INSTITUTO POLITÉCNICO NACIONAL

ESCUELA NACIONAL DE CIENCIAS BIOLÓGICAS

POSGRADO EN BIOMEDICINA Y BIOTECNOLOGÍA MOLECULAR

ESTUDIO DE MUTAGÉNESIS INSERCIONAL DEL RETROVIRUS MMTV/HMTV EN MUESTRAS DE ADENOCARCINOMAS MAMARIOS DE MUJERES MEXICANAS

Que como uno de los requisitos para obtener el grado de:

MAESTRO EN CIENCIAS EN BIOMEDICINA Y BIOTECNOLOGÍA MOLECULAR

PRESENTA:

IBQ. ABRAHAM PEDROZA TORRES

DIRECTORES:

DR. NORMAND GARCÍA HERNÁNDEZ

DR. ALFONSO MÉNDEZ TENORIO

México, DF

Junio de 2011

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

SIP-14-BIS

ACTA DE REVISIÓN DE TESIS

 En la Ciudad de
 México
 siendo las
 13:00
 horas del día
 22
 del mes de

 junio
 del
 2011
 se reunieron los miembros de la Comisión Revisora de Tesis, designada

 por el Colegio de Profesores de Estudios de Posgrado e Investigación de
 la ENCB-IPN

 para examinar la tesis titulada:

Estudio de mutagénesis insercional del retrovirus MMTV/HMTV en muestras de adenocarcinomas mamarios de mujeres mexicanas Presentada por el alumno: Pedroza Torres Abraham Apellido materno Apellido paterno Nombre(s) Con registro: B 0 9 0 4 9 1 aspirante de: Maestría en Ciencias en Biomedicina y Biotecnología Molecular Después de intercambiar opiniones los miembros de la Comisión manifestaron APROBAR LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes. LA COMISIÓN REVISORA Director de tesis Dr. Normand García Hernández Dr. Alfonso Méndez Tenorio Dr. José Luis Muñoz Sánchez Dr. Sergio Enrique Meza Toledo tou Rogelio Waldonado Rodríguez Dr. Diego Julio Arenas Aranda Dr PRESIDENTE DEL COLEGIO DE PROFESORES

Dr. Manuel Jesús Plñón López

scuela Nacional Ciencias Biológica Sección de Estudio de Posgro Jo

INSTITUTO POLITECNICO NACIONAL SECRETARÍA DE INVESTIGACIÓN Y POSGRADO

CARTA CESIÓN DE DERECHOS

En la Ciudad de México el día 20 del mes Junio del año 2011, el (la) que suscribe Abraham Pedroza Torres alumno del Programa de Maestría en Biomedicina y Biotecnología Molecular con número de registro B0910489, adscrito al Laboratorio de Genómica Funcional y Proteómica, UIMGH del Hospital de pediatria, CMN S-XXI, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección de Dr. Normand García Hernández y Dr. Alfonso Méndez Tenorio y cede los derechos del trabajo escrito titulado "Estudio de mutagenesis insercional del retrovirus MMTV/HMTV en muestras de adenocarcinomas mamarios de mujeres mexicanas", al Instituto Politécnico Nacional para su difusión y fines académicos.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin el permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección **normandgarcia@yahoo.com**, Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Br/Normand García Hernández

FUNCIONAL Y PROTEÓMICA ULIM. EN GENÉTICA HUMANA Artentamente,

Abraham Pedroza Torres Nombre y firma del alumno(a)

Dr. Alfonso Méndez Tenorio Nombre y firma del Director de tesis Este trabajo se realizó en la Laboratorio de Genética Molecular, UIMGH del hospital de Pediatría, CMN S-XXI, IMSS y en el Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. El proyecto se desarrolló mediante el financiamiento 80620 del CONACyT, FIS/IMSS/PROT/G09/741 y FIS/IMSS/PROT/G09/602.

A Dios (porque yo sé que existe): Por su gran misericordia para conmigo

A mis Padres:

María Felix Torres Cornelio y Arturo Pedroza Ramírez. No tengo palabras suficientes para agradecerles todo lo que han hecho por mí. Que les debo todo, que me dieron la vida y han estado conmigo en todo momento, que a pesar de los momentos difíciles han logrado salir adelante. Que me han dado las mejores armas para ser alguien en la vida -escuela y amor- sin dudarlo los volvería a escoger como padres. A ellos les dedico esto.

A Rosa, Maribel y Sonia:

Mis hermanas, que han luchado conmigo todos y cada uno de estos años, que me han apoyado en todo cuanto han podido, que han vivido de cerca mis logros y mis fracasos, que me sirven de inspiración para salir adelante por ellas y para ellas. Quiero agradecer sinceramente al Dr. Normand García Hernández mi tutor de estudios y asesor en este trabajo, por sus valiosas aportaciones y su intensa labor a la hora de revisar este trabajo, si su ayuda este trabajo no sería lo que es, mis más sinceros reconocimientos.

También quiero agradecer al Dr. Alfonso Méndez Tenorio por darme la oportunidad de pertenecer a ese maravilloso grupo de trabajo del cual él forma una parte muy importante -el laboratorio de Bioinformática Genómica en la ENCB-. Así como sus valiosas aportaciones y su interés en el trabajo. Gracias.

A mis sinodales el Dr. Diego J. Arenas Aranda, el Dr. José Luis Muñoz, el Dr. Sergio Meza, el Dr. Rogelio Maldonado gracias por su participación y su empeño en que este trabajo quedara lo más presentable posible así como todos y cada uno de sus concejos metodológicos en la realización de este trabajo, a todos ellos mi reconocimiento y agradecimiento.

A mis compañeros de laboratorio en genética humana Xchel Rivera, Gaby bravo, Ignacio Virgilio, Susana, Nitzia, Erick, Alex, Alberto, Mariana gracias por su apoyo y por compartir conmigo todas esas experiencias que nos da hacer ciencia día con día.

A mis compañeros de la maestría Iveth, Paco, Memo, Joaquín, Alberto, Sofía, gracias por todos los momentos que pasamos juntos por todas las palabras de aliento, a ustedes chicos no tengo más que decirles si no GRACIAS.

ABREVIATURAS

DNA	Deoxyribonucleic acid (Ácido desoxirribonucleico)				
ΜΜΤΥ	Mouse Mammary Tumor Virus (Virus del tumor mamario murino)				
HERVs	Human endogenous retroviruses (Retrovirus endógenos humanos)				
RVs	Retrovirus exógenos				
PCR	Polymerase Chain Reaction (Reacción en cadena de la polimerasa)				
LTR	Long Terminal Repeats (Repeticiones terminales largas)				
RNA	Ribonucleic acid (Ácido ribonucleico)				
МНС	Major Histocompatibility Complex (Complejo mayor de Histocompatibilidad)				
IMMS	Instituto Mexicano del Seguro Social				
NCBI	National Center for Biotechnology Information (Centro Nacional de Información sobre Biotecnología)				
EMBL-EBI	European Molecular Biology Laboratory- European Bioinformatics Institute (Laboratorio Europeo de Biología Molecular-Instituto Europeo de Bioinformática)				
BLAST	Basic Local Alignment Search Tool (Herramienta básica de búsqueda de alineamientos locales)				
Dx	Diagnóstico				
CDI	Carcinoma Ductal Infiltrante				
CLI	Carcinoma Lobulillar Infiltrante				
CSC	Carcinoma Sin Clasificar				
TNA	Tejido No Afectado				
FBA	Fibroadenoma				

<u>ÍNDICE</u>

1.	Introducción	14
	1.1 Cáncer	14
	1.2 El cáncer de mama en México	18
	1.3 Factores de Riesgo	19
	1.4 El cáncer de mama y su posible origen viral	19
	1.5 Los retrovirus endógenos humanos o HERVs	23
	1.6 Estructura general de los retrovirus	25
2.	Antecedentes	26
3.	Planteamiento del problema	30
4.	Justificación	31
5.	Objetivos	32
6.	Materiales y métodos	33
	6.1 Obtención de las muestras de adenocarcinomas	33
	6.2 Obtención de DNA a partir de las muestras obtenidas	33
	6.3 PCR anidada para la amplificación del gen <i>env</i>	33
	6.4 PCR splinkerette para amplificar las secuencias flanquedas por las LTRs virales	35
	6.5 Búsqueda Bioinformática	37
7.	Resultados	39
	7.1 Obtención de las muestras de adencarcionamas	39
	7.2 Obtención del DNA a partir de las muestras obtenidas	39
	7.3 PCR anidada para la amplificación del gen <i>env</i>	41
	7.4 Purificación y análisis de las secuencias obtenidas a partir de los amplificados para el gen <i>env</i>	51

	7.5 PCR splinkerette para amplificar las secuencias flanquedas por las LTRs virales			
		. 61		
	7.6 Búsqueda Bioinformática	. 68		
8.	Discusión	106		
9.	Conclusiones	113		
10.	Referencias	114		

ÍNDICE DE FIGURAS

Figura 1. Procesos que interfieren en cada una de las capacidades adquiridas y necesarias para el crecimiento y la progresión tumoral	/	10
Figura 2. Divisiones mitóticas de un óvulo fecundado hasta una sola célula cano	cerosa	12
Figura 3. Organización genómica un retrovirus en su forma libre como RNA y la integración en el genoma como provirus	l	19
Figura 4. Organización genómica de los retrovirus exógenos		20
Figura 5. Estrategia de amplificación del gen env del MMTV		29
Figura 6. Estructura generada para el adaptador (zee linker)	30	
Figura 7. Esquema del método de PCR splinkerette		32
Figura 8. Muestras de tejidos mamarios obtenidos (adenocarcinomas y tejidos mamarios no afectados)		33
Figura 9. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 001CM- 006CM del gen <i>env</i> del MMTV		36
Figura 10. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 007CM-012CM del gen env del MMTV	S	37
Figura 11. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 013CM-018CM del gen <i>env</i> del MMTV	S	37
Figura 12. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 019CM-024CM del gen <i>env</i> del MMTV	S	38
Figura 13. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 025CM-028CMdel gen env del MMTV	S	38
Figura 14. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 001CM-011CM del gen env del MMTV	as	39
Figura 15. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 012CM- 023CM del gen env del MMTV	S	40
Figura 16. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 024CM-030CM del gen env del MMTV	as	40
Figura 17. Electroforesis en gel de agarosa al 1.2 % para los amplificados de la muestras 031CM-037M del gen <i>env</i> del MMTV	S	41

Figura 18. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 001CM-012CM del gen GAPDH	43
Figura 19. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 013CM-019CM del gen GAPDH	43
Figura 20. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 020CM-023CM del gen GAPDH.	44
Figura 21. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 024CM-030CM del gen GAPDH	44
Figura 22. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 031CM-049CM del gen GAPDH	45
Figura 23. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 049CM-056CM del gen GAPDH	45
Figura 24 Secuencias obtenidas de los amplificados de las muestras de adenocarcinomas 002CM, 004CM, 007CM y 027CM así como para el control positivo	47
Figura 25. Secuencias obtenidas a partir de los amplificados de las muestras de adenocarcinomas 031CM, 032CM para el gen env y de las muestras 001CM y 002CM un fragmento del gen GAPDH.	48
Figura 26. Alineamiento obtenido del amplificado de la muestra 001CM del gen GAPDH	49
Figura 27. Alineamientos obtenidos de la secuencia amplificada del gen env del MMTV de una muestra de adenocarcinoma mamario (Muestra 002CM)	50
Figura 28. Alineamiento de la secuencia obtenida del gen env del MMTV de una muestra de adenocarcinoma mamario (muestra 002CM)	52
Figura 29. Alineamiento de la secuencia obtenida del gen env del MMTV de una muestra de adenocarcinoma mamario (muestra 002CM)	52

<u>Resumen</u>

En México a partir del 2006 el cáncer de mama es la primera causa de muerte por neoplasias en mujeres, los datos de incidencia se reportan en 38 por 100,000 habitantes. Se han identificado la mayoría de los factores de riesgo, sin embargo, la etiología aún es desconocida. Los factores identificados incluyen: a) Factores genéticos: historia familiar con cáncer, principalmente mutaciones en los genes BRCA-1 y/o BRCA-2, b) Factores endocrinos: larga exposición a estrógenos, nuliparidad, menarca temprana y menopausia tardía y c) Factores exógenos: Dieta, consumo de alcohol, cigarrillos, agentes químicos, radiaciones ionizantes, etc. Recientemente diversos grupos de trabajo han sugerido la posibilidad de que un retrovirus (el Virus del Tumor Mamario Murino o MMTV) pudiera ser el agente etiológico de algunos canceres de mama. El objetivo del presente trabajo es identificar un fragmento de 250 pb. del gen env del MMTV en adenocarcinomas mamarios en mujeres mexicanas y evaluar los sitios de inserción del retrovirus mediante PCR splinkerette. Se analizaron 56 muestras de adenocarcinoma mamarios y tejidos no afectados. Las muestras fueron procesadas y el DNA extraído. La extracción del DNA se realizó mediante el equipo QIAcube siguiendo las indicaciones del fabricante. Se verificó la integridad y se cuantificó para una posterior PCR anidada, para la cual se utilizaron los oligonucleótidos propuestos por Wang y col. en 1995. Se utilizó una construcción hecha con el gen env del MMTV cepa C3H sobre un plásmido pBR322 y propagado en E.coli HB101 como control positivo de reacción, así mismo se amplifico un fragmento de 500pb del gen GAPDH para verificar la utilidad de los DNAs. Una vez identificados los productos de PCR positivos para env estos fueron secuenciados y las secuencias alineadas con BLAST 2.2.24. Una vez detectadas las muestras positivas para MMTV éstas fueron evaluadas mediante PCR splinkerette para detectar los posibles sitios de inserción del retrovirus. Se detectó la presencia de secuencias parecidas al gen env del MMTV en 16 (40%) de las muestras analizadas y en ninguno de los tejidos no afectados. Los alineamientos hechos a las secuencias amplificadas arrojaron una similitud del 96-98% entre las secuencias amplificadas y el gen env del MMTV. Los análisis hechos mediante PCR splinkerette arrojaron diversos sitios de amplificación, se pudieron detectar 12 secuencias (genes y regiones intergénicas) entre ellas: proteína nucleoral 4, Factor de iniciación 5, proteína de ensamble a nucleosoma 1, Factor 6 de crecimiento, proteína. Es posible detectar secuencias del MMTV en adenocarcinomas mamarios de mujeres mexicanas. Las secuencias obtenidas de los amplificados detectados en los adenocarcinomas mamarios corresponden hasta en un 98% de homología al gen env del MMTV depositado en el NCBI. Algunos de los genes detectados están involucrados en procesos diferenciació y crecimiento celular.

Abstract

In Mexico from 2006 breast cancer is the leading cause of death from malignancy in women, incidence data are reported at 38 per 100,000 habitants. Have identified most of the risk factors, however, the etiology is unknown. The factors identified include: a) Genetic factors: family history of cancer, especially mutations in the BRCA-1 and / or BRCA-2 genes, b) Endocrine factors: long exposure to estrogen, nulliparity, early menarche and late menopause c) Factors Exogenous: diet, alcohol, cigarettes, chemicals, radiation, etc.. Recently, several working groups have suggested the possibility that a retrovirus (the murine mammary tumor virus or MMTV) may be the causative agent of some breast cancers. The aim of this study is to identify a fragment of 250 bp. MMTV env gene in mammary adenocarcinomas in Mexican women and evaluate the retrovirus insertion sites by PCR splinkerette. We analyzed 56 samples of breast adenocarcinoma and uninvolved tissue. Samples were processed and DNA extracted. DNA extraction was performed using the computer QIAcube following manufacturer's instructions. Integrity was verified and quantified for subsequent nested PCR, for which we used oligonucleotide proposed by Wang et al. in 1995. We used a construction made by the env gene of MMTV C3H strain on a plasmid pBR322 and propagated in E.coli HB101 as a positive control reaction, so it was amplified a 500pb fragment of the gene GAPDH to verify the usefulness of the DNAs. Having identified the positive PCR products were sequenced and env these sequences aligned with BLAST 2.2.24. Having detected these MMTV-positive samples were tested by PCR to detect possible splinkerette insertion sites of retrovirus. Detected the presence of sequences similar to MMTV env gene in 16 (40%) of the samples and the tissues unaffected. The alignments made to the amplified sequences showed a similarity of 96 - 98% between the amplified sequences and the MMTV env gene. The analysis made by PCR yielded different sites splinkerette amplification could be detected 12 sequences (genes and intergenic regions) including: protein nucleoral 4, initiation factor 5, a nucleosome assembly protein 1, Factor 6, growth, protein. Sequences can be detected MMTV in mammary adenocarcinomas of Mexican sequences obtained from amplicons detected in breast women. The adenocarcinomas are up to 98% homology to MMTV env gene deposited in the NCBI. Some of the genes identified are involved in cell growth and differentiation processes.

1. Introducción

1.1 Cáncer

La teoría del "daño múltiple" para explicar el origen del cáncer sugiere que, las células acumulan daño aleatorio en sus genes (mutaciones). Por accidente, algo del daño ocurre en genes críticos que normalmente controlan de forma rigurosa los procesos de proliferación y apoptosis en las células (oncogenes, genes supresores de tumor o genes de reparación del DNA). El cáncer ha sido llamada "la enfermedad de los genes", debido a que se ven afectados un sin número de genes en el desarrollo de esta enfermedad, los cuales están implicados en procesos distintos tales como la multiplicación, especialización y/o muerte celular. Se conocen algunos genes involucrados en diversos procesos del desarrollo neoplásico, por ejemplo: PCNA en proliferación, los oncogenes FOS, RAS, MYC, supresores de tumor como P53, RB, BRCA1, BRCA2, WT1, WT2, FOXP3, ATM, EGF en crecimiento celular, y en apoptosis BAX, BAD, BID, BCL-2, MCL-1 y FAS (Adams J y Cory S., 2007, Amit I y col., 2007, Osin y Lakhani, 1999) (ver figura 1).

Si alguna célula acumula suficientes daños, múltiples mutaciones (de cinco a diez), la célula se transforma en un fenotipo maligno con pérdida en el control de la proliferación y la muerte celular, es decir una neoplasia (Kesteloot H y Zhang J, 2006).

