
Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

Load Balancing for Parallel Computations
with the Finite Element Method

José Luis González García
1
, Ramin Yahyapour

1
, and Andrei Tchernykh

2

1
GWDG - Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen,

Göttingen, Lower Saxony,
Germany

2
CICESE Research Center, Ensenada, Baja California,

Mexico

{jose-luis.gonzalez-garcia, ramin.yahyapour}@gwdg.de, chernykh@cicese.mx

Abstract. In this paper, we give an overview of efforts

to improve current techniques of load-balancing and
efficiency of finite element method (FEM) computations
on large-scale parallel machines and introduce a
multilevel load balancer to improve the local load
imbalance. FEM is used to numerically approximate
solutions of partial differential equations (PDEs) as well
as integral equations. The PDEs domain is discretized
into a mesh of information and usually solved using
iterative methods. Distributing the mesh among the
processors in a parallel computer, also known as the
mesh-partitioning problem, was shown to be NP-
complete. Many efforts are focused on graph-
partitioning to parallelize and distribute the mesh of
information. Data partitioning is important to efficiently
execute applications in distributed systems. To address
this problem, a variety of general-purpose libraries and
techniques have been developed providing great
effectiveness. But the load-balancing problem is not yet
well solved. Today’s large simulations require new
techniques to scale on clusters of thousands of
processors and to be resource aware due the
increasing use of heterogeneous computing
architectures as found in many-core computer systems.
Existing libraries and algorithms need to be enhanced
to support more complex applications and hardware
architectures. We present trends in this field and
discuss new ideas and approaches that take into
account the new emerging requirements.

Keywords. Load balancing, FEM, HPC efficiency.

Balanceo de Cargas para
Computación en Paralelo con el

Método de Elementos Finitos

Resumen. En este artículo damos una vista general de

los esfuerzos para mejorar las técnicas actuales de

balanceo de cargas y eficiencia en el cómputo con el
uso del método de elementos finitos (MEF o FEM por
sus siglas en inglés) en máquinas paralelas de gran
escala. Introducimos también un balanceo de cargas
multinivel para mejorar las diferencias locales. El MEF
es usado para aproximar numéricamente las
soluciones a ecuaciones diferenciales parciales (EDP o
PDE por sus siglas en inglés) o a ecuaciones
integrales. El dominio de las EDP se hace discreto
convirtiéndolo en una malla de información y
usualmente se soluciona utilizando métodos iterativos.
La distribución de la malla en los procesadores de una
computadora paralela, también conocido como el
problema de partición de la malla, es NP-completo.
Muchos esfuerzos se enfocan en partición de grafos
para paralelizar y distribuir la malla de información. La
partición de la información es importante para ejecutar
las aplicaciones eficientemente en sistemas
distribuidos. Para abordar este problema, una variedad
de librerías de propósito general y técnicas se han
desarrollado proveyendo gran efectividad. Pero el
problema del balanceo de cargas no está del todo
solucionado. Las extensas simulaciones de hoy
requieren nuevas técnicas para poder ser ejecutadas
eficientemente en sistemas de miles de procesadores
y para tomar en cuenta los recursos disponibles debido
al extenso uso de arquitecturas heterogéneas en la
actualidad. Las librerías y algoritmos actuales deben
ser adaptados para ser capaces de manejar
aplicaciones más complejas y diferentes arquitecturas
de hardware. Nosotros presentamos las tendencias en
este campo y discutimos nuevas ideas que consideran
los requerimientos emergentes.

Palabras clave. Balanceo de cargas, método de

elementos finitos, eficiencia en computación de alto
desempeño.

300 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

1 Introduction

The finite element method (FEM) is a powerful
tool widely used for predicting behavior of real-
world objects with respect to mechanical stresses,
vibrations, heat conductions, etc. [1, 2]. However,
applications have large computation,
communication and memory costs to be useful in
practice in the form of sequential
implementations. Parallel systems allow FEM
applications to overcome this problem [3], but in
turn they create new problems regarding system
efficiency, see Section 3 for details.

Partial differential equations (PDEs) are used
to describe a given problem. The PDEs domain is
discretized into a mesh of information (triangles or
rectangles in 2D, tetrahedra or hexahedra in 3D),
then the PDEs are transformed into a set of linear
equations defined on these elements [4]. In
general, iterative methods such as Conjugate
Gradient (CG) or Multigrid (MG) are employed to
solve the linear systems [1, 5]. The quality of the
solution heavily depends on the accuracy of the
discretization; the elements of the mesh have to
be small enough in order to allow an accurate
approximation. An extremely fine discretization
may incur in extra computation, communication
and memory costs. Adaptive techniques allow the
solution error to be kept under control while costs
can be minimized [6].

The parallelization of numerical simulation
algorithms usually follows the single-program
multiple-data (SPMD) paradigm. Hence, the mesh
is partitioned and distributed evenly among the
parallel system [2, 7]. Distributing the mesh
among the processors in a parallel computer, also
known as the mesh-partitioning problem, was
shown to be NP-complete [8, 9]. The mesh can be
easily represented as a graph, so in recent years,
much effort has been focused on developing
suitable heuristics based on the graph-partitioning
problem [10–17].

The most important causes of load imbalance
in FEM parallel applications are the dynamic
nature of the problem over time (in computational
and communication costs) and the adaptive
refinement of meshes during the computations.
Other causes may include the interference from
other users in a time-shared system, among
others. Thus, an efficient dynamic load balancing

is required. The increasing size of modern parallel
or distributed computers requires software
libraries to be enhanced to support these new
hardware architectures.

In the next section we present a background of
FEM computations and basic concepts in the
area. Section 3 presents the load balancing
problem in parallel FEM computations and
relevant previous work. Trends in the field and
discussion of new ideas and approaches that
consider the new emerging requirements are
given in Section 4, while Section 5 finishes the
paper with some conclusions and hints for future
research.

2 Background

In this section, we give an overview of the FEM.
We refer the reader to [5] for a more extensive
description. We also describe some available
FEM frameworks.

2.1 FEM and PDE

PDEs are often used to model physical
phenomena such as the flow of air around a wing,
the distribution of temperature on a plate, the
propagation of a crack [1, 2], and rarely have an
explicit solution.

The most widely used method to solve PDEs
is to discretize them into a mesh (triangles or
rectangles in 2D, tetrahedra or hexahedra in 3D).
There are several ways to do it (e.g., [18]). The
simplest method uses finite difference
approximations for the partial differential
operators. The FEM replaces the original function
by a function with some degree of smoothness
over the global domain. A structure with a
complex geometry is modeled by a number of
small connected cells (elements, nodes). Thus,
the function can be numerically approximated.

The matrices which arise from these
discretizations are generally large and sparse.
Since the derived matrices are sparse, the
equations are typically solved by iterative
methods such as CG or MG [1, 5]. The quality of
solutions obtained by such numerical
approximation algorithms heavily depends on the
accuracy of the discretization. The smaller the

Load Balancing for Parallel Computations with the Finite Element Method 301

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

elements, the better is the quality of the solution
achieved. It is also true that a better solution
leads to more intensive computations.

2.2 Solvers and Preconditioners

The FEM solver solves a set of matrix equations
which approximate the physical phenomena
under study. The first introduced iterative methods
were based on relaxation of the coordinates like
Jacobi, Gauss-Seidel, and SOR [5]. These
methods are rarely used in our days. Other
techniques utilize a projection process to
approximate the solution of the linear system. The
Krylov subspace methods are considered among
the most important techniques. We can mention
Arnoldi’s Method, CG, Lanczos
Biorthogonalization, and Transpose-Free Variants
[5], among others. MG methods were initially
designed for the solution of discretized elliptic
PDEs. Later, they were enhanced to handle other
PDEs problems as well as problems not
described by PDEs. The performance of MG
methods is superior to that achieved by Krylov
subspace methods, however, they require specific
implementations for each problem in contrast with
Krylov subspace methods which are for general
purpose.

The equations are typically solved by iterative

methods such as CG or MG. MG methods are
among the fastest numerical algorithms for
solving large sparse systems of linear equations
[19]. The CG method is an iterative algorithm for
realization of an orthogonal projection onto a
Krylov subspace and it is suitable only for
symmetric positive definite matrices.

As described in [5], a preconditioner is a form
of implicit or explicit modification of an original
linear system which makes it “easier” to solve by
a given iterative method. It conditions a given
problem into a form that is more suitable for a
numerical solution. A preconditioner can be
defined as a subsidiary approximate solver
combined with an outer iteration technique. The
lack of robustness is a well-known problem of
iterative solvers, the reason why preconditioning
is a key ingredient for Krylov subspace methods.

