectores con tallas moleculares de 2.9 - 12.6 kpb, observaron una disminución de la eficiencia de transformación utilizando vector de mayor talla. Si bien, los vectores pJET1.2 y pColdI empleados en nuestra investigación presentan una diferencia de tamaño de apenas 1 kbp, la talla del vector pudiera ser un factor que influya en el proceso de transformación bacteriana en las células competentes DH5a.

Finalmente, la deleción de uno de los nucleótidos en el gen pcnp-kz144, diseñado para expresar la proteína PCNP-KZ144, impide el uso de la construcción pcnp-kz+pColdl para expresar esta proteína en las células de *E. coli* BL21(D3). Por tal motivo, se decidió enviar a sintetizar el gen pcnp-kz144, esta vez dentro del vector de propagación pUCIDT.

X. CONCLUSIONES

El diseño computacional, mediado por herramientas bioinformáticas, resultó ser una metodología ventajosa para la obtención de la variante quimérica PCNP-KZ144.

Los programas bioinformáticos empleados constituyeron valiosas herramientas para la obtención de los modelos predictivos de la estructura tridimensional de la endolisina PCNP-KZ144.

Mediante el análisis de los modelos de estructura tridimensional de la variante quimérica se predice que: a) el PCNP no promueve un arreglo espacial de la enzima que obstruya el sitio catalítico, b) el PCNP se presenta expuesto en la superficie lo que conduce a una mayor probabilidad de interacción con la membrana externa.

El modelado de acoplamiento enzima-fragmento de pared bacteriana Gramnegativa permitió predecir que la variante quimérica PCNP-KZ144 presenta la capacidad de degradar la pared celular de células bacterianas Gram-negativas sin empleo de permeabilizadores, lo que pudiera contribuir a potenciar su actividad antimicrobiana en ensayos *in vitro*.

Las metodologías desarrolladas permitieron la obtención de la construcción pcnp-kz144+pColdl; sin embargo no puede emplearse esta construcción en etapas posteriores para la obtención de la endolisina quimérica PCNP-KZ144, pues presenta una deleción.

XI. RECOMENDACIONES

Se propone continuar los análisis computacionales de la endolisina quimérica PCNP-KZ144 a través de la Dinámica Molecular.

Se sugiere realizar secuenciación en cada paso de clonación y subclonación.

Se sugiere optimizar el proceso de inserción de la construción pcnpkz144+pColdl en las células bacterianas empleando otras metodologías de

transformación y de cultivo de células transformadas en medios especiales, tal que que favorezcan el crecimiento celular.

XII. REFERENCIAS

- Alejos-Velázquez, L. P., M. C. Aragón-Martínez, & A. Cornejo-Romero. 2014. Extracción y purificación de ADN. En Herramientas Moleculares Aplicadas en Ecología:Aspectos teóricos y prácticos.
- Allawi H.T. & Santa Lucia J.Jr. (1997), Thermodynamics and NMR of Internal GT Mismatches in DNA, Biochemistry 36:10581-10594.
- Allouche, D., André, I., Barbe, S., Davies, J., de Givry, S., Katsirelos, G., O'Sullivan,
 B., Prestwich, S., Schiex, T., & Traoré, S. 2014. Computational protein design as an optimization problem. Artificial Intelligence 212: 59–79. https://doi.org/10.1016/j.artint.2014.03.005
- Aranguren Caro, L.F., Mai, H.N., Noble, B., & Dhar, A.K. 2020. Acute hepatopancreatic necrosis disease (Vpahpnd), a chronic disease in shrimp (*Penaeus vannamei*) population raised in latin America. Journal of Invertebrate Pathology 174: 107424. https://doi.org/10.1016/j.jip.2020.107424
- Bai, J., Yang, E., Chang, P.-S., & Ryu, S. 2019. Preparation and characterization of endolysin-containing liposomes and evaluation of their antimicrobial activities against gram-negative bacteria. Enzyme and Microbial Technology 128: 40–48. https://doi.org/10.1016/j.enzmictec.2019.05.006
- Borysowski, J., Weber-Dąbrowska, B., & Górski, A. 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231: 366–377. https://doi.org/10.1177/153537020623100402
- Briers, Y., & Lavigne, R. 2015. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria. Future Microbiology 10: 377–390. https://doi.org/10.2217/fmb.15.8
- Briers, Y., Volckaert, G., Cornelissen, A., Lagaert, S., Michiels, C.W., Hertveldt, K., & Lavigne, R. 2007. Muralytic activity and modular structure of the endolysins of *Pseudomonas aeruginosa* bacteriophages φKZ and EL. Molecular Microbiology 65: 1334–1344. https://doi.org/10.1111/j.1365-2958.2007.05870.x
- Briers, Y., Walmagh, M., Grymonprez, B., Biebl, M., Pirnay, J.-P., Defraine, V., Michiels, J., Cenens, W., Aertsen, A., Miller, S., & Lavigne, R. 2014a. Art-175 is

a highly efficient antibacterial against multidrug-resistant strains and persisters of *Pseudomonas aeruginosa*. Antimicrobial Agents and Chemotherapy 58: 3774–3784. https://doi.org/10.1128/AAC.02668-14