Los tumores pueden originarse en cualquier célula del organismo, pero es raro observar tumores a partir de células cuyo índice mitótico es bajo o nulo. Algunos proceden de una única estirpe celular, pero, el pleiomorfismo y la variabilidad son las propiedades más comunes a las células cancerosas. El cáncer ha sido definido como un crecimiento neoplásico que tiene la capacidad de invadir los tejidos circundantes y diseminarse por la corriente sanguínea y/o linfática.

Existen cuatro características que describen la forma en que las células cancerosas actúan de modo distinto a las células normales, dichas características son las siguientes:

- a. Proliferación: el cáncer se origina de una única célula progenitora que se divide y da lugar a células malignas.
- b. Autonomía: el crecimiento no es regulado de forma adecuada por las influencias bioquímicas y físicas normales del ambiente.
- c. Anaplasia: existe una ausencia de diferenciación celular normal y coordinada.
- d. Metástasis: las células cancerosas tienen la capacidad de crecer y diseminarse a otras partes del cuerpo (Isselbacher y col. 1994).

Figura 1. Procesos que interfieren en cada una de las capacidades adquiridas y necesarias para el crecimiento y la progresión tumoral. Las capacidades adquiridas por la célula cancerosa incluyen procesos muy diversos y complejos, tales como; reprogramación del metabolismo energético y activación de mecanismos inmunológicos, así como inhibición de la Telomerasa, entre otros (Modificado de *Hallmarks of Cancer: The next generation*, Weinberg R y Hanahan D, 2011).

Estas propiedades pueden ser expresadas por las células normales no malignas durante épocas adecuadas, por ejemplo durante la embriogénesis. No obstante en las células cancerosas, estas características tienen un grado inapropiado o excesivo. Los tumores benignos son clónales y tienen un cierto grado de autonomía, pero permanecen diferenciados y no realizan metástasis. El proceso mediante el que una célula normal se convierte en una célula maligna que presenta estas características se denomina transformación maligna (Isselbacher y col. 1994).

Al igual que todas las células del cuerpo, una célula cancerosa es descendiente directa a través de un linaje de divisiones celulares mitóticas, de un óvulo fertilizado y por lo tanto lleva una copia de su genoma diploide. Sin embargo, la secuencia de DNA del genoma de una célula cancerosa, y de hecho la mayoría de los genomas de células normales, han adquirido un conjunto de diferencias respecto a su progenitor óvulo fertilizado (ver figura 2). Estas son denominadas colectivamente mutaciones somáticas para distinguirlas de las mutaciones en la línea germinal que se heredan de los padres y se transmiten a la descendencia.

Las mutaciones somáticas en el genoma de una célula de cáncer pueden abarcar diversos tipos de alteraciones para cambiar la secuencia de DNA. Estas incluyen sustituciones de una base por otra; inserciones o eliminaciones de pequeños o grandes segmentos de DNA; reordenamientos, en la cual un fragmento de DNA se ha roto y luego se reincorporá a un segmento de DNA en otras partes del genoma, aumento en el número de copias (de las dos copias en la genoma diploide normal) hasta algunas veces varios cientos de copias (proceso conocido como amplificación de un gen) y reducciones en el número de copias que pueden dar lugar a la ausencia total de una secuencia de DNA en el genoma de una célula de cáncer (Stratton M, Campbell P, Futreal A., 2009)

Figura 2. Divisiones mitóticas de un óvulo fecundado hasta una sola célula cancerosa. Las mutaciones pueden ser adquiridas, mientras el linaje de la célula es fenotípicamente normal, solo refleja tanto las mutaciones intrínsecas adquiridas durante la división celular normal y los efectos de los mutágenos exógenos. Durante el desarrollo de la los procesos de todo tipo de cáncer, por ejemplo, defectos de reparación del DNA, contribuyen a la carga mutacional. Las mutaciones pasajeras no tienen ningún efecto sobre la células cancerosas, pero las mutaciones permanentes (en genes implicados en procesos de desarrollo celular) causará una expansión clonal. La recaída después de la quimioterapia puede estar asociada a mutaciones de resistencia que a menudo son anteriores a la iniciación del tratamiento (Stratton M, Campbell P, Futreal A., 2009)

En adicción, la célula cancerosa puedo haber adquirido, desde fuentes exógenas, secuencias completas de DNA nuevo, particularmente de virus tales como; el virus del papiloma humano, virus de Epstein Barr, virus de la hepatitis B, Virus linfotrópico de células T y el Virus del herpes humano ocho, cada uno de ellos se sabe que puede contribuir a la génesis de uno o más tipos de cancer (Talbot S y col., 2004.). En comparación con del óvulo fertilizado, el genoma de un cáncer también ha adquirido cambios epigenéticos que alteran la estructura de la cromatina y la expresión de genes y que se manifiestan a nivel de secuencias de DNA por cambios en el estado de metilación de algunos residuos de citosina. Los cambios epigenéticos suelen estar sujetos a la misma presión de selección.

No hay que olvidar que existe otro genoma que se alberga dentro de la célula cancerosa. Las miles de mitocondrias presentes suelen llevar un genoma circular de aproximadamente 17 kilobases. Diversas mutaciones somáticas en genomas

mitocondriales han sido reportados en muchos cánceres humanos, aunque su papel en el desarrollo de la enfermedad no está aún claro (Chatterjee A y col., 2006).

La mayoría de los cáncer de mama son considerados neoplasias epiteliales, es decir carcinomas, y se suelen originar en la unidad ducto-lobulillar. Al proceder de una glándula se denominan más adecuadamente adenocarcinomas. Las neoplasias que se presenta con mayor frecuencia son los tumores de estirpe epitelial (en el epitelio ductal en un 70-80% de los casos y en el lobulillar en un 10-20%), aunque cualquiera de los tejidos que componen la mama puede originar un cáncer (Ruiz E, 1993).

1.2 El cáncer de mama en México

En México un país con una población un poco mayor de 105 millones de habitantes, el cáncer de mama es hoy en día uno de los desafíos más importantes para el sector salud (Lozano R y col. 2008).

Las tasas de mortalidad por cáncer de mama en México muestran un aumento notorio en las últimas cinco décadas. Entre 1955 y 1960, a partir de la disposición de los primeros datos confiables, la tasa era alrededor de dos a cuatro muertes por cada 100,000 mujeres, luego se elevó de manera sostenida en las mujeres adultas de todas las edades hasta alcanzar una cifra cercana a 9 por cada 100,000 mujeres para la mitad de la década de 1990. Para el año 2005, el cáncer de mama se había convertido en la segunda causa de muerte más común en México entre las mujeres de entre 30 a 54 años y la tercera más frecuente entre el grupo de 30 a 59 años (después de la diabetes y las cardiopatías). Tan solo en el 2006 murieron 4,451 mujeres mexicanas, lo cual implica un fallecimiento cada 2 horas. La tasa de mortalidad por cáncer mamario se incrementó 2.5 veces de 1992 a 2006, de tal forma que a partir de ese año la tasa de mortalidad de cáncer de mama es superior a la de cáncer cérvico uterino (Lozano R y col. 2008).

A principios de 2006, el cáncer de mama se ubicó como la primera causa de mortalidad por tumores malignos entre las mujeres en algunos estados de la

república, tales como Jalisco; donde desde 1997 ocupa el primer lugar, con una tasa de mortalidad de 15.82% por 100,000 mujeres y la frecuencia de cáncer de mama es ya casi similar (17.9% vs. 18.8%) a la del cáncer cérvicouterino. Esta tendencia parece mantenerse en la mayoría de los estados, lo que permite estimar que en muy poco tiempo será ya la primera causa de muerte por cáncer en todo el país (Lozano R y col. 2008).

1.3 Factores de Riesgo

El 80% de los cánceres de mama no tienen una causa conocida, aunque aparentemente el cáncer de mama depende de una conjunción de varios factores. Por un lado están los factores hormonales (los estrógenos, la menarca temprana y nuliparidad) y por otro, se encuentran los factores ambientales (la dieta, la edad, el sedentarismo, etc.), que van a influir en el riesgo de padecer cáncer de mama a través de las modificaciones que ejercen en el organismo de cada persona. La edad y el sexo son los factores de riesgo más importantes, ya que el riesgo de cáncer de mama aumenta conforme va aumentando la edad, y el 99% de los cánceres de mama aparecen en mujeres (Zamora P y col. 2001).

Otro factor importante es el factor genético y familiar, ya que representa alrededor del 10-20 % de estos tipos de cáncer, sin embargo, pudieran ayudar a comprender algunos mecanismos del desarrollo tumoral. Las alteraciones genéticas, a su vez, pueden ser heredadas como mutaciones de la línea germinal o como mutaciones somáticas adquiridas. Estas últimas podrían ocurrir como resultado de la exposición a carcinógenos ambientales, ya sean físicos (ej. Radiaciones ionizantes excesivas), químicos (ej. hidrocarbonos policíclicos, nitrosoureas) y/o biológicos (ej. virus) (Martínez J, 1995; Russo J y Russo I, 2000).

1.4 El cáncer de mama y su posible origen viral

Se estima que un poco más del 15 por ciento de todos los tipos de cáncer en humanos pueden atribuirse a una infección viral, lo que representaría una porción significativa del número total de casos que se presentan anualmente (1.5 millones de casos al año). Se ha demostrado que tanto los virus de DNA como los de RNA son capaces de causar cáncer en humanos. El virus de Epstein-Barr, el Virus del papiloma humano, el Virus de la hepatitis B y el Herpes virus humano 8 son los cuatro virus de DNA que se sabe son capaces de causar cáncer en humanos. El Virus linfotrópico de células T humanas y el Virus de la hepatitis C son los dos virus de RNA que estan asociados a algunos canceres en humanos (ver tabla 1) (Zur Hausen H, 1991).

A pesar de que los virus oncogénicos humanos pertenecen a diferentes familias de virus y suelen utilizar diversas estrategias para contribuir al desarrollo del comparten muchas características comunes. Una característica cáncer. fundamental es su capacidad para infectar, pero no matar, su célula huésped. A diferencia de muchos otros virus que causan enfermedades, los virus oncogénicos tienen la tendencia a establecer infecciones persistentes a largo plazo. En consecuencia, han desarrollado estrategias para evadir la respuesta inmune del hospedero. A pesar de la etiología viral de varios tipos de cáncer, parece que los virus a menudo pueden contribuir, pero solos no son suficientes para iniciar el proceso de carcinogénesis, de hecho, la mayoría de las personas infectadas por algún virus del tumor no desarrollan cáncer, es decir, al parecer es necesario un conjunto de eventos para iniciar el proceso de carcinogénesis (Cohen S y Parsonnet J., 1999).

Los virus pueden contribuir al desarrollo de tumores por diferentes mecanismos: indirectamente, mediante la inducción de inmunosupresión o mediante la modificación del genoma del hospedero sin la persistencia del DNA viral y directamente induciendo oncoproteínas o mediante la alteración de la expresión de las proteínas del huésped en el lugar de la integración del DNA viral (mutagénesis insercional) (Minami M y col., 2005).

Virus	Familia	Tipo de cáncer	Casos/año	Mecanismo	Oncogenes	Función del oncogén	Referencia
Virus de la Hepatitis B (HBV)	Hepadnaviridae	Carcinoma Hepatocelular	3400 000	Inflamación crónica	Proteína X CREB, ATF	Desregulación del señalamiento molecular Inhibición de p53	Ganem y Prince, 2004; Guidotti y Chisari, 2006 Kao y Chen, 2002
Virus de la Hepatitis C (HCV)	Flaviviridae	Carcinoma hepatocelular	195 000	Inflamación crónica	-	-	Colombo y col., 1989; Thomas y col., 2000
Virus de Epstein- Barr (EBV)	Herpesviridae	Linfoma de Burkitt Linfoma de Hodgkin Carcinoma nasofaringeo	113 400	Oncogénico	LMP-1	Desregulación del señalamiento molecular Activación de NF- kB Linfoproliferación	Arvanitakis y col., 1995; Brown y col., 2001; Mosialos y col., 1995)
Virus del Papiloma humano (HPV)	Papilomaviridae	Cáncer cérvico Cáncer anal Cáncer de pene Carcinoma de cabeza y cuello	561 180	Oncogénico	E6/E7	Inhibición de p53 y Rb Desregulación en los mecanismos de adhesión celular	Beaudenon y col., 1986; Dysony col., 1989b; Scheffner y col., 1990
Virus linfotrópico de células T humanas (HTLV- 1)	Retroviridae	Leucemia de células T en adultos	3 330	Oncogénico	Тах	Desregulación del señalamiento molecular Activación de NF- kB	Matsuoka and Jeang, 2007; Poiesz y col., 1980
Herpes virus asociado al sarcoma de Kaposi (Herpes virus humano 8) (KSHV) (HHV8)	Herpesviridae	Sarcoma de Kaposi Linfoma de efusión Pleural Enfermedad Multicentrica de Castleman	102 300	Oncogénico	vGPCR, vIL6, vBcl2,vMIPs, vFlip,vCyclin, LANA, Kaposin B	Múltiples eventos de desregulación del ciclo celular Inhibición de la apoptosis Evasión inmune	Arvanitakis y col., 1997; Bais y col., 1998; Cesarman y col., 1995; Changy col. 1994; Ganem, 2006; Montaner y col, 2003; Yang y col., 2000

 Tabla 1. Virus asociados a distintos tipos de cáncer en humanos (Modificado de Human tumor-associated viruses and new insights into the molecular mechanisms of cancer, Martin D y Gutkind J., 2009).

El interés sobre el MMTV (Mouse Mammary Tumor Virus) como agente cancerígeno fue generado varias décadas atrás, cuando Bittner demostró en 1939 que un factor extra cromosómico en los ratones contribuía a la incidencia del cáncer de mama. En sus experimentos, utilizó una línea de ratones con alta tasa de incidencia tumoral (>80%), éstos ratones fueron amamantados por ratones hembras con una incidencia baja a tumores mamarios. Los ratones amamantados y su progenie vivían mucho más tiempo y tenían una incidencia de tumores de sólo el 7,4%. Con este y otros experimentos similares, llegó a la conclusión de que un agente de la leche influía en la desarrollo de los tumores de mama (Bittner J., 1939).

En 1945, Andorvent describe este agente de la leche como un virus (Gross L., 1970), y poco a poco, se hizo ampliamente conocido como el 'Virus de Bittner" actualmente conocido como MMTV. Se ha demostrado que éste virus se transmite por vía endógena y exógena. En el primer caso se transmite a través de la línea germinal y todas las células heredan la secuencia viral. Para el caso de la vía exógena el virus es trasmitido a través de la leche materna. El virus responde a un estímulo estrogénico aumentando su expresión durante la lactancia de tal manera que las partículas virales en la leche son capaces de infectar a la progenie, trasmitiéndose en forma exógena (Choi Y y col., 2004, Brandat-Carlson C y col., 1993).

Actualmente se ha sugerido que el ratón doméstico pudiera ser una fuente de transmisión para contraer el cáncer mamario en humanos (Stewart T., 2000). En el año 2004, un grupo de investigadores informó que había hallado DNA similar al del MMTV en los tumores de mama y en linfomas no-Hodgkin en pacientes que sufrían ambas enfermedades (Etkind P., 2004). Mediante análisis de similitud entre las secuencias identificadas en los tumores mamarios se encontró alta similitud entre las secuencias del retrovirus humano con el MMTV (90-95%) y una menor con los HERV's (57%). Adicionalmente, diversos grupos de trabajo han demostrado que secuencias parecidas al gen env del virus del tumor mamario del

ratón están presentes en tumores mamarios humanos (Indik S y col., 2005, Etkinnd P y col., 2000, Ford C y col., 2004, Pogo B y col., 1997, Wang Y y col. 1995).

Se reconocen tres clases de evidencia que sustentan esta fuerte asociación entre el MMTV y el cáncer de mama:

- La evidencia física de que ciertos tumores de mama humanos, líneas celulares y leche materna humana contienen DNA idéntico al DNA del MMTV
- 2. Las respuestas inmunológicas al MMTV
- Estudios moleculares que demuestran que las secuencias virales de DNA o RNA similar al MMTV puede hallarse en más de un tercio de los cánceres de mama humanos pero no se hallan en el tejido de mama normal (Melana S., 2007).

1.5 Los retrovirus endógenos humanos o HERVs

Cerca del 10% del genoma humano está compuesto por secuencias de origen retroviral muy diferentes entre sí, pero englobadas bajo la denominación genérica de retrovirus endógenos humanos o HERVs (de sus siglas en inglés). La existencia de miles de secuencias de las distintas familias de HERVs en el genoma humano que presentan similitud parcial y capacidad de retrotransposición es una fuente enorme de variabilidad y plasticidad genómica (Bock M y Stoye J., 2000).

La estructura de los HERVs es la característica de los retrovirus exógenos (RVs) en su forma de provirus, contienen dos repeticiones terminales largas en los extremos (LTRs) y los genes *gag*, *pol* y *env*, que codifican las proteínas necesarias para la formación de nuevas partículas virales incluyendo la Transcriptasa reversa (RT) la cual permite la transcripción de un molde de RNA en DNA (retrotranscripción) y es parte esencial del ciclo vital de los retrovirus (ver figura 3). Las LTRs se generan durante el proceso de retrotranscripción y son necesarias para la integración viral en el DNA genómico. Además, presentan elementos

necesarios para regular la expresión de sus genes, incluyendo las secuencias a las que se unen factores de transcripción y hormonas, y las señales de poliadenilación para el correcto procesamiento de los RNA virales. Gracias a sus regiones con similitud de secuencias promueven la recombinación no homologa en distintas regiones del genoma, promoviendo en general reorganizaciones genómicas y en algunos casos concretos, duplicaciones génicas, tanto de sí mismas, como de cualquier gen que esté flanqueado por las regiones de similitud (Löwer R y col., 1996)

Los retrovirus endógenos se encuentran integrados en el genoma del hospedero, los HERVs se transmiten de modo vertical (mendeliano) a la descendencia, y no tienen la capacidad de producir partículas virales, mientras que los RVs se transmiten de modo horizontal (infectivo) entre los individuos de una población. La integración de HERVs produce además diversidad alélica en las poblaciones, como se ha demostrado en la región del Complejo Mayor de Histocompatibilidad (MHC) (Tassabehji y col., 1994; Dawkins y col., 1999; Kulski y col., 1999) y puede producir respuestas individuales diferenciales ante determinadas enfermedades, sobre todo contra las infecciones virales exógenas (Dangel et al., 1994; Schneider et al., 2001)

Figura 3. Organización genómica un retrovirus en su forma libre como RNA y la integracion en el genoma como provirus. Los retrovirus incluyen en su genoma los genes *env, pol y gag* necesarios para la integración posterior a las células hospederas. Esta estructura y sus variantes defectivas son las que corresponden a los HERVs.