2.3 Meshes

The quality of the solution heavily depends on the
accuracy of discretization. The elements of a
mesh have to be small in order to allow an
accurate approximation. Unfortunately, regions
with large gradients are not known in advance.
Hence, meshes can be unstructured and
periodically refined/coarsened in areas where it is
required during calculations; or they can be
structured with equal connectivity for each node.
The main issue with structured meshes is a large
number of small elements in regions where they
are not needed. Obviously, the first variant is
preferred and used for FEM. The solution has the
same quality but the time needed is only a fraction
of the time required by the structured mesh.
Adaptive techniques allow the solution error to be
kept under control while computation costs can be
minimized [6].

Depending on the problem, some regions of
the mesh are refined during computations. Since
these areas are not known in advance or can vary
over time, the mesh is refined and coarsened
several times during the computations. This is a
source of imbalance in parallel FEM simulations.
Hence, load balancing techniques must be
applied to reduce the impact of this
refinement/coarsening process on the efficiency
of computations. It is necessary to find a new
balanced partition with the additional objective not
to cause too many elements to change their
processor. Migrating elements may be an
extremely costly operation since a lot of data has
to be sent over communication links. A number of
solutions were proposed [20, 21]. Well known
graph partitioning libraries, presented later in
Section 3, also deal with the adaptive mesh
refinement problem.

2.4 Parallelization of Numerical Simulations

Due to a large amount of mesh elements required
to obtain an accurate approximation, FEM has
become a classical application for parallel
computers. Parallel versions of numerical
simulation algorithms follow the SPMD paradigm.
Each processor executes the same code on a
different part of the data. The mesh has to be
divided and mapped to processors in order to

302 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

minimize the overall computation time [2, 7].
Distributing the mesh among the processors in a
parallel computer, also known as the mesh-
partitioning problem, was shown to be NP-
complete [8, 9]. The parallel efficiency heavily
depends on two factors: the distribution of data
(mesh) on the processors and the communication
overhead of boundary data.

During the computations, the mesh is refined
and coarsened several times. Hence, the
workload is changed unpredictably and a new
distribution of the mesh among the processors is
required without causing a change of the location
for too many elements. Dynamic load balancing
has to be applied. The application has to be
interrupted for a load balancing step. This
interruption should be as short as possible. Thus,
the full advantages of High Performance
Computing (HPC) technology will be able to be
exploited only when efficient load balancing
techniques are applied.

As parallel simulations and environments
become more complex, partitioning techniques,
used to distribute the load among the processors,
must be enhanced to fit the emerging
requirements. Partitioning algorithms need to be
aware of computer architectures, memory and
communication resources. Additionally, FEM
simulations must scale linearly with respect to the
number of processors and the problem size.

2.5 FEM Frameworks and Simulators

A variety of FEM tools and frameworks have been
developed in the last years [22–42]. Ready-to-use
software is also available for commercial use [2,
43–45]. While some provide effective results for
particular problems, others are more suitable for
general purposes. We mention the most relevant
tools including their main features.

Charm++ [22] is a parallel framework
developed at the University of Illinois. It gives
scientists the opportunity to focus on modeling the
problem and not on parallelization details. It is
based on multi-partition decomposition and data
driven execution. The application is decomposed
into a large amount of small parts called objects.
The objects are then distributed among the
processors. The communication pattern is set
between the objects and not between processors.

The framework separates the numerical
algorithms from the parallel implementation. One
example of FEM simulators based on the
Charm++ framework is NAMD2 described in [46].
The authors give the analysis of its performance
on some benchmark applications.

Recent effort is being focused on massively
parallel programming due to the increasing use of
clusters of thousands of processors. Heister et al.
[37] focus on a design of efficient data structures
and algorithms for these new requirements. They
have enhanced the library deal.II [47] to take
advantage of the large cluster power. This library
uses object-oriented and data encapsulation
techniques to divide finite element
implementations into smaller blocks. It supports a
large number of different applications covering a
wide range of scientific areas, programming
methodologies, and application-specific
algorithms.

Dolfin [28] employs novel techniques for
automated code generation. Mathematical
notations are used to express Finite Element (FE)
variational forms, from which low-level code is
automatically generated, compiled, and integrated
with implementations of meshes and linear
algebra. Dolfin differs from many other projects
such as Sundance [31] and Life [34, 35], among
others, in that it relies more on code generation.
As a result, Dolfin supports a wider range of FE
since it may assemble FE variational forms on FE
spaces supported by the form compiler and FE
backend. The form compiler automatically
generates code from a user-defined high-level
description of the FE variational form [28].

FEAST [29] is a FE based solver toolkit for the
simulation of PDE problems on parallel HPC
systems. It is being developed at the Technical
University of Dortmund. It is the successor of the
established FE packages FEAT and FEATFLOW
[48]. The next version, FEAST2, is currently under
development and will include new features such
as 3D support.

ESI Group [44] develops a wide selection of
software for different applications such as
biomechanics, casting, crash, electromagnetic,
and fluid dynamics applications, among others.

Load Balancing for Parallel Computations with the Finite Element Method 303

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

3 The Load-Balancing Problem in
Parallel Computations with FEM

This section presents information related to load-
balancing techniques. We mainly focus on load-
balancing through graph/mesh partitioning
methods. Much work has been done previously in
this area.

3.1 Description and Factors Leading to
Imbalance

Load-balancing is important in parallel
computations; it is an interesting area of research
with a vast range of applications. It was first
introduced by Shivaratry et al. [49] who described
and compared some common strategies. Load-
balancing maximizes application performance by
keeping processor idle time and interprocessor
communication overhead as low as possible. To
minimize the overall computation time, all
processors should contain the same amount of
computational work, and data dependencies
between processors should be minimized. Thus,
the full advantages of HPC technology will be
able to be exploited only when efficient load
balancing techniques are applied.

Numerous methods for static and dynamic
load balancing have been proposed. Some of
them will be discussed later. The dynamic
problem has not been extensively studied as the
static one. Devine et al. [50] provide ideas to
address the dynamic problem. Willebeek-LeMair
and Reeves [51] provide a comparison study of
dynamic load-balancing strategies.

The most important causes of load imbalance
in FEM parallel application are the dynamism of
the problem over time (in computational and
communication costs), and the adaptive
refinement of meshes during the calculation.
Since these areas are not known in advance or
can vary over time, the mesh is refined and
coarsened several times during the computations.
Interference from other users in a time-shared
system and heterogeneity in either the computing
resources or in the solver can also result in load
imbalance and poor performance.

3.2 Multiphase Problems

For certain applications the mesh elements may
belong to more than one phase. Typically these
applications arise from multiphysics or contact-
impact modeling, and geometric partitioners are
often preferred to compute the partitions.

As data needs to be communicated between
phases, computing a single partition well with
respect to all phases would reduce
communication. Computing this single partition is
more complex as each processor would have
multiple workloads corresponding to each phase.
In principle, the partitioning is done phase by
phase, using the results of the previous phase to
influence the partition of the current one [52].

This kind of problems consists of various
separate phases interrelated (e.g., crash
simulations consist of two phases: computation of
forces and contact detection). Often, separate
partitions are used for each phase and data
communication is required [53].

3.3 Load Balancing through Graph Partitioning

Mesh-based PDE problems are often expressed
as graphs. Graph vertices represent the data (or
work) to be partitioned. Edges represent
relationships (data dependencies) between
vertices. The number of boundary edges
approximates the volume of communication
needed during computation. Vertices and edges
can be weighted to reflect associated computation
and communication costs, respectively. The goal
of graph partitioning, then, is to assign equal total
vertex weight to partitions while minimizing the
weight of cut edges.

However, this should be considered only as
balancing the application if it is known that each
graph vertex represents an equal amount of work.
In fact, this is usually not true, and the
computational work is dominated by the cost of
the local subdomain solutions. Another limitation
of the use of graphs is the type of systems they
can represent [54]. Since edges in the graph
model are non-directional, they imply symmetry in
all relationships, making them appropriate only for
problems represented by square, symmetric
matrices. To address this drawback, hypergraphs
are used to model PDE problems. As in a graph,

304 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

hypergraph vertices represent the data to be
partitioned. However, hypergraph edges
(hyperedges) are sets of two or more related
vertices. The number of hyperedge cuts is an
exact representation of communication volume,
not merely an approximation [55]. Effectiveness of
hypergraph partitioning has been demonstrated in
many areas, including VLSI layout [56], sparse
matrix decompositions [55, 57], database storage
and data mining [58, 59].

3.3.1 The Graph-Partitioning Problem

In a few words, the graph-partitioning problem is
to divide the set of vertices of a graph into subsets
(subdomains) no larger than a given maximum
size, so as to minimize some cost function (e.g.,
the total cost of the edge cut).