- Briers, Y., Walmagh, M., Van Puyenbroeck, V., Cornelissen, A., Cenens, W., Aertsen, A., Oliveira, H., Azeredo, J., Verween, G., Pirnay, J.-P., Miller, S., Volckaert, G., & Lavigne, R. 2014b. Engineered endolysin-based "artilysins" to combat multidrug-resistant gram-negative pathogens. MBio 5: e01379-14. https://doi.org/10.1128/mBio.01379-14
- Chang, Y., Yoon, H., Kang, D.-H., Chang, P.-S., & Ryu, S. 2017. Endolysin LysSA97 is synergistic with carvacrol in controlling *Staphylococcus aureus* in foods. International Journal of Food Microbiology 244: 19–26. https://doi.org/10.1016/j.ijfoodmicro.2016.12.007
- Cheng, G., Hao, H., Xie, S., Wang, X., Dai, M., Huang, L., & Yuan, Z. 2014. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Frontiers in Microbiology 5: 217. https://doi.org/10.3389/fmicb.2014.00217
- Defraine, V., Schuermans, J., Grymonprez, B., Govers, S.K., Aertsen, A., Fauvart, M., Michiels, J., Lavigne, R., & Briers, Y. 2016. Efficacy of artilysin art-175 against resistant and persistent *Acinetobacter baumannii*. Antimicrobial Agents and Chemotherapy 60: 3480–3488. https://doi.org/10.1128/AAC.00285-16
- Doss, J., Culbertson, K., Hahn, D., Camacho, J., & Barekzi, N. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9: 50. https://doi.org/10.3390/v9030050
- FAO. 2018. The state of world fisheries and aquaculture 2018: meeting the sustainable development goals. The State of World Fisheries and Aquaculture. UN. https://doi.org/10.18356/8d6ea4b6-en
- Fenton, M., McAuliffe, O., O'Mahony, J., & Coffey, A. 2010. Recombinant bacteriophage lysins as antibacterials. Bioengineered Bugs 1: 9–16. https://doi.org/10.4161/bbug.1.1.9818
- Fischetti, V.A. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends in Microbiology 13: 491–496. https://doi.org/10.1016/j.tim.2005.08.007

- Fokine, A., Miroshnikov, K.A., Shneider, M.M., Mesyanzhinov, V.V., & Rossmann,
 M.G. 2008. Structure of the bacteriophage φkz lytic transglycosylase gp144 *.
 Journal of Biological Chemistry 283: 7242–7250.
 https://doi.org/10.1074/jbc.M709398200
- Gerstmans, H., Criel, B., & Briers, Y. 2018. Synthetic biology of modular endolysins. Biotechnology Advances 36: 624–640. https://doi.org/10.1016/j.biotechadv.2017.12.009
- Gerstmans, H., Grimon, D., Gutiérrez, D., Lood, C., Rodríguez, A., van Noort, V.,& Briers, Y. 2020. A VersaTile-driven platform for rapid hit-to-lead development of engineered lysins. Science advances, 6(23), eaaz1136
- Hermoso, J.A., García, J.L., & García, P. 2007. Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Current Opinion in Microbiology 10: 461–472. https://doi.org/10.1016/j.mib.2007.08.002
- Hermoso, J.A., Monterroso, B., Albert, A., Galán, B., Ahrazem, O., García, P., Martínez-Ripoll, M., García, J.L., & Menéndez, M. 2003. Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage cp-1. Structure 11: 1239–1249. https://doi.org/10.1016/j.str.2003.09.005
- Kazlauskas, R.J., & Bornscheuer, U.T. 2009. Finding better protein engineering strategies. Nat Chem Biol 5: 526–529. https://doi.org/10.1038/nchembio0809-526
- Krause, R.M. 1957. Studies on bacteriophages of hemolytic streptococci : i. Factors influencing the interaction of phage and susceptible host cell. Journal of Experimental Medicine 106: 365–384. https://doi.org/10.1084/jem.106.3.365
- Kutter, E., & Sulakvelidze, A. 2004. Bacteriophages: biology and applications. CRC Press.
- Lafferty, K.D., Harvell, C.D., Conrad, J.M., Friedman, C.S., Kent, M.L., Kuris, A.M., Powell, E.N., Rondeau, D., & Saksida, S.M. 2015. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7: 471–496. https://doi.org/10.1146/annurev-marine-010814-015646