1.6 Estructura general de los retrovirus

La envoltura externa de los retrovirus proviene de la membrana plasmática de la célula huésped. Las proteínas de envoltura (antígenos de superficie) son codificadas por el gen *env*. Dentro de la envoltura hay una cápside icosaédrica que contiene proteínas codificadas por el gen *gag* (Antigeno grupo-específico), dichas proteínas también cubren el RNA genómico. El gen *pol* codifica para varias proteínas (igual como sucede con los genes *gag* y *env*, una poliproteína única es sintetizada y luego dividida (ver figura 4)

Los productos del gen pol son:

- a) Transcriptasa inversa (RT) (una polimerasa que copia RNA en DNA)
- b) Integrasa (IN) (integra el genoma viral al genoma de la célula huésped)
- c) RNasa H (divide el RNA a medida que el DNA es transcrito de modo que la transcriptasa inversa pueda sintetizar la segunda cadena complementaria de DNA)
- d) Proteasas (PR) (dividen las poliproteínas traducidas de los mRNA de los genes gag y pol). Nota: esta es una proteína codificada también en los virus exógenos y es blanco de una nueva generación de drogas antivirales.

Figura 4. Organización genómica de los retrovirus exógenos. Los retrovirus incluyen en su genoma dos regiones LTR en sus extremos 5'y 3' y los genes *env, pol y gag* necesarios para la integración posterior a las células hospederas. El gen *env* codifica para la proteínas de membrana y las proteínas superficiales. El gen *pol* codifica para las enzimas retrotranscriptasa, integrasa, proteasa y RNasa H.

2. Antecedentes

En la actualidad, se ha demostrado que el MMTV causa tumores de mama en ratones de laboratorio. Diversos trabajos se han realizado para identificar un posible análogo humano del MMTV que pudiera causar cáncer en humanos. La mayor parte de los datos disponibles y su conclusión sugiere indicar la presencia de este tipo de analogía entre el cáncer de mama humano y los tumores murinos.

Uno de los estudios más ampliamente utilizado consiste en la identificación de las proteínas de la envoltura del MMTV en cáncer de mama humano mediante el uso de anticuerpos. En uno de estos trabajos, las reacciones positivas se observaron en 51 de 131 (39%) de los adenocarcinomas mamarios con resultados negativos en todas los tejidos normales de mama (Mesa-Tejada et al, 1978). Sin embargo, el uso de éstos anticuerpos contra la proteína de envoltura del MMTV ha sido motivo de disputa y dio lugar a la incertidumbre sobre la validez de estos resultados (Hareuveni y Torno, 1990).

Una de las principales dificultades surgidas en ese momento fue la identificación de los retrovirus endógenos humanos (HERVs) en el genoma humano. La gran similitud entre los HERVs y el MMTV ha hecho extremadamente difícil diferenciar entre los dos. Como consecuencia de ello, a principio los resultados fueron cuestionados con demandas que la identificación del MMTV en realidad puede ser un HERV.

Este problema, fue superado cuando Wang Y y colaboradores en 1995 aislaron una secuencia de 660 pb en adenocarcinomas mamarios, donde reportaban la detección de secuencias parecidas al gen *env* del MMTV en 121 (38.5%) de 314 muestras de cáncer de mama, en cultivos de líneas celulares MCF-7 y ED (2 de 10 líneas celulares mamarias), en 2(6.9%) de 29 fibroadenomas mamarios y en 2 (1.8%) de 107 muestras provenientes de reducción de mamoplastias (Wang y col., 1995). Estas secuencias resultaron con una similitud del 98% a la del gen *env* del MMTV y muy baja con secuencias HERVs. Diversos trabajos han sido publicados

en los cuales se ha empleado la estrategia de detectar secuencias de DNA o RNA del MMTV en tumores mamarios y tejido mamario no afectado de diversas poblaciones.

Etkind y colaboradores utilizaron en el año 2000 un enfoque similar y analizaron la presencia del MMTV mediante la amplificación de secuencias del gen *env* en los tumores de mama. La estrategia consistía en la amplificación de un fragmento de DNA de 250bp utilizando una PCR anidada. La secuencia se encontró en el 37% de las 73 muestras de los adenocarcinomas mamarios y en ninguno de los tejidos normales de mama analizados. La secuenciación de los amplificados confirmó que estas secuencias eran entre 99-100% similares a las secuencias del gen *env* de MMTV. Curiosamente, también identificaron estas secuencias en 3 de 19 linfomas no-Hodgkin (Etkind y col., 2000).

En un estudio posterior Wang Y y colaboradores en 1998 determinaron la expresión del gen *env* del MMTV en muestras con secuencias provirales positivas (muestras *env* positivas) y detectaron la amplificación de una secuencia de 660pb y la de una secuencia interna (250 pb) en 66% y 100% de las muestras analizadas, respectivamente. Estos resultados indican que el virus detectado en las muestras de adenocarcinomas tiene la capacidad de integrarse y expresarse en el tejido mamario humano (Wang y col, 1998).

Posteriormente en en 2001, Liu B y colaboradores detectaron la estructura proviral completa en dos tumores de mama humanos *env* positivos utilizando una estrategia de amplificación por PCR sobrelapada de segmentos LTR-gag, gag-pol, and pol-env. El provirus LTR-gag-pol-env-LTR de 9.9 kb manifestó una homología del 95% al MMTV y del 57% a los retrovirus endógenos de humanos (HERVs) en los genes gag y pol. Se analizó la secuencia amplificada de 660 pb del gen env y se encontró una homología del 90 al 98% con el gen env de MMTV. Estos resultados demuestran una vez más que el retrovirus MMTV es capaz de infectar células humanas y lograr la integración de su genoma completo en el genoma humano. La técnica empleada (caminata cromosómica) demostró ser eficaz al

lograr la amplificación completa del fragmento de 9.9 kb. El análisis realizado a las secuencias provirales demostró que contaban con las regiones reguladoras para lograr expresarse y replicarse. La región LTR amplificada contenía todos los elementos reguladores tales como la región enhancer y la región del promotor, características de una replicación competente del MMTV así como los elementos de respuesta a glucocorticoides y las secuencias codificantes para el superantígeno (*gag*).

Al mismo tiempo Melana y colaboradores en 2001, trataron de establecer como una fuente exógena la infección por MMTV mediante el análisis de una secuencia de 250 pb en tumores mamarios y los respectivos tejidos normales del mismo paciente. En las muestras pareadas de mama (normal y cáncer) de 106 pacientes encontraron que el 30% de los 106 cánceres de mama humanos y sólo 1 de 106 tejidos mamarios normales resultaron *env* positivos . Estos resultados indicaban que el tejido mamario no afectado de los pacientes con cáncer *env* positivos no contiene dicha secuencia y llevó a los autores a concluir que estas secuencias son de origen exógeno. Sin embargo, ellos no podían explicar el hallazgo de esta secuencia en el tejido mamario normal de un individuo. El correspondiente tejido mamario afectado de este paciente resultó ser *env* negativo. Después de varias pruebas, concluyeron que esto puede haberse debido a la posible contaminación con tejido mamario o con DNA tumoral (Melana y col., 2001).

En otro estudio, Ford y colaboradores en 2003, determinaron la presencia de secuencias *env* en sólo una de 120 muestras y en cero de 40 tejidos de adenocarcinomas mamarios a partir de la biopsias de mujeres vietnamitas y australianas, respectivamente. El mismo estudio mostró la secuencia en 19 de 45 cánceres de mama de las mujeres caucásicas (Ford y col., 2003). Anteriormente, esta secuencia se detectó en 37,7% de 70 bloques embebidos en parafina de adenocarcinomas mamarios de mujeres italianas (Pogo y col., 1999).

Ford y colaboradores en 2004, encontraron una relación entre el grado de malignidad del cáncer de mama y el porcentaje de secuencias relacionadas con

MMTV. Ellos detectaron 43 de 136 (32%) tumores con secuencias de MMTV de éstos tumores estudiados el 23, 34 y 38% se observaron en carcinoma ductal infiltrante de primer, segundo y tercer grado, respectivamente. Estos resultados suponen una relación de las secuencias de MMTV con la manifestación de tumores de mama y una asociación con el incremento de gravedad del cáncer.

Un estudio posterior, realizado por Zapata P y colaboradores determinó la presencia de secuencias *env* en cinco de 119 (4,2%) de biopsias de cáncer de mama de mujeres mexicanas. Ellos también reportaron que en la línea celular MCF-7 (que estaba reportada como control positivo) no se obtuvo amplificación de las secuencias *env* del MMTV (Zapata P y col., 2007).

Los rangos de detección son variables aunque es claro que hay una diferencia significativa en los porcentajes de detección entre el tejido neoplásico y el tejido mamario no afectado (30-60% en neoplasia mamaria, 1-4% en tejido mamario no afectado). Con estos estudios se ha demostrado que secuencias del retrovirus MMTV están presentes en la población mexicana, sin embargo no han determinaron los posibles sitios de inserción de estas.

3. Planteamiento del problema

Desde hace algunos años diversos estudios han demostrado que el MMTV puede infectar a las células mamarias humanas y se ha propuesto como una de las causas del cáncer de mama en humanos, pudiendo estar asociado a este retrovirus o algún homologo (HMTV).

La existencia de secuencias HERVs en el genoma humano que contienen similitud parcial y capacidad de retrotransposición es una fuente enorme de variabilidad y plasticidad genómica, ya que afectan la expresión de genes cercanos debido a sus secuencias reguladoras (las LTRs); también se ha encontrado respuesta inmunológica contra el virus del MMTV, así como secuencias virales en neoplasias mamarias. Algunos investigadores han reportado asociación entre la etapa tumoral y el número de secuencias relacionadas con el MMTV. Por lo anterior consideramos necesario determinar la presencia de secuencias tipo *env* en muestras de adenocarcinomas mamarios, determinar cuáles son los posibles sitios de inserción de éstas secuencias retrovirales y evaluar la participación de los genes localizados en estas.

4. Justificación

El cáncer mamario es un problema de salud muy importante en nuestro país ya que ocupa el primer lugar como causa de muerte en mujeres mayores de 35 años. El estudio de las neoplasias se ha dificultado debido a la gran heterogeneidad histológica y clínica que presentan. Aunque se conocen algunos genes y proteínas asociados al origen del cáncer, la identificación y el entendimiento de los genes involucrados en estas patologías, sus interacciones génicas, las alteraciones bioquímicas y genéticas resultan de trascendental importancia. Por lo que el conocimiento en el ámbito molecular de los cambios necesarios para el avance del cáncer es una de las áreas de mayor desarrollo en la investigación biomédica actual. La amplia diversidad de tumores, aun los que derivan del mismo tejido, presenta un reto para un diagnóstico temprano y acertado. Debido a que los retrovirus pueden ocasionar re-arreglos genómicos que pudieran modificar la expresión de diversos genes, es importante averiguar si el MMTV/HMMT o algún homologo están relacionados con el desarrollo de cáncer de mama en humanos debido a la inserción y posible mutagénesis insercional.

5. Objetivos

Objetivo general: Determinar si el retrovirus MMTV o algún homologo humano están relacionados con el desarrollo de cáncer de mama en humanos debido al fenómeno de mutagénesis insercional.

Objetivos particulares:

- Identificar y determinar secuencias tipo *env* del retrovirus HMTV/MMTV en muestras tumorales mamarias.
- Identificar secuencias LTRs del retrovirus HMTV/MMTV en muestras tumorales mamarias mediante el método de la PCR *splinkerette*.
- Identificar posibles efectos biológicos de la mutagénesis insercional de las LTRs y la participación de los genes del retrovirus HMTV / MMTV en el desarrollo y avance de la neoplasia.
- Identificar mediante una búsqueda informática secuencias *env* en el genoma humano y correlacionar con la presencia de secuencias en las muestras tumorales MMTV/HMTV.

6. Materiales y métodos

6.1 Obtención de las muestras de adenocarcinomas

Se obtuvieron muestras de adenocarcinomas mamarios de mujeres mexicanas referidas del hospital de Oncología, Centro Médico Nacional S-XXI, IMSS. Los tejidos fueron transportados al laboratorio en un contenedor con nitrógeno líquido. Las muestras se almacenaron a -70°C hasta antes de usarlas.

6.2 Obtención de DNA a partir de las muestras obtenidas

Para la extracción de DNA a partir de tumor, se pesaron aproximadamente 100mg de cada muestra, se seccionó en pequeñas piezas, con ayuda de un bisturí, el tejido congelado en presencia de nitrógeno líquido fue pulverizado sobre un mortero, posteriormente el tejido pulverizado fue recuperado, utilizando proteínasa K y el paquete comercial QIAamp DNA Mini Kit (Quiagen) y siguiendo las especificaciones del fabricante, se llevó a cabo la extracción del material genético en un sistema automatizado de purificación de ácidos nucleicos QIAcube (Quiagen), para asegurar concentraciones y pureza similar entre las muestras. Se verificó la concentración e integridad del DNA de las muestras mediante espectrofotometría (nanodrop technologies) y electroforesis en geles de agarosa. Las muestras de DNA se almacenaron a -70° C, hasta su uso.

6.3 PCR anidada para la amplificación del gen env

La detección de las secuencias MMTV/HMTV se realizaron de acuerdo a los métodos reportados por Zapata-Benavides y col, 2007, la amplificación con oligonucleótidos específicos se realizó flanqueando las secuencias del gen *env* del MMTV. La amplificación se realizó en un termociclador PalmCycler (tiempo final). Todas las reacciones se realizaron por duplicado y se incluyeron controles negativos sin molde y positivos de reacción.

La estrategia de amplificación fue la siguiente: se utilizaron los primers 1 y 4 (CCTCACTGCCAGATC, GAATCGCTTGGCTCG) para amplificar un fragmento del gen *env* de 685 pb. (56 °C para la alineación, 35 ciclos), posteriormente usando el producto de la reacción como molde se utilizaron los primers 2 y 3 (TACATCTGCCTGTGTGTTAC, ATCTGTGGCATACCT) para amplificar un producto de 250 pb. (*ver figura 5*).

Figura 5. Estrategia de amplificación del gen *env* **del MMTV.** Se amplificó un producto de 686 pb. Utilizando los oligonucleótidos P1 y P4 (sobre las bases 685 y 1371 del gen *env* respectivamente), posteriormente se utilizaron los oligonucleótidos P2 y P3 (sobre las bases 1098 y 1350 del gen *env* respectivamente) para obtener un producto de 252 pb.

Para ambas amplificaciones se utilizó la siguiente mezcla de reacción:

Mezcla de read	ción y programa de ciclado	Componente	Concentración Final
<u>1er Paso</u>	94 °C 10 min	Buffer de reacción 10X MgCl ₂ 50mM	1X 1.5 mM
<u>2do Paso</u> 35 ciclos [■]	94 °C 1.5 min 56 °C 1.5 min 72 °C 1.5 min	dNTP's 10mM Iniciador F 20 pmol Iniciador R 20 pmol	2 mM 20 pmol 20 pmol
3er Paso	72 °C 8 min	Taq pol (5u/μL) DNA 200 ng	1 U 200ng
<u>Almacenar a 4 °C</u>		Agua Volumen de reacción	Χ 30 μL

Como control positivo de reacción se utilizó la construcción hecha con el gen env del MMTV cepa C3H sobre el plásmido pBR322 y propagado en E.coli HB101 (ATCC 45006), así mismo se amplificó un fragmento de 500pb del gen GAPDH para verificar la utilidad de los DNAs.

6.4 PCR splinkerette para amplificar las secuencias flanquedas por las LTRs virales

Para detectar e identificar los sitios de inserción del MMTV/HMTV flanqueados por las secuencias LTR se utilizó el método de PCR splinkerette reportado por Thedorou V y col. en el 2007, el cual se describe a continuación:

A partir de 1 mg de DNA tumoral se realizó una digestión con la enzima *Xholl* (6 hrs a 37 °C, 5 U) cuya secuencia de reconocimiento es 5'...C^TCGAG...3'. Posteriormente se ligaron 300 ng del DNA digerido con *Xholl* con el "splinkerette linker" en una proporción molar de 1:15 con con 2 unidades de T4 DNA ligasa durante 5 hrs a 37 °C. El adaptador (splinkerette linker) fue generado utilizando dos oligonucleótidos (ver figura 6), HMSpA y HMSpBD cuyas secuencias son las siguientes:

Estructura del splinkerette generado

GATCCCACTAGTGTCGACACCAGTCTC GGTCAGAGTAAGTCGGTGCCAGAGAGGATCGTTGCCAATGAGAAGC₅

Figura 6. Estructura generada para el adaptador (splinkerette linker). El adaptador fue generado apartir de los oligonucleotidos HMSpA y HMSpBD. La estructura generada brinda una mayor espeficidad en la reacción de amplificación debido a la estructura formada en el extremo 3 del oligonucleotido HMSpBD.

El adaptador fue generado utilizando 150 pmol de cada oligonucleótido e incubando la mezcla a 94 °C durante 3 minutos. Posteriormente se llevó a temperatura ambiente a una tasa de 1 C por 15 segundos. Una vez realizada la reacción de ligación las muestras fueron digeridas con la enzima *Dral* (2 hr. De incubación 37 °C, 5 U). Después se realizó la purificación del producto de digestión en una columna Microcon YM-30 (Amicon BioSeparations) de acuerdo al manual de usuario. Se utilizó el DNA ligado para la amplificación utilizando los oligonucletidos LTR-beg2 (que se alinea a la LTR viral) y 4HMSp1a (que se alinea al enlazador splinkerette) (68 °C de alineación, 35 ciclos) cuya secuencias se muestran en seguida:

LTR-beg2+6:GTCTTTGTCTGATGGGCTCATCCGTTTGTGLTR-beg4-C3H+1:CCCTAGGTGTAGGACACTCTCG4HMSP-1a:AGAGTAACCGTTGCTAGGAGAG

Posteriormente se reamplificaron los productos de PCR con el oligonucleotido LTR-beg4-C3H+1 y 4HMSp1a (11 ciclos de alineación a 68 °C seguido de 11 ciclos de 67 °C y 13 ciclos en 66 °C). Después de la electroforesis, los productos fueron purificados y reamplificados para ser enviados al servicio de secuenciación de la FES-UNAM Iztacala a cargo del M en C Alejandro Monzalvo (ver figura 6).