For the purposes of this paper, we use the
definition of graph partitioning presented in [60].
Let () be an undirected graph of

vertices, with edges which represent the data
dependencies in the mesh. We assume that the
graph is connected. We also assume that both
vertices and edges are weighted (with positive
integer values) and that | | denotes the weight of

vertex . Similarly, | |, | | and | | denote the
weights of edge , subdomain and edge cut ,
respectively.

Given that it is necessary to distribute the
mesh to processors, we define a partition to
be the mapping of into disjoint subdomains

such that ⋃ . The partition induces a

subdomain graph on , which we shall refer to as

 (). There is an edge () if

there are vertices with () , and

 , ; the weight of a subdomain is just

the sum of the weights of the vertices in it,

| | ∑ | |
. We denote the set of

intersubdomains or edge cut (i.e., edges cut by
the partition) by (note that | | | |). Vertices
that have an edge in (i.e.,
{ () }) are
referred to as border or boundary vertices.

The definition of the graph-partitioning problem
is to find a partition that evenly balances the load
(i.e., vertex weight) in each subdomain, while

minimizing the communication cost. The optimal

subdomain weight is given by ̅ ⌈| | ⁄ ⌉ (where
the ceiling function ⌈ ⌉ return the smallest

integer), and the imbalance is then defined as
the maximum subdomain weight divided by the
optimal weight (since the computational speed of
the underlying application is determined by the
most heavily weighted processor). Throughout
this paper, the communication cost will be
estimated by | |, the weight of edge cut or cut-
weight. A more precise definition of the graph-
partitioning problem is therefore to find such

that | | ̅ and | | is minimized. Note that a

perfect balance is not always possible for graphs
with non-unitary vertex weights.

To date, algorithms have been used almost
exclusively to minimize the edge cut weight. It is
important to note that this metric is only an
approximation of communication volume and
usually does not model the real costs [54].
Besides, it is known that this is not necessarily the
best metric to use. It has been demonstrated that
it can be extremely effective to vary the cost
function based on the knowledge of the solver
[61]. A more appropriate metric is the number of
boundary vertices. It models the resulting
communication volume more accurately, but
unfortunately, it is harder to optimize [54].

However, for many applications, minimizing
other metrics may be desirable. We list the most
widely used ones here: send volume, receive
volume, diameter, outgoing migration, and
incoming migration. The send volume is the
amount of outgoing information from each sub-
domain. The receive volume is the amount of
incoming information. The diameter is the longest
shortest path between two vertices of the same
sub-domain (infinity, if the sub-domain is not
connected). The outgoing migration is the number
of vertices that have to be migrated to a different
sub-domain. And the incoming migration is the
number of vertices that have to be migrated from
a different sub-domain.

Furthermore, in dynamic load balancing,
speed is often more important than quality of the
partition (its balance). A less balanced solution
does not necessarily cause unbalances during
computation, but of course, allows other metrics
to improve.

Load Balancing for Parallel Computations with the Finite Element Method 305

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

3.3.2 Mesh to Graph/Graph to Mesh
Conversion

The mesh is converted into a weighted graph. The
vertex weights correspond to calculation costs
and edge weights correspond to potential
communication costs. Different graph
representations can be used. The type of graph
should be selected based on the application
requirements, the cost function model, and the
accuracy with which the cost model should be
approximated. We refer the reader to [62] for
details.

The output of graph partitioners is an array
indicating for each graph vertex to which process
(sub-domain) it should be migrated. In the case of
a dual graph, this array gives only a new
distribution for the mesh elements, while a new
distribution for the nodes still has to be
determined. A similar situation holds in the case
that a nodal graph has been used.

Types of graphs

Dual graph or element graph. The weighted
graph vertices correspond to mesh elements and
the associated calculation costs. The edges
represent the potential communication between
neighboring elements. Vertices are connected by
an edge if the corresponding elements share an
edge in 2D or a face in 3D.

Extended dual graph. For meshes with
elements of different dimensions, the potential
communication cannot be well represented by a
dual graph. In an extended dual graph, graph
vertices are connected by an edge when the
corresponding elements share one or more
nodes. Hence, certain connections between sub-
domains that are lost in a classical dual graph,
including connections between elements of
different dimensions, are maintained. However,
the extended dual graph may become very
complex, requiring a lot of memory, especially for
3D tetrahedral meshes.

Generalized dual graph. This graph lies
between the classical dual graph and the
extended dual graph. As with the extended dual
graph, it is well suited for meshes with different
element types. However, not all elements sharing
a node are joined by an edge of the graph. An

element is connected only to those neighboring
elements that share a (local) maximum number of
nodes.

Nodal graph. Here graph vertices correspond
to mesh nodes, and vertices are connected if they
share an element.

Combined graph. In this graph, both elements
and nodes are represented by vertices, allowing a
good representation of all calculation costs. Since
finite element applications often use node lists for
inter-process communication, graph edges
represent communication requirements between
elements and nodes. Hence, this graph is a
simplification of a general combined graph that
would have all kinds of element-element, node-
node, and element-node connections.

3.3.3 Partitioning Algorithms

Many methods have been proposed in the
literature to deal with the partitioning problems of
FE graphs on distributed memory multicomputers.
These methods have been implemented in
several graph partitioning libraries. We give an
overview of their classification.

Greedy methods
Greedy approaches are based on graph

connectivity. Typically, the first subdomain of a
partition is initialized with one single vertex and
further vertices are added until the required
subdomain size is reached. Then, a new
subdomain is initialized with an unassigned vertex
and it is built up in the same greedy fashion.
Several possibilities of choosing new vertices
exist: progressing in a breath-first manner [11],
choosing vertices which reduces the edge cut
[10,15], etc. The greedy approach usually results
initially in very compact subdomains, but often the
last subdomain consists of all leftover elements
and its shape is not smooth. Different methods try
to solve this problem [15, 63–65].

A well-known algorithm is Bubble [66]. Its
major drawback is the lack of a guarantee for
balanced partitions. Although at the end the
seeds are spread out evenly over the whole
graph, the subdomains could not contain the
same number of vertices. To overcome this
problem, one may add a local partitioning method
to balance the load, trying to further optimize
either the edge cut or the aspect ratio (AR).

306 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

Geometric methods
Geometric partition methods [67, 68] are quite

fast but they often provide worse partitions than
those of more expensive methods such as
spectral. Furthermore, geometric methods are
applicable only if coordinate information for the
graph is available. They are effective only when
geometric locality is important and/or natural
graph connectivity is not available. Geometric
partitioners can induce higher communication
costs than graph partitioners for some
applications because they do not explicitly control
communication. However, because of their
simplicity, they generally run faster and can be
implemented easier than graph partitioners.
Examples of this approach are presented in [15,
50, 69–71].

Diffusive methods
This technique for dynamic load balancing has

been proposed primarily due to its simplicity and
its analogy with the physical process of diffusion.
It is the work diffusing in a natural way through the
multiprocessor network. Another interpretation of
this approach involves analogies with finite
Markov chain models. Work distribution can be
considered to be an initial probability distribution,
and the diffusion of work is mathematically
identical to the evolution of state occupation
probabilities. Much work has been done in this
area [11, 66, 72–78].

Spectral methods
More elaborate methods, called spectral

methods, use the connectivity measures based on
the second smallest eigenvalue of the graph's
Laplacian. These methods [14, 79] are quite
expensive, but combined with fast multilevel
contraction schemes they belong to the state-of-
the-art in graph partitioning software [80, 81]. The
Multilevel Spectral Bisection (MSB) algorithm
produces partitions that are as good as those
produced by the original spectral bisection, but it
is one to two orders of magnitude faster, because
it computes the Fiedler vector of the graph using a
multilevel approach [82]. Other approaches can
be found in [66, 73, 77, 83].

Multilevel methods
Recently, a number of researches have

investigated a popular and successful class of

algorithms that have moderate computational
complexity, known as multilevel algorithms. This
class of algorithms provide excellent (even better
than spectral) graph partitions [13, 79, 84] and the
basic idea behind them is very simple.

A graph contraction algorithm creates a series
of progressively smaller and coarser graphs,
generally until a few hundred of vertices remain in
the coarsest graph. A bisection of this much
smaller graph is computed. Then this partition is
projected back towards the original graph, refining
the partition at each graph level. Since the original
graph has more degrees of freedom, such
refinements usually decrease the edge cut. To
date, these algorithms have been used almost
exclusively to minimize the edge cut weight, a
cost that approximates the total communication
volume in the underlying solver.

From the experiments presented in [13, 79], it
is clear that multilevel graph partitioning
algorithms are able to find high quality partitions
for a variety of unstructured graphs. However,
there exists little theoretical analysis that could
explain the ability of multilevel algorithms to
produce good partitions. We briefly describe the
various phases of the multilevel algorithm. The
reader should refer to [13] for further details.