- Laskowski R A, Swindells M B (2011). LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 51, 2778-2786. [PubMed id: 21919503]
- Li, M., Jin, Y., Lin, H., Wang, J., & Jiang, X. 2018. Complete genome of a novel lytic *Vibrio parahaemolyticus* phage vpp1 and characterization of its endolysin for antibacterial activities. Journal of Food Protection 81: 1117–1125. https://doi.org/10.4315/0362-028X.JFP-17-278
- Lim, J.-A., Lee, N., Chun, H.-S., & Chang, H.-J. 2020. Characterization of a novel endolysin from bacteriophage infecting *Vibrio parahaemolyticus*, vB_VpaP_KF2. Applied Biological Chemistry 63: 40. https://doi.org/10.1186/s13765-020-00523z
- López-Jácome, L.E., Hernández-Durán, M., Colín-Castro, C.A., Ortega-Peña, S., Cerón-González, G., & Franco-Cendejas, R. 2014. Las tinciones básicas en el laboratorio de microbiología. Invest. disc. 3: 10–18.
- Lukacik, P., Barnard, T.J., & Buchanan, S.K. 2012. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Biochemical Society Transactions 40: 1503–1506. https://doi.org/10.1042/BST20120209
- Luo, P., Yun, L., Li, Y., Tian, Y., Liu, Q., Huang, W., & Hu, C. 2018. Complete genomic sequence of the *Vibrio alginolyticus* bacteriophage Vp670 and characterization of the lysis-related genes, cwlQ and holA. BMC Genomics 19: 741. https://doi.org/10.1186/s12864-018-5131-x
- Madhumathi, M., & Rengasamy, R. 2011. Antioxidant status of Penaeus monodon fed with *Dunaliella salina* supplemented diet and resistance against WSSV. Int. J. Eng.Sci.Technol. 3: 7249–7259.
- Chávez Planes M.A., Brito J. D., Pérez López U., Delfín García J. 2006. Temas de enzimología. Tomo 1. Editorial Felix Varela, La Habana.
- Martínez, C., & Guevara, J.F. 2014. Ingeniería de proteínas para el mejoramiento de enzimas. Revista digital universitaria 15: 93.
- McInerney P, Adams P, Hadi MZ. Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014. doi:10.1155/2014/287430.

- Melo-López, F.N., Zermeño-Cervantes, L.A., Barraza, A., Loera-Muro, A., & Cardona-Félix, C.S. 2021. Biochemical characterization of LysVpKK5 endolysin from a marine vibriophage. Protein Expression and Purification 188: 105971. https://doi.org/10.1016/j.pep.2021.105971
- Ning, H.-Q., Lin, H., & Wang, J.-X. 2021. Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling *Vibrio parahaemolyticus* and its biofilms. International Journal of Food Microbiology 343: 109112. https://doi.org/10.1016/j.ijfoodmicro.2021.109112
- Oliveira, H., Vilas Boas, D., Mesnage, S., Kluskens, L.D., Lavigne, R., Sillankorva, S., Secundo, F., & Azeredo, J. 2016. Structural and enzymatic characterization of abgp46, a novel phage endolysin with broad anti-gram-negative bacterial activity. Frontiers in Microbiology 7: 208. https://doi.org/10.3389/fmicb.2016.00208
- Ohse, M., Takahashi, K., Kadowaki, Y., & Kusaoke, H. (1995). Effects of plasmid DNA sizes and several other factors on transformation of *Bacillus subtilis* ISW1214 with plasmid DNA by electroporation. Bioscience, biotechnology, and biochemistry, 59(8), 1433-1437.
- R Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.rproject.org/index.html.
- Rentería M. 2007. Breve revisión de los marcadores moleculares. En Eguiarte L., Souza V y Aguirre X (compiladores). Ecología Molecular. SEMARNAP, CONABIO, INE, UNAM, México D.F. 541-566pp.
- Robert C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, Volume 32, Issue 5, 1 March 2004, Pages 1792–1797, https://doi.org/10.1093/nar/gkh340
- Rodríguez-Rubio, L., Chang, W.-L., Gutiérrez, D., Lavigne, R., Martínez, B., Rodríguez, A., Govers, S.K., Aertsen, A., Hirl, C., Biebl, M., Briers, Y., & García, P. 2016. 'Artilysation' of endolysin λSa2lys strongly improves its enzymatic and antibacterial activity against streptococci. Sci Rep 6: 35382.

- Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010 Apr;5(4):725-38. doi: 10.1038/nprot.2010.5.
- São-José, C. 2018. Engineering of phage-derived lytic enzymes: improving their potential as antimicrobials. Antibiotics 7: 29. https://doi.org/10.3390/antibiotics7020029
- Schuch, R., Nelson, D., & Fischetti, V.A. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 418: 884–889. https://doi.org/10.1038/nature01026
- Shrivastava, R., & Chng, S. 2019. Lipid trafficking across the Gram-negative cell envelope. Journal of Biological Chemistry 294: 14175–14184. https://doi.org/10.1074/jbc.AW119.008139
- Smith, S.J., & Sutcliffe, B.T. 2007. The development of computational chemistry in the united kingdom. Pp. 271–316 in: K.B. Lipkowitz & D.B. Boyd (eds.), Reviews in Computational Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9780470125878.ch5
- Srinivasan, R., Chaitanyakumar, A., Subramanian, P., Mageswari, A., Gomathi, A., Aswini, V., Sankar, A.M., Ramya, M., & Gothandam, K.M. 2020. Recombinant engineered phage-derived enzybiotic in *Pichia pastoris* X-33 as whole cell biocatalyst for effective biocontrol of *Vibrio parahaemolyticus* in aquaculture. International Journal of Biological Macromolecules 154: 1576–1585. https://doi.org/10.1016/j.ijbiomac.2019.11.042
- Tan, C.W., Rukayadi, Y., Hasan, H., Thung, T.Y., Lee, E., Rollon, W.D., Hara, H., Kayali, A.Y., Nishibuchi, M., & Radu, S. 2020. Prevalence and antibiotic resistance patterns of *Vibrio parahaemolyticus* isolated from different types of seafood in Selangor, Malaysia. Saudi Journal of Biological Sciences 27: 1602– 1608. https://doi.org/10.1016/j.sjbs.2020.01.002
- Tišáková, L., & Godány, A. 2021. Bacteriophage endolysins and their use in biotechnological processes. Journal of Microbiology, Biotechnology and Food Sciences 2021: 164–170.

- Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of computational chemistry, 31(2), 455-461.
- Upton, G. & I. Cook. 2014. A dictionary of statistics 3 ed. Oxford university press. 452 pp.
- Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiological Reviews 56: 395–411. <u>https://doi.org/10.1128/mr.56.3.395-411.1992</u>
- Varela A. y Peña N. 2017. Transfronterización de enfermedades infecciosas en la camaronicultura. Una revisión. Repertorio Científico. ISSN 1021-6294. Vol. 20, Nº 1.
- Vollmer, W., & Bertsche, U. 2008. Murein (Peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. Biochimica et Biophysica Acta (BBA) Biomembranes
 1778:
 1714–1734. https://doi.org/10.1016/j.bbamem.2007.06.007
- Wang, I.-N., Smith, D.L., & Young, R. 2000. Holins: the protein clocks of bacteriophage infections. Annu. Rev. Microbiol. 54: 799–825. https://doi.org/10.1146/annurev.micro.54.1.799
- Wang, J., Li, M., Xiao, J., Xu, W., & Li, C. 2017a. Hematodinium spp. infections in wild and cultured populations of marine crustaceans along the coast of China.
 Dis. Aquat. Org. 124: 181–191. https://doi.org/10.3354/dao03119
- Wang, S., Gu, J., Lv, M., Guo, Z., Yan, G., Yu, L., Du, C., Feng, X., Han, W., Sun, C., & Lei, L. 2017b. The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the *Bacillus amyloliquefaciens* bacteriophage endolysin binding domain D8 to the C-terminal region. J Microbiol. 55: 403–408. https://doi.org/10.1007/s12275-017-6431-6
- Wang, W., Li, M., Lin, H., Wang, J., & Mao, X. 2016. The Vibrio parahaemolyticusinfecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol 161: 2645–2652. https://doi.org/10.1007/s00705-016-2957-x

- Yan, G., Liu, J., Ma, Q., Zhu, R., Guo, Z., Gao, C., Wang, S., Yu, L., Gu, J., Hu, D., Han, W., Du, R., Yang, J., & Lei, L. 2017. The N-terminal and central domain of colicin A enables phage lysin to lyse *Escherichia coli* extracellularly. Antonie van Leeuwenhoek 110: 1627–1635. https://doi.org/10.1007/s10482-017-0912-9
- Yang, H., M. Wang, J. Yu & H. Wei. 2015. Antibacterial activity of a novel peptidemodified lysin against *Acinetobacter baumannii* and *Pseudomonas aeruginosa*. Front microbiol, 6, 1471.
- Yeaman, M.R., & Yount, N.Y. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55: 27–55. https://doi.org/10.1124/pr.55.1.2
- Zermeño Cervantes, L.A. 2019. Evaluación de la sensibilidad de Vibrio parahaemolyticus a las endolisinas KZ144 y LysPA26 en conjunto con permeabilizadores de membrana. Tesis. Instituto Politécnico Nacional. Centro Interdisciplinario de Ciencias Marinas. http://www.repositoriodigital.ipn.mx//handle/123456789/26325
- Zhang, Y. 2008. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9: 40. https://doi.org/10.1186/1471-2105-9-40

XIII. MATERIAL SUPLEMENTARIO

Anexo 1. Mapa del vector de clonación pJET1.2/blunt linearizado con Eco32l (EcoRV) (número de acceso en GenBank/EMBL EF694056).