Mezcla de reacción y p	rograma de ciclado	Componente	Concentración Final
<u>1er Paso</u> 94 °(C 10 min	Buffer de reacción 10X MgCl ₂ 50mM	1X 1.5 mM
2do Paso 30 ciclos 30 ciclos 94 °(68 °C 72 °(30 seg 30 seg 30 seg 	dNTP's 10mM Iniciador F 20 pmol Iniciador R 20 pmol	2 mM 20 pmol 20 pmol
3er Paso 72 °C	8 min	Taq pol (5u/μL) DNA 200 ng	1 U 200ng
<u>Almacenar a 4 °C</u>		Agua	X
		Volumen de reacción	30 µL

Para ambas amplificaciones se utilizó la siguiente mezcla de reacción:
DNA con una insercion viral

Figura 7. Esquema del método de PCR splinkerette. El método consisten en digerir con la enzima *Xho II* el DNA asociado a la LTR viral del MMTV, posteriormente se genera un adaptador llamado "Splinkerette" que es ligado al DNA digerido previamente con *Xho II*, después de ser purificado y desalado el DNA ligado al adaptador es amplificado con primers específicos tanto para el adaptador como para la LTR viral.

6.5 Búsqueda Bioinformática

Para identificar posibles sitios de inserción del retrovirus MMTV/HMTV en el genoma humano se realizó una búsqueda bioinformática en la base de datos del NCBI y del EMBL-EBI de acuerdo en la siguiente estrategia:

- 1. Se descargó la secuencia completa del gen *env* del MMTV y las secuencias LTR 5´ y 3´ del MMTV de las páginas del NCBI y del EMBL-EBI.
- 2. El número de acceso para la secuencia completa del MMTV fue NC_001503 (NCBI)

- Posteriormente, cuando las secuencias fueron descargadas se procedió a realizar una búsqueda de similitud de secuencias mediante la herramienta Blast (programa nucleotide Blast, algoritmo Blastn, base de datos Human genomic plus transcript), para cada una de las secuencias descargadas.
- 4. Los parámetros de búsqueda fueron los siguientes:

```
Número máximo de secuencias: 10 000
Valor de corte (Expect threshold): 10
Tamaño de palabra (Word size): 11
Puntaje Match/Mismatch: 2,-3
Puntaje gaps (gaps costs): inicio 5, extensión 2
```

7. Resultados

7.1 Obtención de las muestras de adencarcionamas

Se obtuvieron 56 muestras de adenocarcinomas mamarios y tejidos no afectados de mujeres mexicanas referidas al hospital de Oncología, Centro Médico Nacional S-XXI del IMSS. Los porcentajes de los tejidos obtenidos fueron de la siguiente manera: 40 tejidos neoplásicos (71%), 2 fibroadenomas (4%) y 16 tejidos mamarios no afectados (25%) (ver figura 8).

Figura 8. Muestras de tejidos mamarios obtenidos (adenocarcinomas y tejidos mamarios no afectados). Se obtuvieron 56 muestras de tejido mamario. El 71% de las muestras obtenidas corresponde a 40 tejidos neoplásicos, el 4% a 2 fibroadenomas y el 25% a tejidos mamarios no afectados.

7.2 Obtención del DNA a partir de las muestras obtenidas

Para la extracción de DNA a partir de cada muestra, se pesaron aproximadamente 100mg de cada muestra y se procesaron de acuerdo a los descrito en los métodos, se asignó una clave de identificación a cada muestra. En la tabla 2 y 2A, se pueden observar los datos pertenecientes a cada muestra así como las claves asignadas. **Tabla 2. Relación de las muestras obtenidas**. En la tabla se muestran los datos relacionados con las muestras obtenidas, concentración y cociente 260/280. Dx= diagnostico, CDI= Carcinoma Ductal Infiltrante, CLI= Carcinoma Lobulillar infiltrante, CSC= Carcinoma sin clasificar, TNA = Tejido no afectado, FBA= fibroadenoma

Muestra		Concentración	Cociente	Muestra		Concentración	Cociente
Muestra	DX	(ng/µl)	260/280	Muestra	Dx	(ng/µl)	260/280
001CM	CDI	345.54	1.67	016CM	CDI	432.13	1.88
002CM	CDI	453.54	1.84	017CM	CDI	984.23	1.89
003CM	CDI	314.41	1.78	018CM	CDI	431.31	1.80
004CM	CDI	434.31	1.98	019CM	TNA	654.14	1.93
005CM	TNA	414.63	1.85	020CM	FBA	354.75	1.98
006CM	TNA	435.13	1.67	021CM	CDI	564.13	1.85
007CM	CDI	764.89	1.90	022CM	CDI	765.34	1.67
008CM	TNA	967.65	1.84	023CM	CDI	345.13	1.90
009CM	CLI	673.65	1.82	024CM	CDI	876.34	1.84
010CM	CDI	865.33	1.88	025CM	TNA	344.33	1.67
011CM	TNA	978.56	1.89	026CM	CDI	431.34	1.90
012CM	CDI	537.46	1.80	027CM	CDI	765.34	1.84
013CM	CDI	387.36	1.93	028CM	CDI	982.34	1.82
014CM	CDI	845.64	1.92	029CM	TNA	650.78	1.83
015CM	CSC	532.76	1.90	030CM	TNA	433.14	1.88

Tabla 2A. Continuación

Muestra	Dx	Concentración	Cociente	Muestra	Dx	Concentración(ng/ul)	Cociente
Macolla	DA	(ng/µl)	260/280	Macolla	DX	Concentracion(ng/µi)	260/280
031CM	CDI	865.34	1.68	046CM	TNA	563.78	1.90
032CM	CDI	525.80	1.84	047CM	CDI	764.65	1.84
033CM	TNA	452.00	1.78	048CM	CDI	674.52	1.78
034CM	CLI	553.00	1.98	049CM	TNA	845.31	1.90
035CM	CLI	230.00	1.85	050CM	CDI	665.23	1.85
036CM	CDI	748.23	1.67	051CM	CDI	765.23	1.67
037CM	CDI	423.64	1.72	052CM	CLI	643.34	1.84
038CM	CDI	242.95	1.82	053CM	CDI	454.62	1.88
039CM	CDI	562.33	1.67	054CM	TNA	122.63	1.90
040CM	CDI	456.63	1.90	055CM	CDI	754.24	1.81
041CM	FBA	765.34	1.84	056CM	CDI	143.75	1.77
042CM	CDI	876.24	1.82				
043CM	CDI	145.65	1.88				
044CM	TNA	546.87	1.96				
045CM	TNA	254.86	1.78				

Una vez extraídos los DNA de cada muestra fueron etiquetados y guardados a -30 °C hasta la su utilización.

7.3 PCR anidada para la amplificación del gen env

La PCR anidada para la detección de secuencias *env* del MMTV en las muestras obtenidas fue realizada de acuerdo a los métodos reportados por Zapata-Benavides y col, en 2007. A partir de 200 ng de DNA se realizó la primer PCR utilizando los oligonucleotidos CCTCACTGCCAGATC y GAATCGCTTGGCTCG para amplificar un fragmento del gen *env* de 685 pb. de acuerdo a los métodos descritos anteriormente. Una vez realizada la PCR los productos de amplificación

fueron separados en geles de agarosa al 1.2% teñidos con SYBER green. En las figuras 9-13 se pueden observar los electroferogramas de las muestras 001CM-029CM. En la figura 9 es posible observar el marcador de escalera de 100 pb (carril M), el control positivo de reacción que corresponde al producto de PCR con el DNA del plásmido hecho con la construcción del gen *env* del MMTV C3H (carril +) y los amplificados de las muestras 001CM-006CM. En la figura es posible observar un amplificado en el carril (+) correspondiente al fragmento de aproximadamente 685 pb del gen *env* del MMTV y amplificados en las muestras 001CM-004CM

Figura 9. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 001CM al 006CM del gen *env* del MMTV. En la figura se muestran los amplificados de las muestras 001CM al 006CM, M= escalera de peso molecular de 100pb, el control positivo de reacción (+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H y los amplificados para las muestras 001CM-006CM.

Figura 10. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 007CM-012CM del gen *env* del MMTV. En la figura se muestran los amplificados las muestras 007CM al 012CM, M= escalera de peso molecular de 100pb, el control positivo de reacción (+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H y los amplificados para las muestras 007CM-012CM.

Figura 11. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 013CM-018CM del gen *env* del MMTV. En la figura se muestran los amplificados las muestras 013CM al 018CM, M= escalera de peso molecular de 100pb, el control positivo de reacción (+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H y los amplificados para las muestras 013CM-018CM.

Figura 12. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 019CM-024CM del gen *env* del MMTV. En la figura se muestran los amplificados las muestras 019CM al 024CM, M= escalera de peso molecular de 100pb, el control positivo de reacción (+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H y los amplificados para las muestras 019CM-024CM.

Figura 13. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 025CM-028CMdel gen *env* del MMTV. En la figura se muestran los amplificados las muestras 025CM al 029CM, M= escalera de peso molecular de 100pb, el control positivo de reacción (+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H y los amplificados para las muestras 025CM-029CM. Una vez que las muestras fueron amplificadas se procedió a realizar la segunda PCR con los oligonucleotidos (TACATCTGCCTGTGTGTGTAC y ATCTGTGGCATACCT) para amplificar un producto de 250 pb la reacción se realizó de acuerdo a los métodos descritos anteriormente.

En las figuras 14-17 se pueden observar los electroferogramas de las muestras 001CM-029CM para el amplificado de 250pb. Los correspondientes geles de agarosa fueron realizados al 1.2% y teñidos con Syber green.

En la figura 14 es posible observar un marcador de escalera de 100 pb (carril M), el control positivo de reacción que corresponde al producto de la primer PCR con el DNA del plásmido hecho con la construcción del gen *env* del MMTV C3H (carril +) y los amplificados de las muestras 001CM-011CM. Se observan amplificados en el carril (+) correspondiente al fragmento de aproximadamente 250 pb del gen *env* del MMTV C3H y amplificados en las muestras 002CM, 003CM, 004CM, 007CM y 010CM de aproximadamente 250 pb.

Figura 14. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 001CM-011CM del gen *env* **del MMTV.** En la figura se muestran los amplificados las muestras 001CM al 011CM, M= a marcador de Peso molecular de 100pb, el control positivo de reacción(+) corresponde al amplificado de la construcción hecha con el gen *env* del MMTV C3H. Se observan amplificados de las muestras 002CM, 003CM, 004CM, 007CM y 010CM.

Figura 15. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 012CM-023CM del gen *env* del MMTV. En la figura se muestran los amplificados las muestras 012CM al 023CM, M= a marcador de Peso molecular de 100pb. Es posible observar amplificados en las muestras 012CM, 016CM, 017CM, 018CM.

Figura 16. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 024CM-030CM del gen *env* **del MMTV**. En la figura se muestran los amplificados las muestras 024CM al 030CM, M= a marcador de Peso molecular de 100pb. Es posible observar amplificados en las muestras 024CM, 026CM, 027CM, 028CM.

Figura 17. Electroforesis en gel de agarosa al 1.2 % para los amplificados de las muestras 031CM-037M del gen *env* del MMTV. En la figura se muestran los amplificados las muestras 031CM al 037CM, M= a marcador de Peso molecular de 100pb. Es posible observar amplificados en las muestras 031CM, 032CM, 035CM, 037CM.

Al mismo tiempo fueron realizadas las reacciones de amplificación para un fragmento de 500 pb del gen GAPDH mediante la metodología descrita anteriormente. Posteriormente los amplificados fueron separados en geles de agarosa al 1.2% teñidos con Syber green.

Como se puede observar en las figuras 18-22 se observan amplificados de aproximadamente 500pb en las muestras empleadas en el estudio. En la figura 18 es posible observar los amplificados de las muestras 001CM-012CM de aproximadamente 500 pb. demostrando la utilidad de los DNAs extraídos tanto para los tejidos tumorales (muestras 001CM-004CM, 007CM, 010CM, 012CM) y los tejidos no afectados (006CM, 008CM, 011CM)

Figura 18. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 001CM-012CM del gen GAPDH. En la figura se muestran los amplificados las muestras 001CM al 012CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb

	М	013	014	015	016	017	018	019
-		-						
	Ξ	-	-	-	-	-	-	-
	-	-					_	
New York	-							
-	-							i.

Figura 19. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 013CM-019CM del gen GAPDH. En la figura se muestran los amplificados las muestras 013CM al 019CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb

Figura 20. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 020CM-023CM del gen GAPDH. En la figura se muestran los amplificados las muestras 020CM al 023CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb

Figura 21. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 024CM-030CM del gen GAPDH. En la figura se muestran los amplificados las muestras 024CM al 030CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb

Figura 22. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 031CM-049CM del gen GAPDH. En la figura se muestran los amplificados las muestras 031CM al 049CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb

A)

B)

Figura 23. Electroforesis en gel de agarosa al 1.2% para los amplificados de las muestras 049CMo56CM del gen GAPDH. En las figuras A) y B) se muestran los amplificados las muestras 049CM-056CM de aproximadamente 500pb , M= escalera de peso molecular de 100pb. En la figura B) se pueden observar los carriles 054 y 054a que corresponden a la misma muestra (muestra 54CM)

Como se puede observar en las figuras 13-16 se detectó un amplificado de 250 pb del gen *env* del MMTV en 16 muestras de adenocarcinomas mamarios (muestras 002CM, 003CM, 004CM, 007CM, 010CM, 012CM, 016CM, 017CM, 018CM, 024CM, 026CM, 027CM, 028CM, 031CM, 032CM, 035CM) lo que representa el 40% de los 40 adenocarcinomas mamarios estudiados, asi mismo no fue posible detectar el amplificado en los 2 fibroadenomas muestreados ni en los 14 tejidos no afectados. Las 56 muestras analizadas en el presente estudio amplificaron un fragmento de 500 pb del gen GAPDH.

7.4 Purificación y análisis de las secuencias obtenidas a partir de los amplificados para el gen env

Posteriormente, los amplificados de las muestras analizadas fueron purificados, tanto para el gen *env* del MMTV (muestras 002CM, 004CM, 007CM, 027CM, 031CM 032CM) como el control positivo (amplificado del plásmido del MMTV C3H) y el control de reacción (fragmento de 500pb de gen GAPDH de las muestras 001CM y 002CM), los amplificados fueron enviados al servicio de secuenciación de la FES-UNAM Iztacala a cargo del M en C Alejandro Monzalvo. Una vez realizadas las reacciones de secuenciación las secuencias obtenidas se pueden observar en las figuras 24 y 25.

En la figura 24 se pueden obervar las secuencias obtenidas de los amplificados de las muestras de adenocarcinomas 002CM, 004CM, 007CM y 027CM asi como del control positivo (plásmido con el gen *env* de MMTV C3H). La secuencia que se obtuvo para el control positivo mostro un tamaño de 291 pb mientras que las muestras 002CM y 004CM resultaron de 286 y 254pb respectivamente. La secuencia obtenida para la muestras 007CM fue de 242pb mientras que la secuencia de la muestra 027CM fue de 318 pb.

>Plasmido MMTV (291 pb)

>MMTV-002CM (286 pb)

TCCTTTAAACCAAATTTATTAAGGATTACCTCAGCTATAGATCTAGAGAA AAGAGGATCTACTTTTCATATTTCCTGTTCTTCTTGTAGATTGACTAATT GTTTAGATTCTTCTGCCTACGACTATGCAGCGATCATAGTCAAGAGGCCG CCATACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA TTCTGCCATTCAACCTTTAGGTATGCCACAGATATAATTCGAGCCAAGCG ATTCAGCCTCCTGCAGACCCAAAAAAAACAGGGGAT

>MMTV-004CM (235 pb)

GGCCCTTTTGGCCAAATTTTAAGGATTACCTCAGCTATAGATATAAGAGA AAAGAGGATCTACTTTTCATATTTCCTGTTCTTCTTGTAGATTGACTAAT TGTTTAGATTCTTCTGCCTACGACTATGCAGCGATCATAGTCAAGAGGCC GCCATACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATG ATTCTGCCATTCAAACCTTTAGGTATGCCACAGAT

>MMTV-007CM (242)

GGAGCAGACTCGTCTCCCTCCCAGAAGGCGTCCTTCTTAAAGGCGATCTG GCAGTGAGGACCTGAAATCGCTTGACTCGAATTAAATGTGTGGCAGTGAA AAGCTTGGGTCTGGTGTAATGATCAGCCCTGCTTCCCTCTCGATATGTCT AAAAAGATGAGCCGTCTTGCTCTCCTTCTTAATTCATACTGCAGAATAAT CTGAAAGGTGAAAATCTTTATCCCTTCAGAAAGGCACAAAAA

>MMTV-027 (318)

GATGATGGCCGAATCATCAGCCATGGTTCATCACCAATATCTACAGGTAG CAGCACGTATGGCGGCCTCTTGACTATGATCGCTGCATAGTCGTAGGCAG AAGAATCTAAACAATTAGTCAATCTACAAGAAGAACAGGAAATATGAAAA GTAGATCCTCTTTTCTCTATATCTATTAGCTGAGGTAATCCTAATAATAT GGCATAAGGGTAAGTAACACAGGCCGATGTATAAAATTCGAGCCAAGCGA TTCAGGTCCTCCCTGCCAGATCCACCTAGCCAGGGCGTCACCGCCAAACC AGAGGAGTGGAGGCGGGG

Figura 24 Secuencias obtenidas de los amplificados de las muestras de adenocarcinomas 002CM, 004CM, 007CM y 027CM asi como para el control positivo. En la figura se pueden observar las secuencias obtenidas apartir del amplificado detectado para en el gen *env* del MMTV.