A series of progressively smaller and coarser
graphs, (), is created from the original

graph () such that | | | |. A

coarser graph is constructed from graph
by finding a maximal matching of and
collapsing together the vertices that are incident
on each edge of the matching. Vertices that are
not incident on any edge of the matching are
simply copied to . When vertices are

collapsed to form a vertex , the weight of

the vertex is | | | | | |, while the edges

incident on is set equal to the union of the
edges incident on and minus the edge ().
In the case when a vertex in contains edges

to both and such that () and (), then
the weight of the resulting edge in is set to
|()| |()|. Thus, during successive
coarsening levels, the weights of both vertices
and edges are increased.

Some authors do not consider the matching as
a separate phase, but part of the coarsening one.
Maximal matching can be computed in different
ways [13, 60, 85]. The method used to compute

Load Balancing for Parallel Computations with the Finite Element Method 307

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

the matching greatly affects both the quality of the
bisection, and the time required during the
uncoarsening phase [86]. Here, we just mention
some.

Random matching (RM) computes the
maximal matching by using a randomized
algorithm [79]. Heavy-edge matching (HEM),
computes a matching such that the weight of

the edges in is high. The modified heavy-edge
matching (HEM*) is a modification of HEM which
tries to decrease the average degree of coarser
graphs. Walshaw and Cross use a variant of the
graph contraction algorithm proposed by
Hendrickson and Leland [79].

The third phase of a multilevel algorithm is to
compute a balanced partition of the coarsest
graph (). The k-way partitioning
problem is most frequently solved by recursive
bisection. It is also possible to directly compute a
k-way partition, but the coarsening phase may
become more expensive to perform.
Nevertheless, there are advantages such as the
entire graph now needs to be coarsened only
once, and it is well known that recursive bisection
can perform arbitrarily worse partitions than direct
k-way partitioning [87]. An evaluation of different
algorithms for partitioning a coarser graph can be
found in [13].

During the uncoarsening phase, the partition of
the coarsest graph is projected back towards
the original graph by going through the graphs

 , refining the partition at each

graph level. Even if the partition of is at a local
minima, the partition of , obtained by the
projection, may not be at a local minima. Hence,
local refinement heuristics must be applied to
improve the partition of . A number of
refinement algorithms are investigated in [13].

3.3.4 Graph Partitioning Software

Multilevel graph partitioning software is available
in the form of public domain libraries, and most of
them are free for academic research, such as
Chaco [80, 81], METIS [88, 89] and SCOTCH
[90–92]. We refer the reader to [93] for a more
detailed description of each one. The
performance of this software has been compared
several times in recent years [21,60, 94, 95]. Due
to a large number of configuration parameters of

each library, it is hard to achieve a clear
conclusion.

Jostle [96–98] is suitable for partitioning
unstructured meshes for use on distributed
memory parallel computers. It can also repartition
and load-balance existing partitions. The
refinement algorithm used by Jostle is a multi-way
version of the Kernighan-Lin (KL) algorithm [17],
which incorporates a balancing flow. The balance
flow is calculated either with a diffusive type
algorithm, or with an intuitive asynchronous
algorithm. Jostle can be used to dynamically
repartition a changing series of meshes, both to
load-balance and to minimize the amount of data
movement, and hence, redistribution costs. Jostle
also has a variety of built-in experimental
algorithms and modes of operations such as
optimizing subdomain AR. Jostle is very suitable
for dynamic repartitioning.

METIS is a set of serial programs for
partitioning graphs, partitioning FE meshes, and
producing fill reducing orderings for sparse
matrices. METIS is capable of minimizing the sub-
domain connectivity as well as the number of
boundary vertices. The implemented algorithms
are based on the multilevel recursive-bisection
[13], multilevel k-way [99], and multi-constraint
partitioning schemes. METIS is based in the
multilevel paradigm [13, 79, 94, 100] and includes
a variety of algorithms for each phase of the
partitioning process. Additionally, METIS includes
an MPI-based parallel library for the partitioning of
unstructured graphs, meshes and computing fill-
reducing orderings of sparse matrices.

METIS currently supports four different types
of mesh elements: triangles, tetrahedra,
hexahedra, and quadrilaterals. The first step is to
convert the mesh into a nodal or dual graph. After
this is done, the graph is partitioned and
converted back into the original mesh including
the partition information.

METIS and Jostle are designed to support
partitioning and load balancing of adaptive mesh
calculations in parallel. Both use the algorithm of
[101] in order to determine the balancing flow and
use a multilevel strategy for shifting elements,
where optionally the coarsening is done only
inside subdomains.

Chaco addresses three classes of problems.
First, it computes graph partitions using a variety

308 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

of approaches with different properties. Second,
Chaco intelligently embeds the partitions it
generates into several different topologies. The
topologies are those matching the common
architectures of parallel machines, namely,
hypercubes and meshes. Third, Chaco can use
spectral methods to sequence graphs in a
manner that preserves locality. Chaco implements
five partitioning algorithms: linear, inertial,
spectral, KL, and multilevel-KL; all described in
the user’s manual [81]. Each of these algorithms
can work on weighted graphs, and can be used to
create partitions of two, four, or eight subdomains
at each stage of recursive decomposition.

Party [102–104] serves a variety of different
partitioning methods in a very simple and easy
way. It can be used as stand-alone or as library
interface, and provides default settings for an
easy and fast start. The PARTY partitioning library
provides interfaces to the Chaco library, and the
central methods therein can be invoked from the
PARTY environment. One of the main advantages
of Party is that its general partitioning procedure
allows several partitioning methods to be
managed at once. Among others, Party generates
initial partitions through linear, random and Farhat
techniques, and improves the partition with KL or
Helpful Sets (HS). In contrast to other
implementations, the local refinement algorithm in
Party is based on theoretical analysis finding
upper bounds for the bisection width of regular
graphs [105, 106]. Instead of moving single
vertices, the HS heuristic exchanges whole vertex
sets between the partitions. However, this
approach has been successfully applied only to
bisectioning. Complete information can be found
in [104].

SCOTCH is a software package for static
mapping partitioning and sparse matrix block
ordering of graphs and meshes. It is based on the
Dual Recursive Bipartitioning (DRB) mapping
algorithm and several graph bipartitioning
heuristics [107]. The mapper can map any
weighted source graph onto any weighted target
graph, or even onto disconnected subgraphs of a
given target graph, which is very useful in the
context of multi-user parallel machines. Recently,
the ordering capabilities of SCOTCH have been
extended to native mesh structures, thanks to

hypergraph partitioning algorithms. It also
comprises parallel graph ordering routines.

As mentioned above, a concrete and concise
conclusion comparing different graph partitioning
software cannot be established. Many
comparisons between them have been published
[21, 60, 94, 95] with different results. Karypis and
Kumar [94] pointed out some differences between
Chaco and METIS at the refinement phase,
leading to a more expensive partitioning process
in the former. Diekmann et al. [21] showed that
Jostle and METIS are not suitable for use in long
periods of time without a complete repartitioning
from time to time, when AR is a metric of
importance. The experimental results by Walshaw
and Cross [60] show a degraded performance of
METIS compared to Jostle due the coarsening
phase. METIS coarsens to 2000 vertices while
Jostle coarsens until the number of vertices
equals the number of final subdomains. Usually,
METIS is very fast, while Jostle takes longer time
but often computes better solutions.

Furthermore, libraries like METIS and Jostle
primarily minimize the edge cut and cannot obey
constraints like connectivity and straight partition
boundaries which are important for some
numerical solvers.

3.3.5 Hypergraph Partitioning Software

Serial hypergraph partitioning libraries are
available, such as hMETIS [108, 109], PaToH
[110, 111], Mondriaan [112]. But for large scale
and dynamic applications, parallel hypergraph
partitioners are needed. The load balancing
library Zoltan [113, 114] also includes a serial
hypergraph partitioner which uses multilevel
strategies developed for graph partitioning [13,
79]. The hypergraph is coarsened into
successively smaller hypergraphs. The smallest
hypergraph is partitioned and the coarse
decomposition projected back to the larger
hypergraphs, using local optimization to reduce
hyperedge cuts while maintaining balance at each
level.

3.4 Load Balancing Libraries

The DRAMA [62, 115] library performs a parallel
computation of a mesh re-allocation that will re-
balance the costs of the application code based

Load Balancing for Parallel Computations with the Finite Element Method 309

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

on the DRAMA cost model. The DRAMA cost
model is able to take into account dynamically
changing computational and communication
requirements. The library provides the application
program sufficient information to enable an
efficient migration of the data between processes.
DRAMA is designed to be called by parallel
message-passing (MPI) mesh-based applications.