La numeración de los 2974 pb sigue el sentido contrario de las manecillas del reloj. Contiene las secuencias: (1) P T7 (305–324) es el promotor de la T7 ARN polimerasa para la transcripción *in vitro* del inserto clonado. (2) eco47IR (753–16) es un gen letal el cual permite la selección positiva del plásmido recombinante. (3) lacUV5 (892–769) es el promotor del gen Plac modificado para la expresión del gen eco47IR a nivel suficiente que permita la selección positiva. (4) la secuencia rep pMB1 (762–1148), responsable de su replicación del plásmido pJET1.2. (5) la secuencia bla (ApR) (2782–1922), gen que codifica a la proteína ß-lactamasa, que confiere resistencia al antibiótico ampicilina.

Anexo 2. Mapa del vector de expresión pColdI

Este vector contiene 4 407 pb y contiene el promotor *cspA* para la eficiente expresión proteica, una región "downstream" 5' no-traducida (5' UTR), un operador *lac*, un gen que confiere resistencia a la ampicilina, el origen de replicación ColE1, un fragmento M13 IG, un sitio de múltiple clonación (MCS), el elemento potenciador de la traducción, una secuencia codificadora de varios residuos de histidinas y un sitio de clivaje del Factor Xa.

Anexo 3. Alineamiento multiple de la secuencia pcnp-KZ144.

J12R_RC	ATGGCTGGGGAAGCTTGCAAAGCAAAAAATGATGCTATAGCTGAACTC	48
C17R_RC	TATGGAATGGCTGAGGGAACTTGCAAAGCAAAAAAATGATGGCTAATAGCATG	53
C11AR_RC	ATGGCTTGAGGGAAGTTGCAAAGCAAAAAAATGATGCTATAGCATGACCA	50
J13R_RC	AGGAAACCTTGCAAAGCAAAAAATGGATGCTATATGCTGACGT	43
J11R_RC	TGGTTTAAGAATGCTGAGGAACTTGCAAAGCAAAAAAATTGAATGCTATAGCTGAACTT	60
C7R_RC	TAAAGGAATGGCTGAGGGAAGCTTGCAAAGCAAAAAATGATGCTATATCATGACCA	57
Gen_sintético		0
MacroGen		0
J11F		0
C17F		0
C7F		0
J12F		0
J13F		0
C11AF		0

J12R_RC	TCAAAATTAATTTTATAAAATTCCTGTCTCAGT-TCTGAAGCTGCTCTAA	97
C17R_RC	ACTCTCAAAATTTAAATTTTTAATAAAAATCCTGTCTCAGTTTCTGAAGCTTGCTCTA	111
C11AR_RC	TCTCAAAATTTAAATTTTTA-ATAAAATCCTGTCTCAGTTTCTGAAGCTTGCTCTAAA	107
J13R_RC	TCTTCAATTAAATTTTTAATAAAATCCTGTCTTCAGTTTCTGAAGCTTGCTCTA	97
J11R_RC	ТСТТСААААТТТАААТТТТТААТААААТТСССТGТСТСАGTTTСТGАAGCTGCTСТАА	118
C7R_RC	ТСТТСАААААТТАААТТТТТААТААААТСССТGТСТСАGTTTСТGАAGCTGCTСТАА	115
Gen_sintético		0
MacroGen		0
J11F		0
C17F		0
C7F		0
J12F		0
J13F		0
C11AF		0

J12R_RC	ACCTCGTTCAAAAAAAATGCAGAATAAAGTTGGTCAAGAGGAACATATTGAATA-TTAGC	156
C17R_RC	AACTCGTTCAAAAAAAATGCAGAATAAAGTTGGTCAAGAGGAACATATTGAATA-TTAGC	170
C11AR_RC	CCTCGTTCAAAAAAAAAGCGAGAATAAAGTTGGTCAAGAGGAACATATTGAATATTTAGC	167
J13R_RC	AACTCGTTCAAAAAAAATGCAGAATAAAGTTGGTCAAGAGGAACATATTGAATATTTAGC	157
J11R_RC	ACCTCGTTCAAAAAAAATGCAGAATAAAGTTGGTCAAGAGGAACATATTGAATATTTAGC	178
C7R_RC	ACCTCGTTCAAAAAAAATGCAGAATAAAGTTGGTCAAGAGGAACATATTGAATATTTAGC	175
Gen_sintético		0
MacroGen		0
J11F		0
C17F		0
C7F		0
J12F		0
J13F		0
C11AF		0

J12R_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACACACGCCACCTACAA-CGGTTCTGA	215
C17R_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACCCACGCCACTACAACGGTTCTGA	228
C11AR_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACCCACGCCACCTACAACGGTTCCTGA	227
J13R_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACCCACGCCACCTACAACGGT-TCTGA	216
J11R_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACCCACGCCACCTACAACGGTTCCTGA	238
C7R_RC	TCGTAGTTTTCATGAGAGTCGATTGCCAAGAAAACCCACGCCACCTACAACGGTTCCTGA	235
Gen_sintético		0
MacroGen		0
J11F		0
C17F		0
C7F		0
J12F		0
J13F		0
C11AF		0