>MMTV-31 (292 pb)

GCGCTTGAGGGAAAATTATTAGGATTACCTCAGCTAATAGATATAAGAGA AAAGAGGATCTACTTTTCATATTTCCTGTTCTTCTTGTAGATTGACTAAT TGTTTAGATTCTTCTGCCTACGACTATGCAGCGATCATAGTCAAGAGGCC GCCATACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATG ATTCTGCCATTCAAACCTTTAGGTATGCCACAGAT >MMTV-32 (292 pb) TTTTTCCCCAAATTATTAAGAATTACCTCAGCTAATAGATATAGAGAAAA GAGGATCTACTTTTCATATTTCCTGTTCTTCTTGTAGATTGACTAATTGT TTAGATTCTTCTGCCTACGACTATGCAGCGATCATAGTCAAGAGGCCGCC ATACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGATT CTGCCATTCAAACCTTTAGGTATGCCACAGATA >GAPDH001CM AGAATGGGGAAGAAAAACCAAGGGCCTTCATCGTGATGGTAGTGCAACTG ACGGCATGATGTTTAAAAATCGGTAAAAATGCCCACCTCCATATTTTGAG GAAAATGAACTGAATGTGTCGGTGACTTATTTCCATCATCGTCCTTAGGG AACTTGGGTAGGGGCAGGCGTGTACTGGGACCTAGTCCACCCCTGGCTCT GCCCTGAACGGCTCAGTGCTTTGGGCAGTTACTCCCCGGCCTCACTTTGC AGTGTGCTTACCTATGAACAAAATACATACCTCAACGGCACCCTGAACCC CACATTTGGGAGGCCCGGTGGTGTATCCACC >GAPDH002CM AAAGTTGTTGTGGGGGGTAACCAGGGTCCTTCCATCGTGCCGAAAGGGGTA AGGACTATATGTGTTTAAAAATCGGTAAAAATGCCCACCTCGCATAGTTT

Figura 25. Secuencias obtenidas a partir de los amplificados de las muestras de adenocarcinomas 031CM, 032CM para el gen *env* y de las muestras 001CM y 002CM un fragmento del gen GAPDH. En la figura se pueden observar las secuencias obtenidas a partir de los amplificados detectados para en el gen *env* del MMTV en las muestras 031CM y 032CM, así como para los amplificados del gen GAPDH en las muestras 001CM y 002CM

Posteriormente, las secuencias fueron analizadas mediante la herramienta bioinformática BLAST 2.2., se realizó un Blast en el recurso electrónico de la página del NCBI para las secuencias obtenidas de los amplificados del gen *env* del MMTV y para el amplificado del gen GAPDH. Se obtuvieron las siguientes homologias:

Para el amplificado del gen GAPDH (muestra GAPDH 001CM) se obtuvo un hit a 733 pb del extremo 5[°] del gen gliceraldehido-3fosfato deshidrogensa con una identidad de 97% (312/324) y un valor e de 2 x 10⁻¹⁴⁶ (ver figura 26).

```
Features flanking this part of subject sequence:
  743 bp at 5' side: glyceraldehyde-3-phosphate dehydrogenase
Score = 523 bits (283), Expect = 2e-146
Identities = 312/324 (97%), Gaps = 10/324 (3%)
Strand=Plus/Plus
            AAGG-GGTAAGGACTATAT-GTGTTTAAAAATCGGTAAAAATGCCCACCTCGCATAGTTT
    43
                                                               100
Querv
             .... ..............
                             6588079 AAGGCGGTAAGGACTATATAATGTTTAAAAATCGGTAAAAATGCCCACCTCGCATAGTTT
Sbjet
                                                               6588138
Query 101
            TGAGGAAGATGAACTGAGATGTCAGGGTGACTTATTTCCATCATCGTCCTTAGGGGAA
                                                               160
             Sbjet 6588139 TGAGGAAGATGAACTGAGATGTGTCAGGGTGACTTATTCCATCGTCCTTAGGGGAA
                                                               6588198
Query 161
            CTTGGGTAGGGGCAAGGCGTGTAGCTGGGACCTAG-TCCAGACCCCTGGCTCTGCCACTG
             Sbjet 6588199 CTTGGGTAGGGGCAAGGCGTGTAGCTGGGACCTAGGTCCAGACCCCTGGCTCTGCCACTG
                                                               6588258
Ouerv 220
            AACGGCTCA-TTGCTTTGGGCAGTTACTCCCGGGCCTCACTTTGCACGTGTGCTTACCTA
             Sbjet 6588259 AACGGCTCAGTTGCTTTGGGCAGTTACTCCCGGGCCTCACTTTGCACGTGTGCTTACCTA
                                                               6588318
Ouerv 279
             -TGGAGACAAAAGTACATACCTCG-TAGAGCGCGCAC-CCTGTAACCCCACC-CTTTGGG
              Sbjet 6588319 GTGGAGACAAAAGTACATACCTCGGTAGAGCGCGCACGCCTGTAACCCCAGCACTTTGGG
                                                               6588378
Query 335
            AGGC-AAGGTGGGTG-ATCACCTG
                                  356
             .... ......... ......
                                  6588402
     6588379 AGGCCAAGGTGGGTGTATCACCTG
Sbjet
```

Figura 26. Alineamiento obtenido del amplificado de la muestra 001CM del gen GAPDH. En la figura se muestra en alineamiento obtenido de la muestra 001CM GAPDH con un hit en el gen de la gliceraldehido 3-fosfato deshidrogenasa de humano.

Para los amplificados de gen *env* del MMTV (muestra MMTV OO1CM y 002CM) se obtuvieron 56 hits en secuencias depositadas de aislados del gen *env* del MMTV con identidad de hasta el 99% de las secuencias y valores de e de 1 x 10^{-107} (ver figuras 27, 28 y 29).

Figura 27. Alineamiento obtenido de la secuencia amplificada del gen *env* del MMTV de una muestra de adenocarcinoma mamario (Muestra 002CM). En la figura se muestras los 56 hits obtenidos con scores mayores de 50 -80 puntos, 80-200 puntos y mayores de 200 (50 hits obtenidos).

Las secuencias obtenidas para cada alineamiento en contrado con la secuencia de la muestra 002CM, así como los valores de score y los valores de e se muestran en la tabla 3.

Tabla 3. Alineamientos obtenidos para la búsqueda realizada con la secuencia de la muestra 002CM. Las secuencias encontradas arrojaron valores de e de 1 x 10 ⁻¹⁰⁸ para las secuencias depositadas del gen *env* del MMTV

Sequences producing significant alignments:(Bits)Valuegb AY702717.1 Mouse mammary tumor virus isolate 5 envelope p4011e-10gb AY152721.1 Mouse mammary tumor virus strain C3H/C envelop4011e-10gb AF228552.1 AF228552Exogenous mouse mammary tumor virus C34011e-10gb K00556.1 MMTENVmouse mammary tumor virus env4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AY702717.1 Mouse mammary tumor virus isolate 5 envelope p4011e-10gb AY152721.1 Mouse mammary tumor virus strain C3H/C envelop4011e-10gb AF228552.1 AF228552Exogenous mouse mammary tumor virus C34011e-10gb K00556.1 MMTENVmouse mammary tumor virus env4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AY702717.1 Mouse mammary tumor virus isolate 5 envelope p4011e-10gb AY152721.1 Mouse mammary tumor virus strain C3H/C envelop4011e-10gb AF228552.1 AF228552Exogenous mouse mammary tumor virus C34011e-10gb K00556.1 MMTENVmouse mammary tumor virus env mrna4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AY152721.1 Mouse mammary tumor virus strain C3H/C envelop4011e-10gb AF228552.1 AF228552Exogenous mouse mammary tumor virus C34011e-10gb K00556.1 MMTENVmouse mammary tumor virus env mrna4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AF228552.1 AF228552Exogenous mouse mammary tumor virus C34011e-10gb K00556.1 MMTENVmouse mammary tumor virus env mrna4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb K00556.1 MMTENVmouse mammary tumor virus env mrna4011e-10gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AY702718.1 Mouse mammary tumor virus isolate 6 envelope p3981e-10gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p3981e-10
gb AY702716.1 Mouse mammary tumor virus isolate 4 envelope p 398 1e-10
emb X01811.1 Mouse mammary tumor virus env gene for envelope 398 1e-10
gb AF513921.1 Human betaretrovirus isolate Es177-3 env and s 401 1e-10
gb AY326252.1 Human betaretrovirus isolate Es238-86 envelope 392 6e-10
gb AC122322.4 Mus musculus BAC clone RP23-321G20 from chromo 392 6e-10
gb AC140374.3 Mus musculus BAC clone RP24-76K4 from 6, compl 392 6e-10
gb/M22028.1/MMTENVD Endogenous mouse mammary tumor virus (loc 392 6e-10
gb/M11024.1/MUSERMMTR Mouse endogenous mammary tumor virus (M 387 2e-10
gblAF033807.11AF033807 Mouse mammary tumor virus complete pro 383 3e-10
gb/M15122 1/MMTPROCG Mouse mammary tumor virus complete provi 383 3e-10
emblai.683884 261 Mouse DNA sequence from clone RP23-117B19 on 381 le-10
ablav152722 11 Mouse manmary tumor virus strain 40412 envelop 379 4e-10
gb D0767968 11 Mouse manmary tumor virus envelope al conctei 378 1e-10
gblpC00320711 Muse memmary control on the CP-3587523 partial 378 10-10
dbilk08573211 Mus musculus 10 days lactation adult foralo 378 10-10
abjection, adult lemale 570 1e-10
gb]bc010102.1] MuS indicatus, clone image.345570, intrue 370 1e-10
gb]Ar220300.1]Ar220300 Endogenous mouse manuary cumor virus M 576 1e-10
gb/Ar0/1010.1/Ar0/1010 Mouse manufary runor virus putative int 578 ie-10
gD[AF263910.1]AF263910 Mus musculus enaogenous mouse mammary 372 5e-10
gb/AF228551.1/AF228551 Exogenous mouse mammary tumor virus He 372 5e-10
gb[AF346816.1] Human mammary tumor virus envelope protein gen 3/0 2e-99
gb/AY/02/14.1 Mouse mammary tumor virus isolate 2 envelope p 369 /e-99
gb[AY/02/13.1] Mouse mammary tumor virus isolate 1 envelope p 369 /e-99
gb[AF243039.1] Human mammary tumor virus SAG pseudogene, comp 365 88-98
gb[EF495356.1] Human mammary tumor virus isolate 11 envelope 363 3e-97
gb[AY/02/15.1] Mouse mammary tumor virus isolate 3 envelope p 363 3e-9/
gb]AC140344.3] Mus musculus BAC clone RP23-23/M10 from chromo 361 le-96
dbj AK033592.1 Mus musculus adult male cecum cDNA, RIKEN ful 361 1e-96
gb AF043688.1 AF043688 Mus musculus Mouse mammary tumor virus 361 le-96
gb AY659980.1 Mouse mammary tumor virus from Homo sapiens cl 358 1e-95
gb EF495355.1 Human mammary tumor virus isolate 12 envelope 356 4e-95
gb AY659983.1 Mouse mammary tumor virus from Homo sapiens cl 354 1e-94
gb AY659981.1 Mouse mammary tumor virus from Homo sapiens cl 354 1e-94
dbj D16249.1 MMTPROVR Mouse mammary tumor virus proviral DNA 352 5e-94
gb AY659984.1 Mouse mammary tumor virus from Homo sapiens cl 349 6e-93
gb AY659982.1 Mouse mammary tumor virus from Homo sapiens cl 349 6e-93
dbj AK145024.1 Mus musculus mammary gland RCB-0526 Jyg-MC(A) 347 2e-92
gb AY659985.1 Mouse mammary tumor virus from Homo sapiens cl 345 8e-92
dbj AK145002.1 Mus musculus mammary gland RCB-0526 Jyg-MC(A) 343 3e-91
gb AF239172.1 AF239172 Homo sapiens Env-like protein gene, pa 313 4e-82
gb AF043689.1 AF043689 Mus musculus Mouse mammary tumor virus 288 2e-74
gb HM636471.1 Mouse mammary tumor virus isolate mmtv101 enve 224 2e-55
gb GU252129.1 Human mammary tumor virus nonfunctional envelo 221 2e-54
gb HM636470.1 Mouse mammary tumor virus isolate MMTV14hz non 215 9e-53
gb DQ925473.1 Human mammary tumor virus envelope protein (en 206 5e-50
gb DQ910867.1 Human mammary tumor virus env/LTR fragment gen 159 6e-36
gb AC242833.4 Rattus norvegicus Y Chr BAC RNAEX-235F02 (Ampl 80.6 5e-12

 gb|AC242860.2|
 Rattus norvegicus Y Chr BAC RNAEX-132E23 (Ampl... 80.6
 5e-12

 gb|AC241951.4|
 Rattus norvegicus Y Chr BAC RNECO-297N16 (Ampl... 80.6
 5e-12

Figura 28. Alineamiento de la secuencia obtenida del gen env del MMTV de una muestra de adenocarcinoma mamario (muestra 002CM). En la figura se muestra un alineamiento con un hit en el gen env del MMTV en la posicion 1421 hasta la posicion 1640, el porcentaje de identidad en dichas secuencias fue de 99% (219/221), el valor e obtenido fue de 4×10^{-107} .

```
> gb EF495356.1 Human mammary tumor virus isolate 11 envelope protein (env) gene,
partial sequence
Length=255
 Score = 392 bits (212),
                        Expect = 5e-106
 Identities = 221/225 (98%), Gaps = 1/225 (0%)
Strand=Plus/Plus
                                                                     67
Query 8
           CCAAATTATTAAGAATTACCTCAGCTAATAGATATAGAGAAAAGAGGATCTACTTTCAT
           CCATATTATT-AGGATTACCTCAGCTAATAGATATAGAGAAAAGAGGATCTACTTTTCAT
Sbjct 32
                                                                     90
Query
      68
                                                                     127
           ATTTCCTGTTCTTCTTGTAGATTGACTAATTGTTTAGATTCTTCTGCCTACGACTATGCA
            Sbjct 91
                                                                     150
           ATTTCCTGTTCTTCTTGTAGATTGACTAATTGTTTAGATTCTTCTGCCTACGACTATGCA
Query
     128
           GCGATCATAGTCAAGAGGCCGCCATACGTGCTGCTGCTGCTGCAGATATTGGTGATGAACCA
                                                                     187
           GCGATCATAGTCAAGAGGCCGCCATATGTGCTGCTGCTGCTGCAGATATTGGTGATGAACCA
                                                                     210
Sbjct
      151
Query
      188
           TGGTTTGATGATTCTGCCATTCAAACCTTTAGGTATGCCACAGAT
                                                      232
           TGGTTTGATGATTCTGCCATTCAAACCTTTAGGTATGCCACAGAT
      211
                                                       255
Sbjct
```

Figura 29. Alineamiento de la secuencia obtenida del gen env del MMTV de una muestra de adenocarcinoma mamario (muestra 001CM). En la figura se muestra un alineamiento con un hit en la secuencia EF495356.1 que pertenece a un aislado del gen *env* del Human mammary tumor virus (HMTV) en la posicion 32 hasta la posicion 255, el porcentaje de identidad en dichas secuencias fue de 98% (221/225), el valor e obtenido fue de 5×10^{-106} .

Posteriormente con la ayuda de la herramienta bioinformática T-coffe (EMBL-EBI) se alinearon las secuencias obtenidas para los amplificados del gen *env* del MMTV de las muestras de adenocarcinomas (002CM, 004CM, 007CM, 027CM, 031CM y 032CM), el amplificado del control positivo (gen *env* del MMTV C3H) y la secuencia depositada en la base de datos del NCBI para el MMTV (MMTV_NC001503.1) se obtuvo el siguiente alineamiento:

MMTV002CM MMTV004CM MMTV007CM MMTV027CM MMTV031CM MMTV032CM MMTVNC_001503 PlasmidoMMTV	ATAGATCTAG-AGAAAAGAGGATCTA-CTTT ATAGATATAAG-AGAAAAGAGGATCTA-CTTT AAGGCGATCT-GGCAGTGAGGACCTGAAATC ATATCTACAGGTAGCAGCACGTATGGCGGCCTCT ATAGATATAAG-AGAAAAGAGGATCTA-CTTT ATAGATATAAG-AGAAAAGAGGATCTA-CTTT TTACCTCAGTTAATAGATAT-AG-AGAAAAGAGGATCTA-CTTT * * * * * * * *
MMTV002CM MMTV004CM MMTV027CM MMTV031CM MMTV032CM MMTVNC_001503 PlasmidoMMTV	TCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG- TCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG GCTTGACTCGAATTAAATGTGTGGCAGTGAAAAGCTTGGGTCTGGTG TGACTATGATCGCTGCA-TAGTCGTAG-GCAGAAGAAT-CTAAACA TCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG TCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG TCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG tCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG tCATATTTCCTGTTCTTCTTGTAG-ATTGACTAAT-TGTTTAG * ** * * * *
MMTV002CM MMTV004CM MMTV007CM MMTV027CM MMTV031CM MMTV032CM MMTVNC_001503 PlasmidoMMTV	-ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGCCGCCA TAATGATCAGCCCTGCTTCCCTCTCGAT-ATGTCTAAAAAGATGA -ATTAGTCAATC-TACAAGAAGAACAGGAAATATGAAAAGTA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ACTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGCCGCCA -ATTCTTCTGCC-TACGACTAT-GCAGCGATCATAGTCAAGAGGCCGCCA
MMTV002CM MMTV004CM MMTV007CM MMTV027CM MMTV031CM MMTV032CM MMTVNC_001503 PlasmidoMMTV	TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT GCCGTCTTGCTCTCCTTCTTAATTCATACTGCAGAATAATCTGAAAGGTG GATCCTCTTTTCTCTATATCTATTAGCTGAGGTAA-TCCTAATAA-T- TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TATGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT TACGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGA-TT
MMTV002CM MMTV004CM MMTV007CM MMTV027CM MMTV031CM MMTV032CM MMTVNC_001503 PlasmidoMMTV	CTGCCATTCA-ACC-TTTAGGTATGCC-ACAGATATAATTCGAGCCAAGC CTGCCATTCAAACC-TTTAGGTATGCC-AC- AAAATCTTTATCCC-TTCAGAA

MMTV002CM	GATTCAG
MMTV004CM	
MMTV007CM	
MMTV027CM	GATTCAGGT
MMTV031CM	
MMTV032CM	
MMTVNC_001503	GATTCGTCGCAGCCATTATCCTGGGCATATCTGCTTTGATTGCTATTATT
PlasmidoMMTV	GATTCAGG

Con las secuencias alineadas se realizó un árbol filogénetico con la finalidad de evaluar las distancias entre cada secuencia así como verificar homología entre las secuencias obtenidas y la secuencia depositada en el NCBI para el MMTV. Las distancias obtenidas mediante la opción filogenia con Clustal W2 fueron las siguientes:

```
(
(
MMTV002CM:0.02063,
MMTV004CM:0.00937)
:0.00625,
(
(
MMTV007CM:0.15000,
MMTV027CM:0.13000)
:0.06500,
MMTVNC 001503:-0.03500)
:0.05125)
:0.00313,
MMTV031CM:0.01312,
MMTV032CM:0.01312,
PlasmidoMMTV:0.01688)
:0.00187);
```

Con dichas distancias obtenidas se construyó un árbol filogenético en cual se puede observar en la figura 30. En dicha figura se observan las secuencias ordenadas en tres principales ramas incluyendo la secuencia depositada en el NCBI para el MMTV

Figura 30. Árbol filogenético construido con las distancias calculadas a partir del alineamiento realizado mediante T-coffee. En la figura se puede observar la distribución de las secuencias en base a las distancias calculadas mediante la herramienta bioinformática T-coffee del EMBL-EBI (Modelo de distancias Tamura-Nei, parametros de construcción Neighbor-Joining, 1000 réplicas).