Different parts of parallel applications that are
separated by explicit synchronization points are
defined as phases within the DRAMA cost model.
The total cost is then given by the sum of the
maximum cost over all processes per phase and
over all phases. The load imbalance for each
phase is the ratio of the maximum to average
process costs for that phase.

The Zoltan Parallel Data Services Toolkit [113,
114] is unique in providing dynamic load
balancing and related capabilities to a wide range
of dynamic, unstructured and/or adaptive
applications. Zoltan supports many applications
through its data-structure neutral design. Similar
libraries, such as DRAMA which supports only
mesh-based applications, focus on specific
applications; Zoltan does not require applications
to have specific data structures. However, with
respect to data migration, libraries like DRAMA
can provide greater capabilities, as they have
knowledge of application data structures.

Zoltan’s design is effective for both
applications and research. It allows both existing
and new applications to easily use Zoltan. New
algorithms can be added to the toolkit easily and
compared to existing algorithms in real
applications using Zoltan.

Dynamic Resource Utilization Model (DRUM)

[116, 117] provides applications aggregated
information about the computation and
communication capabilities of an execution
environment. DRUM has been designed to work
with Zoltan, but may also be used as a separate
library. DRUM encapsulates the details of
hardware resources, capabilities and
interconnection topology; provides a facility for
dynamic, modular, and minimally intrusive
monitoring of an execution environment; and
provides this information to be used by any load-
balancing algorithm as the percentage of overall
application load to be assigned to a partition.

UMPAL [118] is an integrated tool consisting of
five components: a partitioner, load balancer,
simulator, visualization tool, and web interface.
The partitioner uses three partitioning libraries:
Jostle, Metis and Party. The partitioning results
are then optimized by the Dynamic Diffusion
Method (DDM) [75], the Directed Diffusion Method
(DD) [119] or the Multilevel Diffusion Method (MD)
[97]. The load balancer provides two load-
balancing methods: the prefix code matching
parallel load-balancing method and the binomial
tree based parallel load-balancing method, both
proposed by Liao [75]. The simulator provides a
performance simulation environment for a
partitioned mesh. The visualization tool provides a
way for users to view a partitioned mesh. The web
interface provides a mean for users to use
UMPAL via Internet and integrates the other four
parts.

4 Current Trends

In this section, we present the current trends
related to load-balancing techniques. We also
propose a new model for load-balancing and
optimizing unstructured mesh partitions based on
a multilevel technique.

4.1 New Challenges

Today’s large simulations require new techniques
to scale on clusters of thousands of processors,
and to be resource aware due the increasing use
of heterogeneous computing architectures as
found in many-core computer systems. Existing
libraries and algorithms need to be enhanced to
support more complex applications and hardware
architectures. Thus, the full advantages of HPC
technology will be able to be exploited only when
efficient load balancing techniques are applied.

Often, FEM libraries restrict their use to small
systems, and this becomes a limitation when
thousands of cores are available. This has led to
a significant disparity between the current
hardware and software running on it. Heister et al.
[37] propose parallel data structures and
algorithms to deal with massively parallel
simulations. They enhanced the library deal.II to
overcome the problem. They focus on the primary

310 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

bottlenecks to parallel scalability: the mesh
handling, the distribution and global numbering of
the degrees of freedom, and the numerical linear
algebra. Another library designed for massively
parallel simulations is ALPS [25]. It is based on
the p4est library [120], but it lacks the extensive
support infrastructure of deal.II, and it is not
publicly available.

After the mesh refinement, the workload
among processors may become unbalanced. As
the load-balancing step could be relatively large,
a load-balancing step is necessary only when the
degree of imbalance is high. Therefore, it is
important to determine the influence of the
imbalance on the total cost of a numerical
simulation in order to decide if the load-balancing
step should be performed or not. Olas et al. [27]
introduce a new dynamic load balancer to NuscaS
[26] based on a performance model. This model
estimates the cost of the load-balancing step, as
well as the execution time for a computation step
performed with either balanced or unbalanced
workload.

Many supercomputers are constructed as
networks of shared-memory multiprocessors with
complex and non-homogeneous interconnection
topologies. Grid computing enables the use of
geographically distributed systems as a single
resource. This paradigm introduces new and
difficult problems in resource management due
the extreme computational and network
heterogeneity. To distribute data effectively on
such systems, load-balancers must be resource-
aware. That is, they must take into account the
heterogeneity in the execution environment.
Some attempts to address this issue can be found
in [50, 121–124].

4.2 Multilevel load balancer

As previously mentioned, new hardware
architectures bring new capabilities and new
problems in resource management. New
approaches and algorithms have to be developed
in order to overcome these issues. To this end,
we propose a new multilevel load-balancing
model, which aims to reduce the local imbalance,
while tries to reduce the global communication
overhead. The use of resource information and a

cost function is important to achieve a good load
balance.

The compute time has to scale linearly with
respect to the problem and the number of
processors. Additionally, local memory
requirements should depend only on the local, not
the global problem size. To efficiently distribute
data on the underlying system, we need to gather
information about the computing environment
(e.g., processors, network topology and memory).
A perfect balanced partition is worthless if it
cannot be efficiently mapped. Such partitions
have to be computed based on the knowledge of
the system. A non-balanced partition could fit
better to specific hardware architectures (e.g.,
when processor speeds differ between them). The
system information is gathered before the actual
FEM simulation begins using a configuration step.
In case of dynamic resources, this step has to be
performed before each computation step within
the simulation. There exist libraries, such as
LINPACK [125], that can be used for this purpose.

Our model works as follows. The first level is
responsible for the main load-balancing steps. It
performs the load distribution over the entire
system, such as traditional models, before each
computation step. We use additional information
to compute the mesh partitioning and mapping. A
graph is built from the available hardware
information which represents the underlying
system. Vertices represent processors and edges
network links; both can be weighted to mimic the
heterogeneity. Therefore, we use two graphs, one
representing the mesh, and one the system. With
this the extra information, a partition that better fits
the system can be found. In this way, we are able
to better distribute the load among the processors
using well known libraries such as METIS and
Jostle.

A similar cost model to the one proposed by
Olas et al. [27] can be used to determine if a
balancing step is required or not. If the time
required by the load balancing step is smaller
than the time that will be saved with a new
distribution, then it is performed. We enhanced
the model by adding additional information and
handling the system heterogeneity. Instead of
computing the communication time only by
multiplying the amount of data to be transferred
and the network speed, we take into account the

Load Balancing for Parallel Computations with the Finite Element Method 311

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

speed of each network link independently. The
same is applied to the computing time. In this
way, we have a more accurate prediction;
therefore, the second level of load-balancing will
provide better results.

The second level uses hardware information to
perform a local load-balancing. It is not a separate
step; instead it is performed during computations.
First, we identify clusters of processors (groups of
processors joint by high speed network links).
This can be done during the configuration step
before the FEM simulation (or during each
configuration step before each computation step
in a dynamic system). Second, we identify the
mesh cells with numbers. These numbers
represent the gain of moving the cell to a
neighbor processor in the case of imbalance. This
is done during the last global load-balancing step
when the partition is refined. We keep these
values and use them to improve local imbalance
in this balancing level. As previously mentioned,
the graph model does not represent the exact real
workload. Thus, the imbalance may become
evident during the computation step. According to
the progress in solving PDEs by each processor,
we can decide to move some mesh cells to a
neighboring processor within the cluster of
processors with high speed network links.
Overloaded processors migrate mesh cells to
neighbors during the computation step. This is
done only if local predictions assure a gain in
performance. As these communications are done
concurrently and locally, the performance of the
whole system is not degraded.

This approach solves some of the problems
we have described previously. We believe that by
tuning-up the cost functions used in predictions
during the simulation, we can achieve better
results. Including more information in the
partitioning process may add complexity to the
problem; but if used efficiently, a good
improvement in performance can be achieved.

5 Conclusions and Future Work

In this paper, we presented an overview of efforts
to improve current techniques of load-balancing
and efficiency of FEM on large-scale parallel
machines. Much work has been done in the field,

but requirements of emerging technologies are
not met by state-of-the-art libraries. We also
introduced a multilevel load balancer to improve
the local load imbalance. It is based on graph
partitioning algorithms and takes into account the
hardware architecture. We have presented an
enhancement to the cost function used by Olas et
al. [27] including new information, which helps to
better approximate the computation and load-
balancing costs of the next FEM computation
step.

Our new model can successfully be used as a
starting point for a more complex balancing
strategy. It is still under development and
comparison data is not available up to date. The
research can be extended to a number of
directions including the development of a more
complex cost function, and prediction model into
the multilevel load balancer.