J12R_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	275
C17R_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	288
C11AR_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	287
J13R_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	276
J11R_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	298
C7R_RC	TGAGGTGGTTAGCATAGTTCTTAATATAAGTTTTAATATACAGCCTGAAAATCTTGAGAG	295
Gen_sintético		0
MacroGen		0
J11F		0
C17F		0
C7F		0
J12F		0
J13F		0
C11AF		0

AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	335
AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	348
AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	347
AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	336
AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	358
AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA	355
	0
	0
	0
	0
	0
	0
	0
	0
	AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA AATAAAAGAAGAACATCGATTTTCCATGGCAGCTGAGAATATTGTAGGAGATCTTCTAGA

J12R_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	395
C17R_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	408
C11AR_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	407
J13R_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	396
J11R_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	418
C7R_RC	AAGATGGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	415
Gen_sintético	GGTCGGAATTCCATATGAAACGCAAGAAACGTAAGAAACGCAAAAAAGTATTACG	55
MacroGen	CAGGGTTAAGCAACGCAAAAAAGTATTACG	30
J11F	CTGTACGCAAAAAGTATTAC	20
C17F	CRAAWGAMGCAAAAGTATTACG	22
C7F	TGAMCGCAAAAAGTATTACG	20
J12F	TRCACGGCAAAAAGTATTAC	20
J13F	TGACGCAAAAGTATTAC	17
C11AF	TCTCGCAAAAGTATTAC	17

*** *

J12R_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	455
C17R_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	468
C11AR_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	467
J13R_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	456
J11R_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	478
C7R_RC	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	475
Gen_sintético	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	115
MacroGen	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATGTGGCTA	90
J11F	GCAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAARTTTWTGTGGCTA	80
C17F	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTWAAATTTATGTGGCTA	82
C7F	CAAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTWRAATTTATGTGGCTA	80
J12F	GCAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTTATKTGGCTA	80
J13F	GCAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATYTWTGTGGCTA	77
C11AF	GCAAGGCGATAGGGGTGATGAGGTATGTCAACTCCAGACACTCTTAAATTWATGTGGCTA	77
	******* * * * * * * * * * * * * * * * *	
J12R RC	ͲϾΑͲϾϾϤϿϿϿϾϹϹϿϾϿͲϾϾͳϿͲͲͲͲͲϾϾϿϿϿͲϿϿϹϿϹϹͲͲͲϿϿͲϹϿϾϾͲͽϾͲϫϿϿͽͲͲ	515
C17R RC	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	52.8
C11AR RC	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	527
J13R RC	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	516
J11R RC	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	538
C7R RC	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	535
- Gen sintético	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	175
— MacroGen	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	150
J11F	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	140
C17F	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	142
C7F	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	140
J12F	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	140
J13F	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	137
C11AF	TGATGTTGGAAAGCCAGATGGTATTTTTGGAAATAACACCTTTAATCAGGTAGTTAAATT	137

T120 DC	中で入入入入入ご入中入入中中に中で中へて入中入こ中に入中にご中へ中へにつ入しこ入入中入に中中にににについて入入中	575
C17P PC		588
CITA DC		507
TISP PC		576
T11P PC		598
C7R RC		595
Cen sintético		235
MacroGen		210
.111F	TCAAAAAAGATAATTGTCTAGATAGTGATGGTATTGTAGGTAAGAATACTTGGGCTGAATT	200
C17F	TCAAAAAAGATAATTGTCTAGATAGTGATGGTGATGGTAGGTA	202
C7F	TCAAAAAGATAATTGTCTAGATAGTGATGGTATTGTAGGTAAGAATACTTGGGCTGAATT	200
J12F	TCAAAAAGATAATTGTCTAGATAGTGATGGTATTGTAGGTAAGAATACTTGGGCTGAATT	200
J13F	TCAAAAAGATAATTGTCTAGATAGTGATGGTATTGTAGGTAAGAATACTTGGGCTGAATT	197
C11AF	TCAAAAAGATAATTGTCTAGATAGTGATGGTATTGTAGGTAAGAATACTTGGGCTGAATT	197

J12R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	634
C17R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	647
C11AR_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	646
J13R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	635
J11R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	657
C7R_RC	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	654
Gen_sintético	attcagtaaatatt <mark>c</mark> tccacctattccttataaaactatccctatgccaactgcaaataa	295
MacroGen	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	269
J11F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
C17F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	261
C7F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
J12F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	259
J13F	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	256
C11AF	ATTCAGTAAATATT-TCCACCTATTCCTTATAAAACTATCCCTATGCCAACTGCAAATAA	256
	************ **************************	
J12R_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	694
C17R_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	707
C11AR_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	706
J13R_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	695
J11R_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	717
C7R_RC	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	714
Gen_sintético	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	355
MacroGen	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	329
J11F	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	319
C17F	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	321
C7F	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	319
J12F	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	319
J13F	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	316
C11AF	ATCACGTGCAGCTGCAACTCCAGTTATGAATGCAGTAGAAAATGCTACTGGCGTTCGTAG	316