7.5 PCR splinkerette para amplificar las secuencias flanqueadas por las LTRs virales

Una vez obtenidas las muestras MMTV positivas y las secuencias verificadas mediante secuenciación, se realizó el procedimiento de PCR splinkerette de acuerdo al método reportado por Thedorou V y col., 2007, se seleccionaron 14 muestras *env* positivas para llevar a cabo el procedimiento. Las muestras seleccionadas fueron las siguientes: 002CM, 003CM, 004CM, 007CM, 010CM, 012CM, 016CM, 017CM, 018CM, 024CM, 026CM, 027CM, 028CM, 031CM.

Se realizó la digestión con *Xholl* para cada una de las muestras seleccionadas y se verificó la reacción separando los productos en un gel de agarosa al 2%. En la figura 31 se pude observar un marcador de peso molecular lambda/hindll (carril M) un control positivo reacción para verificar que la digestión se llevaba a cabo (DNA del fago lambda) (carril +) la muestra 002CM sin digerir y la muestra 002CM digerida (carril 002D)

Figura 31. Electroforesis en gel de agarosa al 2% para los productos de restriccion con la enzima *Xho II.* En la figura se observa en el carril 1 un marcador de peso Fago lambda, carril número 2 el fago lambda digerido con *Xho II* utilizado como control de la reacción de restricción, carril 3 la muestra de DNA 002 sin digerir, carril 4 muestra 002 digerido con Xho II, carril 5 muestra 003 sin digerir y carril 6 muestra 003 digerida con Xho II

Posteriormente se llevaron a cabo las ligaciones del adaptador a las muestras digeridas con *Xholl* y se llevó acabo el procedimiento completo de PCR splinkerette. Se amplificaron las muestras con los oligonucleotidos LTR-beg2 (que se alinea a la LTR viral) y 4HMSp1a (que se alinea al enlazador splinkerette) (68 °C de alineación, 35 ciclos). Se reamplificaran los productos de PCR con un cebador LTR y un primer 4HMSp1a (11 ciclos de alineación a 68 °C seguido de 11 ciclos de 67 °C y 13 ciclos en 66 °C). Y se obtuvieron los amplificados correspondientes (ver figuras 31, 32 y 33).

En la figura 31 se pueden observar los amplificados obtenidos mediante PCR splinkerette de las muestras MMTV+ 002CM, 003CM, 004CM, 007CM, 010CM, 012CM. Asi mismo se pueden observar los diversos tamaños en los amplificados obtenidos en la muestra 010CM (carril 6) los cuales van desde 80 pb hasta los 350 pb aproximadamente.

Figura 31. Electroforesis en gel de agarosa al 4% para los productos de PCR splinkerette. En la figura se observa en el carril 1 un marcador de peso molecular en escalera de 100pb., carril 2 el producto de PCR splinkerette de la muestra 002 CM (1 amplificado), carril 3 producto de PCR splinkerette de la muestra 003CM (2 amplificados aprox 100 pb), carril 4 producto de PCR splinkerette de la muestra 004CM (3 amplificados), carril 5 producto de PCR splinkerette de la muestra 007CM (4 amplificados), carril 6 producto de PCR splinkerette de la muestra 010CM (6 amplificados), carril 7 producto de PCR splinkerette de la muestra 012CM.

En la figura 32 es posible observar los amplificados obtenidos mediante PCR splinkerette de las muestras MMTV+ 016CM, 017CM, 018CM, 024CM. Así mismo se pueden observar los diversos tamaños en los amplificados obtenidos en las muestra 018CM y 024CM (carril 4 y 5). En el carril uno se observa una escalera de peso molecuar de 100 pb de bases, en el carril dos se observan dos amplificados productos de la muestra 0016CM (aprox. 120 y 160pb), en el carril 3 los productos de la PCR splinkerette de la muestra 017CM (4 amplificados aprox 100,110, 130, 170 pb), en el carril 4 los productos de la PCR splinkerette de la muestra 0018CM (8 amplificados) y en el carril 5 los productos de la PCR splinkerette de la muestra 024CM (8 amplificados).

Figura 32. Electroforesis en gel de agarosa al 4% para los productos de PCR splinkerette. En la figura se observa en el carril 1 un marcador de peso molecular en escalera de 100pb., carril 2 el producto de PCR splinkerette de la muestra 0016 CM (2 amplificado aprox. 120 y 160pb), carril 3 producto de PCR splinkerette de la muestra 0017CM (4 amplificados aprox 100,110, 130, 170 pb), carril 4 producto de PCR splinkerette de la muestra 0018CM (8 amplificados), carril 5 producto de PCR splinkerette de la muestra 024CM (8 amplificados).

En la figura 33 es posible observar los amplificados obtenidos mediante PCR splinkerette de las muestras MMTV+ 026CM, 027CM, 028CM, 031CM. Así mismo es posible observar los diversos tamaños en los amplificados obtenidos en la muestra 026CM (carril 2). En el carril uno se observa una escalera de peso molecular de 100 pb de bases, en el carril dos se observan seis amplificados productos de la muestra 0026CM (aprox. 120 y 160pb carril 3 producto de PCR splinkerette de la muestra 0027CM (3 amplificados aprox 100,110, 130 pb), carril 4 producto de PCR splinkerette de la muestra 031CM (4 amplificados), carril 5 producto de PCR splinkerette de la muestra 031CM (3 amplificados). Como se observa en los carriles 3 y 4 (muestra 027CM y 031CM) se observan tres amplificados en ambos carriles de aproximadamente 90, 110 y 130 pb en ambos carriles.

Figura 33. Electroforesis en gel de agarosa al 4% para los productos de PCR splinkerette. En la figura se observa en el carril 1 un marcador de peso molecular en escalera de 100pb., carril 2 el producto de PCR splinkerette de la muestra 026 CM (6 amplificado aprox. 90 y 220pb), carril 3 producto de PCR splinkerette de la muestra 0027CM (3 amplificados aprox 90,110, 130 pb), carril 4 producto de PCR splinkerette de la muestra 028CM (4 amplificados), carril 5 producto de PCR splinkerette de la muestra 031CM (3 amplificados).

Los amplificados obtenidos mediante la PCR splinkerette fueron seleccionados y reamplificados, posteriormente fueron purificados y enviados al servicio de secuenciación de la FES-UNAM Iztacala a cargo del M en C Alejandro Monzalvo con la finalidad de conocer cuales son los genes asociados a LTRs virales del MMTV.

En la tabla 4 se pueden observar los amplificados que fueron seleccionados y reamplificados para ser enviados al servicio de secuenciación. Los amplificados fueron seleccionados de acuerdo la disposición del volumen de cada producto asi como de su concentración en los geles de agarosa. En la tabla se muestra el tamaño de los amplificados obtenidos así como la muestra de la cual fueron amplificados. Adicionalmente fueron asignadas claves de localización a cada amplificado con la finalidad de ubicarlos con mayor facilidad.

Tabla 4.	Rela	ación de las mu	estr	as de	PCR spl	ink	erette q	ue f	uero	on selecciona	adas para s	ser enviad	as al
servicio	de	secuenciación.	La	tabla	muestra	el	tamaño	de	los	amplificados	obtenidos	mediante	PCR
Splinkerr	ete a	así como las clav	es a	sigand	las a casa	a ai	mlificado						

Muestra MMTV +	Tamaño aprox.	Clave	Figura
002CM	100 pb	02a1	30
003CM	100 pb	03a1	30
007CM	150 pb	07a1	30
012CM	120 pb	12a1	30
017CM	130 pb	17a1	31
018CM	200 pb	18a1	31
026CM	100 pb	26a1	32
026CM	150 pb	26a2	32
027CM	100 pb	27a1	32
028CM	100 pb	28a1	32

Los amplificados fueron enviados al servicio de secuenciacion de la FES-UNAM Iztacala a cargo del M en C Alejandro Monzalvo. Las secuencias obtenidas se pueden observar en las figuras 34 y 35. En la figura 34 se pueden observar las secuencias obtenidas a los amplificados 02a1, 03a1, 07a1 y 12a1 así como sus respectivos tamaños.

>02a1		
GATGATGGCC	CGAATCATCAGCCATGGTTCATCACCAATATCTAC	
AGGTAGCAG	CACGTATGGCGGCCTCTTGACTATGATCGCTGCAT	
AGGTCTGGT	AGATCAGAATTTCCTGGGCACGCCCACCTCACACC	
CTGCAATTCO	GTTCCCACATTGCTGTAATTATAAAAAGCCACTTA	
ATAGACTCTC	CGCTCTCCGTGTGAAAAGCACAGGCTCTTCTATAC	
ACAGAGAGA	ICTAAAATTCGAGCCAAGCGATTCAGGTCCTCCCT	
GCCAGATCCA	ACCTAGCCAGGGCGTCACCGCCAAACCAGAGGAGT	
GGAGGCGGGG	3	
> 0 2 - 1		
>U3al		
GATCCATGTC		
TTAGGGGAC		
CTGAGGTCT	I'CCATAATATGTGCCTTCGGGCAGAGGGACAGAT	
GTAATTTGAT	FGGTCACTGACATGTTCTCCACACAGTTGTCCTG	
GGTCTCAGGA	ACCAAGGTGTCCAGGCTGCTGGCAGATGTCATGG	
GTCCTCCCAC	JGATGTAA	
>07a1		
GGATGATGT	GCGTGCTCAGCAGCCTCTTCCGTTCAAAGGGCAG	
AGTCCAGACT	ICTGACATCGTGGCTGGTCCTCTCTTGGGGGGATT	
CAGGGCTTCA	ATGTTTCAGTAGGTCTGCTGCTTTGGGGCCGGTGG	
TTGGGGTTCO	CTCTCCAGGGCAGCTTCTATCAGCTCCCTCATGC	
CTGGACTGCA	AGTCACCAGCGATGTCTTCCAGGGGAGGTGCCTG	
CTTGTGCAGA	ATGTATAAATTCGAGCCAAGCGATTCAGGTCCTC	
ACTGCCAAAT	ICCAGCCAAGGAGCCCACTCCCGCCGTTCAGAGG	
GGGCGGTCA	ACGG	
>12=1		
GATGATGTG	ΑΑGTͲΑGGATCTGGGGTͲΑCTΑTTGAGGCTTCCT	
TGATGAGGG	TGCTGGAGCCCTAAGCTAGACCACACGCGGGAGGG	
CAAGAGCTCC		
ACTCCAGAN		
CCCACATCC		
GCCAGAICGC	JOUNGGOUGGIICACCOCCATIICCACCO	
COCOA		

Figura 34. Secuencias obtenidas de los amplificados de PCR splinkerette. En la figura se pueden observar las secuencias obtenidas a partir de adenocarcinomas mamarios MMTV + 02CM, 03CM, 07CM y 012CM. Las secuencias obtenidas corresponden a los amplificados 02a1, 03a1, 07a1 y 12a1.

>18a1

GATGATGGCAGATCATCAACCATGGTTCATCACCAATATCTACA GGTAGCAGCACGTATGGCGGCCTCTTGACTATGATCGCTGCATA GTCGTAGGCAGAAGAATCTAAACAATTAGTCAATCTACAAGAAG AACAGGAAATATGAAAAGTAGATCCTCTTTTCTCTATATCTATT GGCAGATGTAAAAATCATGTCATGTTCTTGAAATCCTGGCCTTT TGAGAATAAGATATCTTGAGGCTGCAACTAAGCGAAACAATTCT GTATGGGGAACTAGAGCAGTAAAATCTCTATCATTGGGATCCTT AGGAGAATTTTCCCAGAACCATGTAGGTTCTACCCATCCTGCTT CATACCATCGATGAACCTCTTTATTGACAGGGGGGGGTATAATTT CCAAATAGATCCTTTTTGCTTTTAATCTGATCTGACTGATCTAC ACTAGGCGAGGGAAGGGAGAAATCCCAAAGTAACCCAAGGGCCC CTTTTGGAGAAAAACTCACCCCTGGTCAGGGAAGGCGCAAGGC AACCACCGTGGAGGAGCAGACTCGTCTCCCTCCCAGAAGGCGTC CTTCTTAAAGGCGATCTGGCAGTGAGGACCTGAAATCGCTTGAC TCGAATTAAATGTGTGGCAGTGAAAAGCTTGGGTCTGGTGTAAT GATCAGCCCTGCTTCCCTCTCGATATGTCTAAAAAGATGAGCCG TCTTGCTCTCCTTCTTAATTCATACTGCAGAATAATCTGAAAGG TGAAAATCTTTATCCCTTCAGAAAGGCACAAAAA >26a2 GATCGATGGCAGAATCATCAACCATGGTTCATCACCAATATCT ACAGGTAGCAGCACGTATGGCGGCCTCTTGACTATGATCGCTG CATAGTCGTAGGCAGAAGAATCTAAACAATTAGTCAATCTACA AGAAGAACAGGAAATATGAAAAGTAGATCCTCTTTTCTCTATA TCTATTAGCTGAGGTAATCCTAATAATATGGCATAAGGGTAAG

>28a1

GAAGATGTCCGAATCTTCAACATGGTTCATCACCTATATCTAC AGGTAGCAGCACGTATGGCGGCGCCTCTTGAGTATGATCGCTGCA TAGTCGTAGGCTGAAGAATCTAAACAATTAGTCAATCTACAAG AAGAACAGGAAATATGAAAAGTAGATCCTCTTTTCTCTATATC TATTAGCTGAGGTAATCCTAATAATATGGCATAAGGGTAAGTA ACACAGGCCGATGTATAAAATTCGAGCCAAGCGATTCAGGTCC TCACTGCCAGATCCACCCCGCCAGTTCAGATTCACGGCCGGAG

Figura 35. Secuencias obtenidas de los amplificados de PCR splinkerette. En la figura se pueden observar las secuencias obtenidas a partir de adenocarcinomas mamarios MMTV + 02CM, 03CM, 07CM y 012CM. Las secuencias obtenidas corresponden a los amplificados 02a1, 03a1, 07a1 y 12a1.

Las secuencias obtenidas fueron analizadas y posteriormente se realizó una búsqueda de secuencias mediante la herramienta en línea Blastn del NCBI con los parámetros descritos anteriormente, las regiones encontradas y los genes asociados a dichas secuencias amplificadas se muestran en la siguiente tabla 5.

Tabla 5. Genes encontrados a partir de las secuencias obtenidas de los amplificados de PCR splinkerette. La tabla muestra los fragmentos amplificados, el largo de las secuencias obtenidas y las regiones encontradas mediante Blast

Secuencia	Tamaño (pb)	Región encontrada	Num. Registro
02a1	318	Stromal interaction molecule 2, transcript variant 1	NT_006316.16
03a1	232	Fibroblast growth factor 8 isoform E precursor	NT_030059.13
07a1	314	MAP3K8 mitogen-activated protein kinase	NM_005204.2
12a1	306	Proto-oncogen WNT-1	NT_029419.12
18a1	826	Ubiquitin-like modifier- activating enzyme 6	NT_022778.16
26a2	792	Gonadotropin-releasing hormone receptor	NM_001012763.1
26a1	309	Peroxisomal NADH pyrophosphatase NUDT12	NT_034772.6

7.6 Búsqueda Bioinformática

Para identificar posibles sitios de inserción del retrovirus MMTV/HMTV en el genoma humano se realizó una búsqueda bioinformática en la base de datos del NCBI y del EMBL-EBI de acuerdo en la siguiente estrategia:

 Se descargó la secuencia completa del gen *env* del MMTV y las secuencias LTR 5´ y 3´ del MMTV de las páginas del NCBI y del EMBL-EBI.