Acknowledgment

This work was partially supported by CONACYT
under grant number 309370.

References

1. Blazy, S., Borchers, W., & Dralle, U. (1996).

Parallelization methods for a characteristic’s
pressure correction scheme. Flow Simulation with
High-Performance Computers: II, Notes on
Numerical Fluid Mechanics, 48, 305–321.

2. Diekmann, R., Dralle, U., Neugebauer, F., &
Römke, T. (1996). PadFEM: A portable parallel
FEM-tool. High-Performance Computing and
Networking, Lecture Notes in Computer Science,
1067, 580–585.

3. Olas, T., Karczewski, K., Tomas, A., &
Wyrzykowski, R. (2002). FEM computations on

clusters using different models of parallel
programming. Parallel Processing and Applied
Mathematics, Lecture Notes in Computer Science,
2328, 170–182.

4. Zienkiewicz, O.C. & Taylor, R.L. (2000). The finite

element method (5
th

 ed.), vol.1. Oxford; Boston:
Butterworth-Heinemann.

5. Saad, Y. (2003). Iterative methods for sparse linear
systems (2

nd
 ed.) Philadelphia: Society for

Industrial and Applied Mathematics.

6. Verfürth, R. (1994). A posteriori error estimation

312 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

and adaptive mesh-refinement techniques. Journal
of Computational and Applied Mathematics, 50(1-
3), 67–83.

7. Diekmann, R., Meyer, D., & Monien, B. (1995).

Parallel decomposition of unstructured FEM-
meshes. Parallel Algorithms for Irregularly
Structured Problems, Lecture Notes in Computer
Science, 980, 199–215.

8. Garey, M.R., Johnson, D.S., & Stockmeyer, L.
(1976). Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3),
237–267.

9. Garey, M.R. & Johnson, D.S. (1979). Computers
and intractability: A guide to the theory of NP-
completeness. San Francisco: W.H. Freeman.

10. Diekmann, R., Monien, B., & Preis, R. (1995).

Using helpful sets to improve graph bisections.
Interconnection networks and mapping and
scheduling parallel computations, 21, 57–73.

11. Farhat, C. (1988). A simple and efficient automatic
FEM domain decomposer. Computers &
Structures, 28(5), 579–602.

12. Hendrickson, B. & Leland, R. (1995). An

improved spectral graph partitioning algorithm for
mapping parallel computations. SIAM Journal on
Scientific Computing, 16(2), 452–469.

13. Karypis, G. & Kumar, V. (1998). A fast and high

quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing,
20(1), 359–392.

14. Pothen, A., Simon, H.D., & Liou, K.P. (1990).

Partitioning sparse matrices with eigenvectors of
graphs. SIAM Journal on Matrix Analysis and
Applications, 11(3), 430–452.

15. Simon, H.D. (1991). Partitioning of unstructured

problems for parallel processing. Computing
Systems in Engineering, 2(2–3), 135–148.

16. Fiduccia, C.M. & Mattheyses, R.M. (1982). A

linear-time heuristic for improving network
partitions. 19

th
 Design Automation Conference, Las

Vegas, Nevada, 175–181.

17. Kernighan B.W. & Lin, S. (1970). An efficient

heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(1), 291–307.

18. Fox, G.C., Williams, R.D., & Messina, G.C.
(1994). Parallel computing works!. San Francisco,
CA: Morgan Kaufmann Publishers, Inc.,

19. Hülsemann, F., Kowarschik, M., Mohr, M., &
Rüde, U. (2005). Parallel geometric multigrid.

Numerical Solution of Partial Differential Equations
on Parallel Computers, Lecture Notes in
Computational Science and Engineering, 51, 165–
208.

20. Oliker, L. & Biswas, R. (1998). PLUM : Parallel

load balancing for adaptive unstructured meshes.
Journal of Parallel and Distributed Computing,
52(2), 50–177.

21. Diekmann, R., Preis, R., Schlimbach, F., &
Walshaw, C.H. (2000). Shape-optimized mesh

partitioning and load balancing for parallel adaptive
FEM. Parallel Computing, 26(12), 1555–1581.

22. Bhandarkar, M.A. & Kalé, L.V. (2000). A parallel

framework for explicit FEM. 7
th

 International
Conference on High Performance Computing,
Bangalore, India, 385–394.

23. Stewart, J.R. & Edwards, H.C. (2003). The

SIERRA framework for developing advanced
parallel mechanics applications. Large-Scale PDE-
Constrained Optimization, Lecture Notes in
Computational Science and Engineering, 30, 301–
315.

24. Sandia National Laboratories, Trilinos. Retrieved
from http://trilinos.sandia.gov/.

25. Burstedde, C., Burtscher, M., Ghattas, O.,
Stadler, G., Tu, T., & Wilcox, L.C. (2009). ALPS:

A framework for parallel adaptive PDE solution.
Journal of Physics: Conference Series, San Diego,
California, 180.

26. Wyrzykowski, R., Olas, T., & Sczygiol, N. (2001).

Object-oriented approach to finite element
modeling on clusters. Applied Parallel Computing.
New Paradigms for HPC in Industry and Academia,
Lecture Notes in Computer Science, 1947, 250–
257.

27. Olas, T., Leśniak, R., Wyrzykowski, R., &
Gepner, P. (2010). Parallel adaptive finite element

package with dynamic load balancing for 3D
thermo-mechanical problems. Parallel Processing
and Applied Mathematics, Lecture Notes in
Computer Science, 6067, 299–311.

28. Logg, A. & Wells, G.N. (2010). DOLFIN:

Automated finite element computing. ACM
Transactions on Mathematical Software, 37(2),
Article no. 20.

29. Turek, S., Göddeke, D., Becker, C., Buijssen,
S.H.M., & Wobker, H. (2010). FEAST - Realization

of hardware-oriented numerics for HPC simulations
with finite elements. Concurrency and
Computation: Practice and Experience, 22(16),
2247–2265.

30. Langtangen, H.P. (2003). Computational partial
differential equations: Numerical methods and
Diffpack programming (2

nd
 ed.), 1, Berlin: Springer.

31. Sundance. Retrieved from
http://www.math.ttu.edu/~kelong/Sundance/html/.

32. Dular, P. & Geuzaine, C. (s.f.). GetDP: A general

Load Balancing for Parallel Computations with the Finite Element Method 313

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

environment for the treatment of discrete problems.
Retrieved from http://geuz.org/getdp/.

33. FreeFEM.org Retrieved from
http://www.freefem.org/.

34. Prud’homme, C., Chabannes, V., & Feel++
Group (2011). Retrieved from
https://forge.imag.fr/projects/life/.

35. Prud’homme, C. (2007). Life: Overview of a

unified C++ implementation of the finite and
spectral element methods in 1D, 2D and 3D.
Applied Parallel Computing. State of the Art in
Scientific Computing, Lecture Notes in Computer
Science, 4699, 712–721.

36. Jiao, X., Li, X.Y., & Ma, X. (1999). SIFFEA:

Scalable integrated framework for finite element
analysis. Computing in Object-Oriented Parallel
Environments, Lecture Notes in Computer Science,
1732, 84–95.

37. Heister, T., Kronbichler, M., & Bangerth, W.
(2010). Massively parallel finite element
programming. Recent Advances in the Message
Passing Interface, Lecture Notes in Computer
Science, 6305, 122–131.

38. Bruaset, A.M. & Langtangen, H.P. (1997). A

comprehensive set of tools for solving partial
differential equations; Diffpack. Numerical Methods
and Software Tools in Industrial Mathematics (61–
90), Boston, Mass: Birkhäuser.

39. Kirk, B.S., Peterson, J.W., Stogner, R.H., &
Carey, G.F. (2006). libMesh: a C++ library for

parallel adaptive mesh refinement/coarsening
simulations. Engineering with Computers, 22(3-4),
237–254.

40. Renard, Y. & Pommier, J. (2004-2013).

GetFEM++. Retrieved from
http://download.gna.org/getfem/html/homepage/ind
ex.html.

41. Patzák, B. & Bittnar, Z. (2001). Design of object
oriented finite element code. Advances in
Engineering Software, 32(10-11), 759–767.

42. Logg, A. (2007). Automating the finite element

method. Archives of Computational Methods in
Engineering, 14(2), 93–138.

43. ANSYS. Retrieved from http://www.ansys.com/.

44. ESI Group. Retrieved from http://www.esi-
group.com/.

45. TRANSVALOR Material forming simulation. (1984-
2013). Retrieved from http://www.transvalor.com/.

46. Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R.,
Gursoy, A., Krawetz, N., Phillips, J., Shinozaki,
A., Varadarajan, K., & Schulten, K. (1999).