J12R_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	754
C17R_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	767
C11AR_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	766
J13R_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	755
J11R_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	777
C7R_RC	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	774
Gen_sintético	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	415
MacroGen	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	389
J11F	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	379
C17F	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	381
C7F	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	379
J12F	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	379
J13F	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	376
C11AF	CCAGTTGCTACTAACATTTGCTTCTATTGAATCAGCATTCGATTACGAAATAAAAGCTAA	376

J12R_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	814
C17R_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	827
C11AR_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	826
J13R_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	815
J11R_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	837
C7R_RC	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	834
Gen_sintético	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	475
MacroGen	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	449
J11F	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	439
C17F	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	441
C7F	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	439
J12F	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	439
J13F	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	436
C11AF	GACTTCATCAGCTACTGGTTGGTTCCAATTCCTTACTGGAACATGGAAAACAATGATTGA	436

J12R_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	874
C17R_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	887
C11AR_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	886
J13R_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	875
J11R_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	897
C7R_RC	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	894
Gen_sintético	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	535
MacroGen	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	509
J11F	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	499
C17F	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	501
C7F	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	499
J12F	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	499
J13F	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	496
C11AF	AAATTATGGCATGAAGTATGGCGTACTTACTGATCCAACTGGGGCATTACGTAAAGATCC	496

J12R RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	934
C17R_RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	947
C11AR_RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	946
J13R_RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	935
J11R_RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	957
C7R_RC	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	954
Gen_sintético	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	595
MacroGen	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	569
J11F	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	559
C17F	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	561
C7F	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	559
J12F	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	559
J13F	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	556
C11AF	ACGTATAAGTGCTTTAATGGGTGCCGAACTAATTAAAGAGAATATGAATATTCTTCGTCC	556

J12R_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	994
C17R_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	1007
C11AR_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	1006
J13R_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	995
J11R_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	1017
C7R_RC	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	1014
Gen_sintético	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	655
MacroGen	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	629
J11F	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	619
C17F	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	621
C7F	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	619
J12F	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	619
J13F	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	616
C11AF	TGTCCTTAAACGTGAACCAACTGATACTGATCTTTATTTA	616

J12R_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1054
C17R_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1067
C11AR_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1066
J13R_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1055
J11R_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1077
C7R_RC	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	1074
Gen_sintético	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	715
MacroGen	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	689
J11F	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	679
C17F	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	681
C7F	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	679
J12F	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	679
J13F	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	676
C11AF	TGCAGCCCGTCGTTTCCTGACCACTGGCCAGAATGAATTAGCTGCTACCCATTTCCCAAA	676

J12R_RC	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1114
C17R_RC	AGAAGCTCAGGCAAACCCATCTTT-TTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1126
C11AR_RC	AGAAGCTCAGGCAAACCCATTTTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1124
J13R_RC	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1115
J11R_RC	AGAAGCTCAGGCAAACCACTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1135
C7R_RC	AGAAGCTCAGGCAAACCCATCTT-TTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	1133
Gen_sintético	AGAAGCTCAGGCAAACCCATCTATTTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	775
MacroGen	AGAAGCTCAGGCAAACCCATCTATTTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	749
J11F	AGAAGCTCAGGCAAACCCATCTATTTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	739
C17F	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	741
C7F	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	739
J12F	AGAAGCTCAGGCAAACCCATCTATTTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	739
J13F	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	736
C11AF	AGAAGCTCAGGCAAACCCATCTATTTTTTATAACAAAGATGGGTCACCTAAAACCATTCA	736

J12R_RC	АДААДТТТАТААСТААТДДА	11
C17R_RC	AGAAGTTTATAACTAATGGAAAGG	11
C11AR_RC	АGAAGTTATAACTAAGAGAAAGCTAG	11
J13R_RC	AGAAGTTTATAACTAATGGATAACG	11
J11R_RC	AGAAGTTTATAACTAAGAGAAG	11
C7R_RC	AGAAGTTTATAACTTAATGGA	11
Gen_sintético	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	83
MacroGen	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	80
J11F	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	79
C17F	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	80
C7F	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	79
J12F	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	7
J13F	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC	7
C11AF	AGAAGTTTATAACTTAATGGATGGTAAAGTTGCAGCACATAGAAAATAAGGATCCCCAAC ****** *	7
J12R RC		1
C17R RC		1
C11AR RC		1
		1
J11R RC		1
C7R RC		1
- Gen sintético	C	8
_ MacroGen	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
J11F	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
C17F	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
C7F	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
J12F	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
J13F	CATCTTGCTGAA-AACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
C11AF	CATCTTGCTGAAAAACTCGAGCCATCCGGAAGATCTGGCGGCCGCTCTCCCTATAGTGAG	8
J12R_RC		1
C17R_RC		1
C11AR_RC		1
J13R_RC		1
J11R_RC		1
C7R_RC		1
Gen_sintético		8
MacroGen	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGCTGAATTTTTT	9
J11F	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTATT	9
C17F	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTATT	9
C7F	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTATT	9
J12F	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTATT	9
J13F	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTTATT	9
C11AF	TCGTATTACGCCGGATGGATATGGTGTTCAGGCACAAGTGTTAAAGCAGTTGATTTATT	9