- El número de acceso para la secuencia completa del MMTV fue NC_001503 (NCBI)
- 3. Las secuencias descargadas para las regiones LTRs fueron las siguientes:

5' LTR (176 pb) Número de acceso M10761.1 (EMBL-EBI)

AGAGACGCTCAACCTCAATTGAAGAGCAGGTGCAAGGAAGTTAAGTTTGTGGTTACAAACTGTTCTTAAA ACAAGGATGTGAGACTAGAGAGACGCTCAACCTCAATTGAAGAGCAGGTGCAAGGAAGTTAAGTTTATGG TTACAAACTGTTCTTAAAACGAGGATGTGAGACAAG

3' LTR (245 pb) Número de acceso S75270.1 (NCBI)

TAACCTTTATGAGCCCAACCTTGCGGTTCCCAGGGTTCAAATAAGTTCTTGGTCACAAACTGTTCTTAAA ACAAAGATGTGAGACAAGTGGTTTCCTGACTTGGTTTGGTATCAAATGTTTTGATCTAAGCTCTGAGTGT TCTATTCTCCTATGTTCTTTTAGAACTTATCCAAGTCTTATGTAAATGCTTATGTAAACCATGATATAAA AGAGTGCTGATTTTTTGAGTAAACTTGCAACAGTC

4. La secuencia descargada para el gen env fue la siguiente:

Gen env del MMTV (2066 pb) NC_001503 (NCBI)

ATGCCGAAACACCAATCTGGGTCCCCGACCGATTCATCCGACCTTTTACTGAGCGGAAAGAAGCAACGCC CACACCTGGCACTGCGGAGAAAACGCCGCCGCGAGATGAGAAAGATCAACAGGAAAGTCCCAAGAATGAA TCTAGTCCCCATCAAAGAGAAGACGGCTTGGCAACATCTGCAGGCGTTGATCTCCGAAGCGGAGGAGGTC AAGTACAGACCCCATTAGAGTTCTGACAAATCAAACCATGTATTTGGGTGGTTCGCCTGACTTTCATGGG TTCAGAAATATGTCTGGTAATGTACATTTTGAGGGGAAGTCTGATACGCTCCCCATTTGCCTTTCCTTCT TAATAATAAACCTGGGGGAAAGGGTGATAAAAGGCGTATGTGGGAACTTTGGTTGACTACCTTGGGGAAC TCAGGGGCCAATACAAAACTGGTCCCTATAAAAAAGAAGTTGCCCCCCAAATATCCTCACTGCCAGATCG CCTTTAAGAAGGACGCCTTCTGGGAGGGAGACGAGTCTGCTCCTCCACGGTGGTTGCCTTGCGCCTTCCC TGACCAGGGGGTGAGTTTTTCTCCAAAAGGGGCCCTTGGGTTACTTTGGGATTTCTCCCTTCCCTCGCCT AGTGTAGATCAGATCAGATCAGATTAAAAGCAAAAAGAATCTATTTGGAAATTATACTCCCCCTGTCAATA AAGAGGTTCATCGATGGTATGAAGCAGGATGGGTAGAACCTACTTGGTTCTGGGAAAATTCTCCTAAGGA TCCCAATGATAGAGATTTCACTGCACTAGTCCCCCATACAGAATTGTTTCGCTTAGTCGCAGCCTCAAGA CTTATGCCATATTATTAGGATTACCTCAGTTAATAGATATAGAGAAAAGAGGATCTACTTTTCATATTTC CTGTTCTTCTTGTAGATTGACTAATTGTTTAGACTCTTCTGCCTACGACTATGCAGCGATCATAGTCAAG AGGCCGCCATATGTGCTGCTACCTGTAGATATTGGTGATGAACCATGGTTTGATGATTCTGCCATTCAAA CCTTTAGGTATGCCACAGATTTAATTCGAGCTAAGCGATTCGTCGCAGCCATTATCCTGGGCATATCTGC TTTGATTGCTATTATTACTTCCTTTGCTGTAGCTACTACTGCCTTAGTTAAGGAGATGCAAACTGCTACG TTTGTTAATAATCTTCATAGGAATGTTACATTAGCCTTATCTGAACAACGGATAATAGATTTAAAAATTAG AAGCTAGACTTAATGCTTTAGAAGAAGTAGTTTTAGAGTTGGGACAAGATGTGGCCAATTTAAAGACCAG AATGTCCACTAGGTGTCATGCAAATTATGACTTTATCTGCGTTACACCTTTACCCCTATAATGCTACTGAG AACTGGGAAAGAACCAGGGCTCATTTATTGGGCATTTGGAATGATAATGAGATTTCATATAACATACAGG AGTTAACCAACCTGATTAGTGATATGAGCAAACAACATATTGATGCAGTGGACCTTAGTGGCTTGGCTCA GTCTTTTGCCAATGGAGTGAAGGCTTTAAATCCATTAGATTGGACACAATATTTCATTTTATAGGTGTT GGAGCCCTGCTTTTAGTCATTGTACTTATGATTTTCCCCATTGTTTTCCAGTGCCTTGCGAAGAGCCTTG ACCAAGTGCAGTCAGATCTTAACGTGCTTCTTTTAAAAAAGAAAAAGGGGGGAAATGCCGCGCCTGCAGC AGAAATGGTTGAACTCCCGAGAGTGTCCTACACTTAG

5. Posteriormente, cuando las secuencias fueron descargadas se procedió a realizar una búsqueda de similitud de secuencias mediante la herramienta Blast (programa nucleotide Blast, algoritmo Blastn, base de datos Human genomic plus transcript), para cada una de las secuencias descargadas. Los parámetros de búsqueda fueron los siguientes:

```
Número máximo de secuencias: 10 000
Valor de corte (Expect threshold): 10
Tamaño de palabra (Word size): 11
Puntaje Match/Mismatch: 2,-3
Puntaje gaps (gaps costs): inicio 5, extensión 2
```

6. Para la región 5' LTR del MMTV se encontraron 26 hits como se puede observar en la siguiente figura:

Figura 36. Distribución de los 26 hits encontrados mediante Blastn para la secuencia 5´ LTR del MMTV. En la figura se observan 26 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 42.8 y 37.4.

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con la región 5 LTR se muestra en la siguiente figura:

Figura 37. Distribución genomica de los 26 hits encontrados mediante Blastn para la secuencia 5´ LTR del MMTV. En la figura se observan 25 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas y un alineamiento no encontrodo (NW_001842097.1). Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados se muestran en la siguiente figura donde es posible observar los valores del score asignado a cada alineamiento, porcentaje de similitud en la búsqueda, valor e y porcentaje de identidad entre las secuencias.

Accession	Description	Max score	Total score	Query coverage	<u> E value</u>	Max ident	Links
Genomic sequence	ces						
NT_011362.10	Homo sapiens chromosome 20 genomic contig, GRCh37.p2 r	42.8	42.8	16%	0.11	93%	
NW_001838666.1	Homo sapiens chromosome 20 genomic contig, alternate as	42.8	42.8	16%	0.11	93%	
NT_025028.14	Homo sapiens chromosome 18 genomic contig, GRCh37.p2 r	41.0	78.3	28%	0.40	96%	
NW_001838469.1	Homo sapiens chromosome 18 genomic contig, alternate as:	41.0	78.3	28%	0.40	96%	
NT_008046.16	Homo sapiens chromosome 8 genomic contig, GRCh37.p2 re	39.2	39.2	16%	1.4	89%	
NT_029289.11	Homo sapiens chromosome 5 genomic contig, GRCh37.p2 re	39.2	39.2	14%	1.4	92%	
NT_005403.17	Homo sapiens chromosome 2 genomic contig, GRCh37.p2 re	39.2	39.2	18%	1.4	87%	
NW_001839136.1	Homo sapiens chromosome 8 genomic contig, alternate asse	39.2	39.2	16%	1.4	89%	
NW_001838953.2	Homo sapiens chromosome 5 genomic contig, alternate asse	39.2	39.2	14%	1.4	92%	
NT_011512.11	Homo sapiens chromosome 21 genomic contig, GRCh37.p2 r	37.4	37.4	11%	4.8	100%	
NT_167190.1	Homo sapiens chromosome 11 genomic contig, GRCh37.p2 r	37.4	37.4	13%	4.8	95%	
NT_035014.4	Homo sapiens chromosome 9 genomic contig, GRCh37.p2 re	37.4	37.4	14%	4.8	92%	
NT_025741.15	Homo sapiens chromosome 6 genomic contig, GRCh37.p2 re	37.4	37.4	14%	4.8	92%	
NT_022135.16	Homo sapiens chromosome 2 genomic contig, GRCh37.p2 re	37.4	37.4	15%	4.8	89%	
NT_022184.15	Homo sapiens chromosome 2 genomic contig, GRCh37.p2 re	37.4	37.4	15%	4.8	89%	
NT_167186.1	Homo sapiens chromosome 1 genomic contig, GRCh37.p2 re	37.4	37.4	22%	4.8	82%	
NT_004487.19	Homo sapiens chromosome 1 genomic contig, GRCh37.p2 re	37.4	37.4	22%	4.8	80%	
NW_001842097.1	Homo sapiens unplaced genomic contig, alternate assembly	37.4	37.4	15%	4.8	89%	
NW_001838028.2	Homo sapiens chromosome 11 genomic contig, alternate as	37.4	37.4	13%	4.8	95%	Ĵ.
NW_001839240.1	Homo sapiens chromosome 9 genomic contig, alternate asse	37.4	37.4	14%	4.8	92%	
WW_001838990.2	Homo sapiens chromosome 6 genomic contig, alternate asse	37.4	37.4	14%	4.8	92%	
W_001838543.2	Homo sapiens chromosome 1 genomic contig, alternate asse	37.4	37.4	22%	4.8	82%	
WW_001838533.2	Homo sapiens chromosome 1 genomic contig, alternate asse	37.4	37.4	22%	4.8	80%	
NW_001838573.1	Homo sapiens chromosome 1 genomic contig, alternate asse	37.4	37.4	19%	4.8	82%	

Figura 38. En la figura se muestran los alineamientos encontrados mediante Blastn para la secuencia 5' LTR del MMTV. En la figura se observan los valores del score asignados a cada alineamiento, porcentaje de similitud en la búsqueda, valor e, porcentaje de identidad entre las secuencias el numero de acceso para cada secuencia. Asimismo se resaltó el alineamiento NW_001842097.1 el cual se encontró en una región cromosómica sin datos disponibles.
Las secuencias encontradas en cada alinemiento fueron las siguientes:

NT_011362.10	<pre>Score = 42.8 bits (46), Expect = 0.11 Identities = 28/30 (93%), Gaps = 1/30 (3%) Strand=Plus/Plus</pre>
Regiones encontradas:	30417 bp at 5' side: zinc finger protein 334 isoform b 6181 bp at 3' side: transmembrane protein C20orf123
NW_001838666.1	<pre>Score = 42.8 bits (46), Expect = 0.11 Identities = 28/30 (93%), Gaps = 1/30 (3%) Strand=Plus/Plus</pre>
Regiones encontradas:	30385 bp at 5' side: zinc finger protein 334 isoform b 6181 bp at 3' side: transmembrane protein C20orf123
NT_025028.14	<pre>Score = 41.0 bits (44), Expect = 0.40 Identities = 24/25 (96%), Gaps = 0/25 (0%) Strand=Plus/Plus</pre>
Regiones encontradas:	668426 bp at 5' side: serpin B8 isoform a 1107117 bp at 3' side: cadherin-7 preproprotein preproprotein
NW_001838469.1	<pre>Score = 41.0 bits (44), Expect = 0.40 Identities = 24/25 (96%), Gaps = 0/25 (0%) Strand=Plus/Plus</pre>
Regiones encontradas:	670957 bp at 5' side: serpin B8 isoform b 1107344 bp at 3' side: cadherin-7 preproprotein preproprotein

7. Para la región 3' LTR se encontraron 55 hits como se puede observar en la siguienete figura:

Figura 39. Distribución de los 55 hits encontrados mediante Blastn para la secuencia 3[°] LTR del MMTV. En la figura se observan 26 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 113.0

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con la región 3' LTR se muestra en la siguiente figura:

Figura 40. Distribución genomica de los 26 hits encontrados mediante Blastn para la secuencia 3´ LTR del MMTV. En la figura se observan 55 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:	Score	E
	(Bits)	Value
ref NT 008183.19 Homo sapiens chromosome 8 genomic contig, G	42.8	0.17
ref NT 004487.19 Homo sapiens chromosome 1 genomic contig, G	42.8	0.17
ref NW_001839132.1 Homo sapiens chromosome 8 genomic contig,	42.8	0.17
ref NW_001838531.2 Homo sapiens chromosome 1 genomic contig,	42.8	0.17
ref NM_015094.2 Homo sapiens hypermethylated in cancer 2 (HI	41.0	0.59
ref NT 011520.12 Homo sapiens chromosome 22 genomic contig,	41.0	0.59
ref NW 001838744.1 Homo sapiens chromosome 22 genomic contig	41.0	0.59
ref NT 011786.16 Homo sapiens chromosome X genomic contig, G	39.2	2.0
ref NT 016354.19 Homo sapiens chromosome 4 genomic contig, G	39.2	2.0
ref NT_005612.16 Homo sapiens chromosome 3 genomic contig, G	39.2	2.0
ref NT_167186.1 Homo sapiens chromosome 1 genomic contig, GR	39.2	2.0
ref NW_001842409.1 Homo sapiens chromosome X genomic contig,	39.2	2.0
ref NW_001838921.1 Homo sapiens chromosome 4 genomic contig,	39.2	2.0
ref NW_001838881.2 Homo sapiens chromosome 3 genomic contig,	39.2	2.0
ref NW_001838880.2 Homo sapiens chromosome 3 genomic contig,	39.2	2.0
ref NW_001838537.2 Homo sapiens chromosome 1 genomic contig,	39.2	2.0
ref NM_001166052.1 Homo sapiens amyloid beta (A4) precursor	37.4	7.1
ref NM_001166051.1 Homo sapiens amyloid beta (A4) precursor	37.4	7.1
ref NM_001166054.1 Homo sapiens amyloid beta (A4) precursor	37.4	7.1
ref NM_001166053.1 Homo sapiens amyloid beta (A4) precursor	37.4	7.1
ref NM_001166050.1 Homo sapiens amyloid beta (A4) precursor	37.4	7.1
ref NM_004307.1 Homo sapiens amyloid beta (A4) precursor pro	37.4	7.1

37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
37.4	7.1
	37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4

Las secuencias encontradas en cada alineamiento fueron las siguientes:

NT_008183.19	<pre>Score = 42.8 bits (46), Expect = 0.17 Identities = 33/38 (87%), Gaps = 1/38 (3%) Strand=Plus/Plus</pre>
Regiones encontradas:	potassium voltage-gated channel subfamily B member 2
NT_004487.19	Score = 42.8 bits (46), Expect = 0.17 Identities = 25/26 (96%), Gaps = 0/26 (0%) Strand=Plus/Plus
Regiones encontradas:	cell adhesion molecule 3 isoform 1 cell adhesion molecule 3 isoform 2
NW_001839132.1	Score = 42.8 bits (46), Expect = 0.17 Identities = 33/38 (87%), Gaps = 1/38 (3%) Strand=Plus/Plus
Regiones encontradas:	potassium voltage-gated channel subfamily B member 2
NW_001838531.2	<pre>Score = 42.8 bits (46), Expect = 0.17 Identities = 25/26 (96%), Gaps = 0/26 (0%) Strand=Plus/Minus</pre>
Regiones encontradas:	cell adhesion molecule 3 isoform 1 cell adhesion molecule 3 isoform 2
NM_015094.2	Score = 41.0 bits (44), Expect = 0.59 Identities = 27/30 (90%), Gaps = 0/30 (0%)

Strand=Plus/Minus

Regiones encontradas:	Homo sapiens mRNA	hypermethylated in cancer 2 (HIC	:2),
	Query 181	TGTAAATGCTTATGTAAACCATGATATAAA	210
	Sbjct 4898	TGTAAAAGCTTATGTAAACAATGAGATAAA	4869
NT_011520.12	Score = 41.0 Identities = Strand=Plus/N	bits (44), Expect = 0.59 27/30 (90%), Gaps = 0/30 (0%) Minus	
Regiones encontradas:	2791 bp at 5 protein 18242 bp at 3 LOC100507089	side: hypermethylated in cancer	2
Query	181 TG:	TAAATGCTTATGTAAAACCATGATATAAA 210)
Sbjct	 1194421 TG		94392
NW_001838744.1	Score = 41.0 Identities = Strand=Plus/N	bits (44), Expect = 0.59 27/30 (90%), Gaps = 0/30 (0%) Minus	
Regiones encontradas:	Homo sapiens alternate ass env genome sh	chromosome 22 genomic contig, sembly HuRef SCAF_1103279180195, notgun sequence	whole
	Query 181	TGTAAATGCTTATGTAAACCATGATATAAA	210
	Sbjct 7331	TGTAAAAGCTTATGTAAACAATGAGATAAA	7302

- 8. La búsqueda bioinformática con la secuencia del gen *env* del MMTV se realizó de acuerdo a la siguiente estrategia:
 - Una vez descargada la secuencia, se dividió la secuencia en fragmentos de 300 pb de acuerdo a la figura 41 y posteriormente se realizaron las búsquedas en la base de datos del NCBI para cada fragmento resultante bajo las condiciones antes mencionadas.

Figura 41. Estrategia de búsqueda del gen *env* **del MMTV**. La secuencia completa del gen *env* del MMTV fue dividida en fragmentos de 300 pb y posteriormente las busquedas fueron realizadas.