NAMD2: Greater scalability for parallel molecular
dynamics. Journal of Computational Physics,

151(1), 283–312.

47. Bangerth, W., Hartmann, R., & Kanschat, G.
(2007). deal.II - A general-purpose object-oriented
finite element library. ACM Transactions on
Mathematical Software, 33(4).

48. Turek, S. (1999). Efficient solvers for
incompressible flow problems: An algorithmic and
computational approach. Berlin, Germany:
Springer-Verlag.

49. Shivaratri, N.G., Krueger, P., & Singhal, M.
(1992). Load distributing for locally distributed
systems. Computer, 25(12), 33–44.

50. Devine, K.D., et al. (2005). New challenges in
dynamic load balancing. Applied Numerical
Mathematics, 52(2-3), 133–152.

51. Willebeek-LeMair, M.H. & Reeves, A.P. (1993).

Strategies for dynamic load balancing on highly
parallel computers. IEEE Transactions on Parallel
and Distributed Systems, 4(9), 979–993.

52. Walshaw, C.H., Cross, M., & McManus, K.
(2000). Multiphase mesh partitioning. Applied
Mathematical Modelling. 25(2), 123–140.

53. Plimpton, S., Attaway, S., Hendrickson, B.A.,
Swegle, J., Vaughan, C., & Gardner, D. (1998).

Parallel transient dynamics simulations: Algorithms
for contact detection and smoothed particle
hydrodynamics. Journal of Parallel and Distributed
Computing, 50(1-2), 104–122.

54. Hendrickson, B.A. (1998). Graph partitioning and

parallel solvers: Has the emperor no clothes?.
Proceedings of the 5

th
 International Symposium on

Solving Irregularly Structured Problems in Parallel,
218-225.

55. Çatalyürek, Ü.V. & Aykanat, C. (1999).

Hypergraph-partitioning-based decomposition for
parallel sparse-matrix vector multiplication. IEEE
Transactions on Parallel and Distributed System,
10(7), 673–693.

56. Caldwell, A.E., Kahng, A.B., & Markov, I.L.
(2000). Design and implementation of move-based
heuristics for VLSI hypergraph partitioning. Journal
of Experimental Algorithmics, 5.

57. Vastenhouw, R.H., & Bisseling, B. (2005). A two-

dimensional data distribution method for parallel
sparse matrix-vector multiplication. SIAM Review,
47(1), 67–95.

58. Chang, C., Kurc, T., Sussman, A., Çatalyürek,
Ü.V., & Saltz, J. (2001). A hypergraph-based

workload partitioning strategy for parallel data
aggregation. Proceedings of the Tenth SIAM
Conference on Parallel Processing for Scientific
Computing.

59. Ozdal, M.M. & Aykanat, C. (2004). Hypergraph

http://download.gna.org/getfem/html/homepage/index.html
http://download.gna.org/getfem/html/homepage/index.html

314 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

models and algorithms for data-pattern-based
clustering. Data Mining and Knowledge Discovery,
9(1), 29–57.

60. Walshaw, C.H. & Cross, M. (2000). Mesh

partitioning: A multilevel balancing and refinement
algorithm. SIAM Journal on Scientific Computing,
22(1), 63–80.

61. Vanderstraeten, D. & Keunings, R. (1995).

Optimized partitioning of unstructured finite
element meshes. International Journal for
Numerical Methods in Engineering, 38(3), 433–
450.

62. Basermann, A., et al. (2000). Dynamic load-

balancing of finite element applications with the
DRAMA library. Applied Mathematical Modelling,
25(2), 83–98.

63. Goehring, T. & Saad, Y. (1994). Heuristic
algorithms for automatic graph partitioning.
Minneapolis, U.S.A.

64. Linde, Y., Buzo, A., & Gray, R.M. (1980). An
algorithm for vector quantizer design. IEEE
Transactions on Communications, 28(1), 84–95.

65. Walshaw, C.H., Cross, M., & Everett, M.G.
(1995). A localized algorithm for optimizing
unstructured mesh partitions. International Journal
of High Performance Computing Applications, 9(4),
280–295.

66. Meyerhenke, H. & Schamberger, S. (2005).

Balancing parallel adaptive FEM computations by
solving systems of linear equations. Euro-Par 2005
Parallel Processing, 3648, 624–624.

67. Heath, M.T. & Raghavan, P. (1995). A cartesian
parallel nested dissection algorithm. SIAM Journal
on Matrix Analysis and Applications, 16(1), 235–
253.

68. Miller, G.L., Teng, S.H., Thurston, W., & Vavasis,
S.A. (1993). Automatic mesh partitioning. Graphs
Theory and Sparse Matrix Computation, 56, 57–84.

69. Berger, M.J. & Bokhari, S.H. (1987). A partitioning

strategy for nonuniform problems on
multiprocessors. IEEE Transactions on Computers,
36(5), 570–580.

70. Taylor, V.E. & Nour-Omid, B. (1994). A study of

the factorization fill-in for a parallel implementation
of the finite element method. International Journal
for Numerical Methods in Engineering, 37(22),
3809–3823.

71. Farhat, C., Lanteri, S., & Simon, H.D. (1995).

TOP/DOMDEC - A software tool for mesh
partitioning and parallel processing. Computing
Systems in Engineering, 6(1), 13–26.

72. Horton, G. (1993). A multi-level diffusion method
for dynamic load balancing. Parallel Computing,

19(2), 209–218.

73. Schamberger, S. (2005). A shape optimizing load

distribution heuristic for parallel adaptive FEM
computations. Parallel Computing Technologies,
3606, 263–277.

74. Cybenko, G. (1989). Dynamic load balancing for
distributed memory multiprocessors. Journal of
Parallel and Distributed Computing, 7(2), 279–301.

75. Liao, C.J. (1999). Efficient partitioning and load-
balancing methods for finite element graphs on
distributed memory multicomputers. Feng Chia
University, Seatwen, Taiwan.

76. Elsässer, R., Monien, B., & Preis, R. (2002).

Diffusion schemes for load balancing on
heterogeneous networks. Theory of Computing
Systems, 35(3), 305–320.

77. Schamberger, S. (2004). On partitioning FEM

graphs using diffusion. Proceedings of the 18
th

International Parallel and Distributed Processing
Symposium, 277.

78. Heirich, A. & Taylor, S. (1994). A parabolic load
balancing method. Pasadena, USA.

79. Hendrickson, B.A. & Leland, R. (1995). A

multilevel algorithm for partitioning graphs.
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM).

80. Hendrickson, B.A. & Leland, R. (2012). Chaco:

Software for partitioning graphs. Retrieved from
http://www.sandia.gov/~bahendr/chaco.html.

81. Hendrickson, B.A. & Leland, R. (1995). The

Chaco user’s guide: Version 2.0. Albuquerque,
USA.

82. Barnard, S.T. & Simon, H.D. (1994). Fast

multilevel implementation of recursive spectral
bisection for partitioning unstructured problems.
Concurrency: Practice and Experience, 6(2), 101–
117.

83. Meyerhenke, H., Monien, B., & Schamberger, S.
(2006). Accelerating shape optimizing load

balancing for parallel FEM simulations by algebraic
multigrid. Proceedings of the 20

th
 IEEE

International Parallel & Distributed Processing
Symposium, 10.

84. Karypis, G. & Kumar, V. (1995). Analysis of
multilevel graph partitioning. Proceedings of the
1995 ACM/IEEE conference on Supercomputing
(CDROM), 29.

85. Abou-Rjeili, A. & Karypis, G. (2006). Multilevel

algorithms for partitioning power-law graphs.
International Parallel and Distributed Processing
Symposium, 10.

86. Karypis, G. & Kumar, V. (1995). Analysis of
multilevel graph partitioning. Minneapolis, USA.

Load Balancing for Parallel Computations with the Finite Element Method 315

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

87. Simon, H.D. & Teng, S.H. (1993). How good is
recursive bisection. Moffett Field, USA.

88. Karypis, G. & Kumar, V. (2012). METIS-Serial
graph partitioning and fill-reducing matrix ordering.

Retrieved from http://glaros.dtc.umn.edu/
gkhome/views/metis.

89. Karypis, G. (2011). METIS A software package for
partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of
sparse matrices. Minneapolis, USA.

90. Pellegrini, F. (2012). SCOTCH: Static mapping,
graph, mesh and hypergraph partitioning, and
parallel and sequential sparse matrix ordering
package. Retrieved from http://www.labri.u-
bordeaux.fr/perso/pelegrin/scotch/.

91. Pellegrini, F. (2010). Scotch and libScotch 5.1
user’s guide. Talence, France,

92. Pellegrini, F. & Roman, J. (1996). SCOTCH: A

software package for static mapping by dual
recursive bipartitioning of process and architecture
graphs. High-Performance Computing and
Networking, 1067, 493–498.