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	CTCCATGATGAAAAATTCATGAGGGGAACTGTCCGAGGTAACGATAAGGAGAT-CC	984
J11F	CACTATGATGAAAA-AAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	978
C17F	CACTATGATGAAAAAAAAAAAAGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	981
C7F	CACTATGATGAAAA-AAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	978
J12F	CACTATGATGAAAA-AAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	978
J13F	CACTATGATGAAAA-AAACAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	974
C11AF	CACTATGATGAAAAAAAAAAATGAATGGAACCTGCTCCAAGTTAAAAATAGAGATAATAC	976

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	CGAAAACTTCCTGAGTAATTAACACCGTATATACTTACAAAAACTATGTATG	1044
J11F	CGAAAACTCATCGAGTAGTA-AGATTAGAGATATACAACATAAAAAAATGGTTT	1031
C17F	CGAAAACTCATCGAGTAGTA-AGATTAGAGATAATACAACAATAAAAAAAATGGGTTT	1038
C7F	CGAAAACTCATCGAGTAGTA-AGATTAGAGATAATACAACAATAAAAAAA-TGGGTTT	1034
J12F	CGAAAACTCATCGAGTAGTA-AGATTAGAGATAATACAACAATAAAAAAA-ATGGTTT	1034
J13F	CGAAAACTCATCGAGTAGTA-AGATTAGAGATAATACAACAATAAAAAAA-ATGGTTT	1030
C11AF	CGAAAACTCATCGAGTAGTA-AGATTAGAGATAATACAACAATAAAAAAA-ATGGTTT	1032

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	GGAAATAGGTCAAAAAACTGCCACATCCGATCACCGATATCCTTCGATCTTTTAGTCTA	1104
J11F	AGAACTTACTCACAGCGTG-ATGCTACTAATTGGGACATTTTCCAGATGA	1080
C17F	AGAACTTACTCACAGCGTG-ATGCTACTAATTTGGGGACATTTTCCAGATGA	1089
C7F	AGAACTTACTCACAGCGTG-ATGCTACTAATTGGGACA-TTTTCAGATGA	1082
J12F	AGAACTTACTCACAGCGTG-ATGCTACTAATTGGGACA-ATTTTCCAGATGA	1084
J13F	AGAACTTACTCACAGCGTG-ATGCTACTAATTGGGACA-TT-TTCCAGATGA	1079
C11AF	AGAACTTACTCACAGCGTG-ATGCTACTAATTGGGACA-ATTTTCCAGATGA	1082

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	AAAAAACCTACCTCTATCCGTATCCCTCCTTACCTTTTTTTGTCGCTTTATTTGTGC-CG	1163
J11F	GTATCATCTAGATTAATGAGAGACTCTAGCTTTGTAAAATATTGCTGATTAT	1132
C17F	GTATCATCTAGATTTAAAATGAAGAGACTCAGAGCTTTTGATAAAAATTATTTGGCAAAA	1149
C7F	GTATCATCTAGATTAATGAAGAGAC-TCG-AAGCTTTTTGCTAAAAATTATTGGCAAAAT	1140
J12F	GTATCATCTAGATTAAATGAGGAGACTCAGAAGCCTTTTGGTAAATTTAATTTGGGCAAA	1144
J13F	GTATCATCTAGATTAAATGAGAGACTCAGAGCTTTTGGTAAAATTATTTGGGCAAA-	1135
C11AF	GTATCATCTAGATTAATGAGAGACCTCMGAGCTTTTGGTAAAAATTATTTGGGCAAA	1139

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	ATTTTAGTCTTGTTTTTCATTAAATGCAATGGACTAATGAGCGAATATTTTTATATGCCG	1223
J11F	ATATTTCGGCTGCAGGGGGTCG	1154
C17F	ATATTATTAATTCCGGGCCTTG	1171
C7F	AATATTAGTTCC	1152
J12F	ACTATTATAATTTCCGGCCTKCMAG	1169
J13F	-ATATATAATTCGGCKGGCCAA	1156
C11AF	AATATATAATTCGGCTKGCCAAGGC	1164

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	GGTTCACATCTTCGACTTAATTTCCCTACATTTTAATTTCTTCTTGCGCGGGTTGCTAATA	1283
J11F		1154
C17F		1171
C7F		1152
J12F		1169
J13F		1156
C11AF		1164

J12R_RC		1134
C17R_RC		1150
C11AR_RC		1150
J13R_RC		1140
J11R_RC		1157
C7R_RC		1154
Gen_sintético		836
MacroGen	TACTTATATATATAGATTTACC	1307
J11F		1154
C17F		1171
C7F		1152
J12F		1169
J13F		1156
C11AF		1164