93. Baños, R. & Gil, C. (2007). Graph and mesh

partitioning: An overview of the current state-of-the-
art. Mesh Partitioning Techniques and Domain
Decomposition Methods (1-26). Stirlingshire, U.K.:
Saxe-Coburg Publications.

94. Karypis, G. & Kumar, V. (1998). Multilevel k-way

partitioning scheme for irregular graphs. Journal of
Parallel and Distributed Computing, 48(1), 96–29.

95. Battiti, R. & Bertossi, A.A. (1999). Greedy,

prohibition, and reactive heuristics for graph
partitioning. IEEE Transactions on Computers,
48(4), 361–385.

96. Walshaw, C.H. (2012). JOSTLE - Graph

partitioning software. Retrieved from
http://staffweb.cms.gre.ac.uk/~c.walshaw/jostle/.

97. Walshaw, C.H. (2002). The serial JOSTLE library
user guide : Version 3.0. London, U.K.,

98. Walshaw, C.H. & Cross, M. (2007). JOSTLE:

Parallel multilevel graph-partitioning software - an
overview. Mesh partitioning techniques and domain
decomposition methods (27-58). Stirlingshire, U.K.:
Saxe-Coburg Publications.

99. Karypis, G. & Kumar, V. (1998). A parallel

algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and
Distributed Computing, 48, 71–85.

100. Karypis, G. & Kumar, V. (1998). Multilevel

algorithms for multi-constraint graph partitioning.
Proceedings of the 1998 ACM/IEEE conference on
Supercomputing.

101. Hu, Y.F., Blake, R.J., & Emerson, D.R. (1998). An

optimal migration algorithm for dynamic load
balancing. Concurrency: Practice and Experience,
10(6), 467–483.

102. Preis, R. (2012). PARTY Partitioning library.

Retrieved from http://www2.cs.uni-paderborn.de/cs/
ag-monien/PERSONAL/ROBSY/party.html.

103. Preis, R. (1998). The PARTY Graphpartitioning -
Library - User manual - Version 1.99. Paderborn,
Germany.

104. Preis, R. & Diekmann, R. (1997). PARTY - A

software library for graph partitioning. Advances in
Computational Mechanics with Parallel and
Distributed Processing, 63–71.

105. Hromkovič, J. & Monien, B. (1991). The bisection

problem for graphs of degree 4 (configuring
transputer systems). Mathematical Foundations of
Computer Science 1991, 520, 211–220.

106. Monien, B. & Preis, R. (2001). Upper bounds on

the bisection width of 3- and 4-regular graphs.
Mathematical Foundations of Computer Science
2001, 2136, 524–536.

107. Pellegrini, F. (1994). Static mapping by dual

recursive bipartitioning of process and architecture
graphs. Proceedings of the 1994 Scalable High-
Performance Computing Conference, 486–493.

108. Karypis, G. (2012). hMETIS - Hypergraph & circuit
partitioning. Retrieved from
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/ove
rview.

109. Karypis, G. & Kumar, V. (1998). hMETIS - A

hypergraph partitioning package - Version 1.5.3.
Minneapolis, U.S.A.,

110. Çatalyürek, Ü.V. (2012). PaToH v3.2. Retrieved
from http://bmi.osu.edu/~umit/software.html.

111. Çatalyürek, Ü.V. & Aykanat, C. (2011). PaToH:
Partitioning tool for hypergraphs. Columbus, USA.

112. Bisseling, R. (2012). Mondriaan for sparse matrix
partitioning. Retrieved from

http://www.staff.science.uu.nl/~bisse101/Mondriaa
n/mondriaan.html.

113. Sandia National Laboratories (2012). Zoltan:

Parallel partitioning, load balancing and data-
management services. Retrieved from
http://www.cs.sandia.gov/Zoltan/.

114. Devine, K.D., Boman, E.G., Heaphy, R.T.,
Hendrickson, B.A., & Vaughan, C. (2002). Zoltan

data management services for parallel dynamic
applications. Computing in Science Engineering,
4(2), 90–96.

115. Maerten, B., Roose, D., Basermann, A.,
Fingberg, J., & Lonsdale, G. (1999). DRAMA: A
library for parallel dynamic load balancing of Finite
element applications. Euro-Par 1999 Parallel

316 José Luis González García, Ramin Yahyapour, and Andrei Tchernykh

Computación y Sistemas Vol. 17 No.3, 2013 pp. 299-316
ISSN 1405-5546

Processing, 1685, 313–316.

116. Faik, J., Flaherty, J. E., Gervasio, L.G., &
Teresco, J.D. (2012). DRUM: The dynamic
resource utilization model. Retrieved from
http://j.teresco.org/research/drum/.

117. Faik, J. (2005). A model for resource-aware load
balancing on heterogeneous and non-dedicated
clusters. Rensselaer Polytechnic Institute, Troy,
USA.

118. Chu, W.C., Yang, D.L., Yu, J.C., & Chung, Y.C.
(2001). UMPAL An unstructured mesh partitioner
and load balancer on world wide web. Journal of
Information Science and Engineering, 17(4), 595–
614.

119. Hu, Y.F. & Blake, R.J. (1995). An Optimal dynamic
load balancing algorithm. Daresbury, U. K.

120. Burstedde, C., Wilcox, L.C., & Ghattas, O.
(2011). p4est: Scalable algorithms for parallel

adaptive mesh refinement on forests of octrees.
SIAM Journal on Scientific Computing, 33(3),
1103–1133.

121. Sinha, S. & Parashar, M. (2002). Adaptive system

sensitive partitioning of AMR applications on
heterogeneous clusters. Cluster Computing, 5(4),
343–352.

122. Walshaw, C.H. & Cross, M. (2001). Multilevel

mesh partitioning for heterogeneous
communication networks. Future Generation
Computer Systems, 17(5), 601–623.

123. Minyard, T. & Kallinderis, Y. (2000). Parallel load

balancing for dynamic execution environments.
Computer Methods in Applied Mechanics and
Engineering, 189(4), 1295–1309.

124. Teresco, J.D., Beall, M.W., Flaherty, J.E., &
Shephard, M.S. (2000). A hierarchical partition

model for adaptive finite element computation.
Computer Methods in Applied Mechanics and
Engineering, 184(2-4), 269–285.

125. Dongarra, J.J., Moler, C.B., Bunch, J.R., &
Stewart, G.W. (1979). LINPACK User’s guide.

Philadelphia, USA: Society for Industrial and
Applied Mathematics.

José Luis González García is
currently a Ph.D. student at
Georg-August Göttingen
University. He received his M.S.
degree in Computer Science
from CICESE Research Center
(Centro de Investigación

Científica y de Educación Superior de Ensenada,
Baja California) in 2009.

Ramin Yahyapour is the
executive director of the GWDG
University of Göttingen. He has
done research on Clouds, Grid
and Service-oriented
Infrastructures for several years.
His research interest lies in
resource management. He is a

steering group member and on the Board of
Directors in the Open Grid Forum. He has
participated in several national and European
research projects. Also, he is a scientific
coordinator of the FP7 IP SLA@SOI and was a
steering group member in the CoreGRID Network
of Excellence.

Andrei Tchernykh is a
researcher in the Computer
Science Department, CICESE
Research Center, Ensenada,
Baja California, Mexico. From
1975 to 1990 he was with the
Institute of Precise Mechanics
and Computer Technology of the
Russian Academy of Sciences

(Moscow, Russia). He received his Ph.D. in
Computer Science in 1986. In CICESE, he is a
coordinator of the Parallel Computing Laboratory.
He is a current member of the National System of
Researchers of Mexico (SNI), Level II. He leads a
number of national and international research
projects. He is active in grid-cloud research with a
focus on resource and energy optimization. He
served as a program committee member of
several professional conferences and a general
co-chair for International Conferences on Parallel
Computing Systems. His main interests include
scheduling, load balancing, adaptive resource
allocation, scalable energy-aware algorithms,
green grid and cloud computing, eco-friendly P2P
scheduling, multi-objective optimization,
scheduling in real time systems, computational
intelligence, heuristics and meta-heuristic, and
incomplete information processing.

Article received on 25/02/2013; accepted on 27/07/2013.

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V06-5046M26-9&_user=3918225&_coverDate=10%2F31%2F2010&_rdoc=1&_fmt=full&_orig=search&_origin=search&_cdi=5638&_sort=d&_docanchor=&view=c&_searchStrId=1563519990&_rerunOrigin=scholar.google&_acct=C000061775&_version=1&_urlVersion=0&_userid=3918225&md5=a2329bfe4101dd2c56b158b6128d21b0&searchtype=a#bbio19