Los fragmentos generados fueron los siguientes:

Fragmento 1 (1 – 300pb):	ATGCCGAAACACCAATCTGGGTCCCCGACCGATTCATCC
	GACCTTTTACTGAGCGGAAAGAAGCAACGCCCACACCTG
	GCACTGCGGAGAAAACGCCGCCGCGAGATGAGAAAGATC
	AACAGGAAAGTCCCAAGAATGAATCTAGTCCCCATCAAA
	GAGAAGACGGCTTGGCAACATCTGCAGGCGTTGATCTCC
	GAAGCGGAGGAGGTCCTTAAAACCTCACAAACTCCCCAA
	ACCTCTTTGACCTTATTTCTTGCTTTGTTGTCTGTCCTC
	GGCCCCCGCCTGTGACAGGGGAGAGTT
Fragmento 2 (300-600)	
1 lagmento 2 (300-000).	
	GGGTTCAGAAATATGTCTGGTAATGTACATTTTGAGGGG
	AAGTCTGATACGCTCCCCATTTGCCTTTCCTTCTCCTTT
	TCTACCCCCACGGGCTGCTTTCAAGTAGACAAGCAAGTA
	TTTCTTTCTGATACACCCACGGTTGATAATAATAAACCT
	GGGGGAAAGGGTGATAAAAGGCGTATGT
Fragmento 3 (600-900):	TGGGAACTTTGGTTGACTACCTTGGGGAACTCAGGGGCC
	ААТАСААААСТGGTCCCTATAAAAAAGAAGTTGCCCCCC
	AAATATCCTCACTGCCAGATCGCCTTTAAGAAGGACGCC
	TTCTGGGAGGGAGACGAGTCTGCTCCTCCACGGTGGTTG
	CCTTGCGCCTTCCCTGACCAGGGGGTGAGTTTTTCTCCA
	AAAGGGGCCCTTGGGTTACTTTGGGATTTCTCCCTTCCC
	TCGCCTAGTGTAGATCAGTCAGATCAGATTAAAAGCAAA
	AAGAATCTATTTGGAAATTATACTCCCC
Fragmento 4 (900 -1200):	CCTGTCAATAAAGAGGTTCATCGATGGTATGAAGCAGGA
	TGGGTAGAACCTACTTGGTTCTGGGAAAATTCTCCTAAG

GATCCCAATGATAGAGATTTCACTGCACTAGTCCCCCAT ACAGAATTGTTTCGCTTAGTCGCAGCCTCAAGACATCTT ATTCTCAAAAGGCCAGGATTTCAAGAACATGAGATGATT CCTACATCTGCCTGTGTTACTTACCCTTATGCCATATTA TTAGGATTACCTCAGTTAATAGATATAGAGAAAAGAGGA TCTACTTTTCATATTTCCTGTTCTTCTT

Fragmento 5 (1200 -1500):

TGTAGATTGACTAATTGTTTAGACTCTTCTGCCTACGAC TATGCAGCGATCATAGTCAAGAGGCCGCCATATGTGCTG CTACCTGTAGATATTGGTGATGAACCATGGTTTGATGAT TCTGCCATTCAAACCTTTAGGTATGCCACAGATTTAATT CGAGCTAAGCGATTCGTCGCAGCCATTATCCTGGGCATA TCTGCTTTGATTGCTATTATTACTTCCTTTGCTGTAGCT ACTACTGCCTTAGTTAAGGAGATGCAAACTGCTACGTTT GTTAATAATCTTCATAGGAATGTTACAT

Fragmento 6 (1500 -1800):

TTAGCCTTATCTGAACAACGGATAATAGATTTAAAATTA GAAGCTAGACTTAATGCTTTAGAAGAAGTAGTTTTAGAG TTGGGACAAGATGTGGCCAATTTAAAGACCAGAATGTCC ACTAGGTGTCATGCAAATTATGACTTTATCTGCGTTACA CCTTTACCCTATAATGCTACTGAGAACTGGGAAAGAACC AGGGCTCATTTATTGGGCATTTGGAATGATAATGAGATT TCATATAACATACAGGAGTTAACCAACCTGATTAGTGAT ATGAGCAAACAACATATTGATGCAGTGG

 Fragmento 7 (1800 -2066):
 GACCTTAGTGGCTTGGCTCAGTCTTTTGCCAATGGAGTG

 AAGGCTTTAAATCCATTAGATTGGACACAATATTTCATT
 TTTATAGGTGTTGGAGCCCTGCTTTTAGTCATTGTACTT

 ATGATTTTCCCCATTGTTTTCCAGTGCCTTGCGAAGAGC
 CTTGACCAAGTGCAGTCAGATCTTAACGTGCTTCTTTA

 AAAAAGAAAAAAGGGGGAAATGCCGCGCCTGCAGCAGAA
 ATGGTTGAACTCCCGAGAGTGTCCTACACTTAG

Para el fragmento 1 del gen *env* del MMTV se encontraron 30 hits como se puede observar en la siguiente figura:

Figura 42. Distribución de los 30 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencias del gen env del MMTV para el fragmento 1. En la figura se observan 26 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 41.0

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 1 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 43. Distribución genomica de los 30 hits encontrados mediante Blastn para el fragmento 1 del gen env del MMTV. En la figura se observan 30 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:

Sequences producing significant alignments:	(Bits)	Value
ref NT 010966.14 Homo sapiens chromosome 18 genomic contig,	41.0	0.74
ref NT 029419.12 Homo sapiens chromosome 12 genomic contig,	41.0	0.74
ref NT 007592.15 Homo sapiens chromosome 6 genomic contig, G	41.0	0.74
ref NW 001838467.2 Homo sapiens chromosome 18 genomic contig	41.0	0.74
ref NW 001838060.2 Homo sapiens chromosome 12 genomic contig	41.0	0.74
ref NW 001838974.1 Homo sapiens chromosome 6 genomic contig,	41.0	0.74
ref NT_033899.8 Homo sapiens chromosome 11 genomic contig, G	39.2	2.6
ref NT_007933.15 Homo sapiens chromosome 7 genomic contig, G	39.2	2.6
ref NT_007819.17 Homo sapiens chromosome 7 genomic contig, G	39.2	2.6
ref NW_001838044.1 Homo sapiens chromosome 11 genomic contig	39.2	2.6
ref NW_001839072.1 Homo sapiens chromosome 7 genomic contig,	39.2	2.6
ref NW_001838998.1 Homo sapiens chromosome 7 genomic contig,	39.2	2.6
ref NM_018193.2 Homo sapiens Fanconi anemia, complementation	37.4	9.0
ref NM_001113378.1 Homo sapiens Fanconi anemia, complementat	37.4	9.0
ref NT_010274.17 Homo sapiens chromosome 15 genomic contig,	37.4	9.0
ref NT_026437.12 Homo sapiens chromosome 14 genomic contig,	37.4	9.0
ref NT_009714.17 Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_008470.19 Homo sapiens chromosome 9 genomic contig, G	37.4	9.0
ref NT_007299.13 Homo sapiens chromosome 6 genomic contig, G	37.4	9.0
Sequences producing significant alignments:	(Bits)	Value
ref NT_022517.18 Homo sapiens chromosome 3 genomic contig, G	37.4	9.0
ref NT_032977.9 3Homo sapiens chromosome 1 genomic contig, GR	37.4	9.0
ref NW_001838222.1 Homo sapiens chromosome 15 genomic contig	37.4	9.0
ref NW_001838115.2 Homo sapiens chromosome 14 genomic contig	37.4	9.0
ref NW_001838052.1 Homo sapiens chromosome 12 genomic contig	37.4	9.0

ref|NW_001839236.2|Homo sapiens chromosome 9 genomic contig,... 37.49.0ref|NW_001839221.1|Homo sapiens chromosome 9 genomic contig,... 37.49.0ref|NW_001838987.1|Homo sapiens chromosome 6 genomic contig,... 37.49.0ref|NW_001838877.2|Homo sapiens chromosome 3 genomic contig,... 37.49.0ref|NW_001838577.2|Homo sapiens chromosome 1 genomic contig,... 37.49.0

Las secuencias encontradas en cada alinemiento fueron las siguientes:

NT_010966.14	Score = 41.0 bits (44), Expect = 0.74 Identities = 22/22 (100%), Gaps = 0/22 (0%) Strand=Plus/Minus
Regiones encontradas:	4529 bp at 5' side: nucleolar protein 4 528174 bp at 3' side: dystrobrevin alpha isoform 9
	Query 247 TTATTTCTTGCTTTGTTGTCTG 268 13296869 TTATTTCTTGCTTTGTTGTCTG 13296848
NT_029419.12	Score = 41.0 bits (44), Expect = 0.74 Identities = 30/35 (86%), Gaps = 0/35 (0%) Strand=Plus/Minus
Regiones encontradas:	monocarboxylate transporter 2
Query 33	TTCATCCGACCTTTTACTGAGCGGAAAGAAGCAAC 67
50jet 22205210	IICAICCUACCIIIIACIGUACACAAAUAAUAAUAAU
NT_007592.15	Score = 41.0 bits (44), Expect = 0.74 Identities = 32/37 (86%), Gaps = 1/37 (3%) Strand=Plus/Minus
Regiones encontradas:	leucine-rich repeat-containing protein 16A isoform 1 leucine-rich repeat-containing protein 16A isoform 2
Query 35	CATCCGACCTTTTACTGAGCGGAAAGAAGCAACGCCC 71
Sbjct 25319862	CATCC-ACCTTTTAGTGATCAGAAAGAAGCAAAGCCC 25319827
NW_001838467.2	Score = 41.0 bits (44), Expect = 0.74 Identities = 22/22 (100%), Gaps = 0/22 (0%) Strand=Plus/Plus
Regiones encontradas:	527834 bp at 5' side: dystrobrevin alpha isoform 9 4529 bp at 3' side: nucleolar protein 4
Query 247	TTATTTCTTGCTTTGTTGTCTG 268

NW_001	.838060	Sbjct 127 . 2	<pre>////////////////////////////////////</pre>
Regio	ones end	contradas:	monocarboxylate transporter 2
	Query	33	TTCATCCGACCTTTTACTGAGCGGAAAGAAGCAAC 67
	Sbjct	16378202	TTCATCCGACCTTTTACTGGACACAAAGAAGTAAC 16378236
NW_001	838974	.1	Score = 41.0 bits (44), Expect = 0.74 Identities = 32/37 (86%), Gaps = 1/37 (3%) Strand=Plus/Minus
Region	nes enco	ontradas:	leucine-rich repeat-containing protein 16A isoform 2
			leucine-rich repeat-containing protein 16A isoform 1
	Query	35	CATCCGACCTTTTACTGAGCGGAAAGAAGCAACGCCC 71
	Sbjct	1333804	CATCC-ACCTTTTAGTGATCAGAAAGAAGCAAAGCCC 1333769

Para el fragmento 2 del gen *env* del MMTV se encontraron 70 hits como se puede observar en la siguiente figura

Figura 41. Distribución de los 70 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencias del gen env del MMTV para el fragmento 2. En la figura se observan 70 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 115.0

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 2 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 45. Distribución genomica de los 70 hits encontrados mediante Blastn para el fragmento 2 del gen env del MMTV. En la figura se observan 70 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:

	Score	E
Sequences producing significant alignments:	(Bits)	Value
ref NT_011896.9 Homo sapiens chromosome Y genomic contig, GR	39.2	2.6
ref NT 011512.11 Homo sapiens chromosome 21 genomic contig,	39.2	2.6
ref NT 026437.12 Homo sapiens chromosome 14 genomic contig,	39.2	2.6
ref NT 008705.16 Homo sapiens chromosome 10 genomic contig,	39.2	2.6
ref NT 008046.16 Homo sapiens chromosome 8 genomic contig, G	39.2	2.6
ref NT 023133.13 Homo sapiens chromosome 5 genomic contig, G	39.2	2.6
ref NT_015926.15 Homo sapiens chromosome 2 genomic contig, G	39.2	2.6
ref NT 004487.19 Homo sapiens chromosome 1 genomic contig, G	39.2	2.6
ref NT 032977.9 Homo sapiens chromosome 1 genomic contig, GR	39.2	2.6
ref NW 001842427.1 Homo sapiens chromosome Y genomic contig,	39.2	2.6
ref NW 001838706.1 Homo sapiens chromosome 21 genomic contig	39.2	2.6
ref NW 001838110.1 Homo sapiens chromosome 14 genomic contig	39.2	2.6
ref NW 001839136.1 Homo sapiens chromosome 8 genomic contig,	39.2	2.6
ref NW 001838954.2 Homo sapiens chromosome 5 genomic contig,	39.2	2.6
ref NW 001838767.2 Homo sapiens chromosome 2 genomic contig,	39.2	2.6
ref NW_001838533.2 Homo sapiens chromosome 1 genomic contig,	39.2	2.6
ref NW_001838590.2 Homo sapiens chromosome 1 genomic contig,	39.2	2.6

ref NM_152505.3	Homo sapiens Leber congenital amaurosis 5-li	37.4	9.0
ref NM 183004.3	Homo sapiens eukaryotic translation initiati	37.4	9.0
ref NM_001969.3	Homo sapiens eukaryotic translation initiati	37.4	9.0
ref NT_011669.17	Homo sapiens chromosome X genomic contig, G	37.4	9.0
ref NT_011362.10	Homo sapiens chromosome 20 genomic contig,	37.4	9.0
ref NT_011109.16	Homo sapiens chromosome 19 genomic contig,	37.4	9.0
ref NT_010393.16	Homo sapiens chromosome 16 genomic contig,	37.4	9.0
ref NT_009775.17	Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_029419.12	Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_033899.8	Homo sapiens chromosome 11 genomic contig, G	37.4	9.0
ref NT_030059.13	Homo sapiens chromosome 10 genomic contig,	37.4	9.0
ref NT_030772.10	Homo sapiens chromosome 10 genomic contig,	37.4	9.0
ref NT_031847.8	Homo sapiens chromosome 10 genomic contig, G	37.4	9.0
ref NT_035014.4	Homo sapiens chromosome 9 genomic contig, GR	37.4	9.0
ref NT_008183.19	Homo sapiens chromosome 8 genomic contig, G	37.4	9.0
ref NT_025741.15	Homo sapiens chromosome 6 genomic contig, G	37.4	9.0
ref NT_007592.15	Homo sapiens chromosome 6 genomic contig, G	37.4	9.0
ref NT_006576.16	Homo sapiens chromosome 5 genomic contig, G	37.4	9.0
ref NT 016354.19	Homo sapiens chromosome 4 genomic contig, G	37.4	9.0
ref NT_005612.16	Homo sapiens chromosome 3 genomic contig, G	37.4	9.0
ref NT_022135.16	Homo sapiens chromosome 2 genomic contig, G	37.4	9.0
ref NT_022171.15	Homo sapiens chromosome 2 genomic contig, G	37.4	9.0
ref NW 001842375.2	Homo sapiens chromosome X genomic contig,	37.4	9.0
ref NW 001838709.2	Homo sapiens chromosome 21 genomic contig	37.4	9.0
ref NW_001838664.2	Homo sapiens chromosome 20 genomic contig	37.4	9.0
ref NW 001838491.1	Homo sapiens chromosome 19 genomic contig	37.4	9.0
ref NW 001838342.1	Homo sapiens chromosome 16 genomic contig	37.4	9.0
ref NW 001838115.2	Homo sapiens chromosome 14 genomic contig	37.4	9.0
ref NW 001838063.1	Homo sapiens chromosome 12 genomic contig	37.4	9.0
ref NW 001838061.2	Homo sapiens chromosome 12 genomic contig	37.4	9.0
ref NW 001838045.1	Homo sapiens chromosome 11 genomic contig	37.4	9.0
ref NW 001838005.2	Homo sapiens chromosome 10 genomic contig	37.4	9.0
ref NW 001837986.1	Homo sapiens chromosome 10 genomic contig	37.4	9.0
ref NW 001837962.1	Homo sapiens chromosome 10 genomic contig	37.4	9.0
ref NW_001839241.2	Homo sapiens chromosome 9 genomic contig,	37.4	9.0
ref NW 001839132.1	Homo sapiens chromosome 8 genomic contig,	37.4	9.0
ref NW_001838990.2	Homo sapiens chromosome 6 genomic contig,	37.4	9.0
ref NW 001838981.2	Homo sapiens chromosome 6 genomic contig,	37.4	9.0
ref NW_001838928.2	Homo sapiens chromosome 5 genomic contig,	37.4	9.0
ref NW 001838921.1	Homo sapiens chromosome 4 genomic contig,	37.4	9.0
ref NW_001838884.2	Homo sapiens chromosome 3 genomic contig,	37.4	9.0
ref NW_001838881.2	Homo sapiens chromosome 3 genomic contig,	37.4	9.0
ref NW_001838850.1	Homo sapiens chromosome 2 genomic contig,	37.4	9.0
ref NW_001838822.1	Homo sapiens chromosome 2 genomic contig,	37.4	9.0

No fue posible encontrar alineamientos con un Valor de e menor a 1.0

Para el fragmento 3 del gen *env* del MMTV se encontraron 65 hits como se puede observar en la siguiente figura

Figura 46. Distribución de los 65 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencias del gen env del MMTV para el fragmento 3. En la figura se observan 65 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 115.0

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 3 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 47. Distribución de los 70 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencias del gen env del MMTV para el fragmento 3. En la figura se observan 70 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 44.6 y 37.4

Los alineamientos encontrados fueron los siguientes:

	Score	Е
Sequences producing significant alignments:	(Bits)	Value
ref NM 001012763.1 Homo sapiens gonadotropin-releasing hormo	44.6	0.061
ref NM 000406.2 Homo sapiens gonadotropin-releasing hormone	44.6	0.061
ref NT 011630.14 Homo sapiens chromosome X genomic contig, G	44.6	0.061
ref NT 022778.16 Homo sapiens chromosome 4 genomic contig, G	44.6	0.061
ref NW 001842371.1 Homo sapiens chromosome X genomic contig,	44.6	0.061
ref NW 001838914.1 Homo sapiens chromosome 4 genomic contig,	44.6	0.061
ref NT 016354.19 Homo sapiens chromosome 4 genomic contig, G	41.0	0.74
ref NW 001838915.1 Homo sapiens chromosome 4 genomic contig,	41.0	0.74
ref NT_010393.16 Homo sapiens chromosome 16 genomic contig,	39.2	2.6
ref NT 010194.17 Homo sapiens chromosome 15 genomic contig,	39.2	2.6
ref NT 026437.12 Homo sapiens chromosome 14 genomic contig,	39.2	2.6
ref NT 009952.14 Homo sapiens chromosome 13 genomic contig,	39.2	2.6
ref NT 024524.14 Homo sapiens chromosome 13 genomic contig,	39.2	2.6
ref NT 030059.13 Homo sapiens chromosome 10 genomic contig,	39.2	2.6
ref NT 008470.19 Homo sapiens chromosome 9 genomic contig, G	39.2	2.6
ref NT 007914.15 Homo sapiens chromosome 7 genomic contig, G	39.2	2.6
ref NT_023133.13 Homo sapiens chromosome 5 genomic contig, G	39.2	2.6
ref NT 005612.16 Homo sapiens chromosome 3 genomic contig, G	39.2	2.6
ref NT 022184.15 Homo sapiens chromosome 2 genomic contig, G	39.2	2.6

ref NW_001838339.2 Homo sapiens chromosome 16 genomic contig	39.2	2.6
ref NW 001838218.2 Homo sapiens chromosome 15 genomic contig	39.2	2.6
ref NW 001838111.1 Homo sapiens chromosome 14 genomic contig	39.2	2.6
ref NW 001838084.2 Homo sapiens chromosome 13 genomic contig	39.2	2.6
ref NW 001838074.1 Homo sapiens chromosome 13 genomic contig	39.2	2.6
ref NW 001838006.2 Homo sapiens chromosome 10 genomic contig	39.2	2.6
ref NW 001839237.2 Homo sapiens chromosome 9 genomic contig,	39.2	2.6
ref NW 001839088.2 Homo sapiens chromosome 7 genomic contig,	39.2	2.6
ref NW 001838954.2 Homo sapiens chromosome 5 genomic contig,	39.2	2.6
ref NW 001838903.1 Homo sapiens chromosome 4 genomic contig,	39.2	2.6
ref NW 001838881.2 Homo sapiens chromosome 3 genomic contig,	39.2	2.6
ref NW 001838769.1 Homo sapiens chromosome 2 genomic contig,	39.2	2.6
ref NM 015107.2 Homo sapiens PHD finger protein 8 (PHF8), tr	37.4	9.0
ref NM 001184897.1 Homo sapiens PHD finger protein 8 (PHF8),	37.4	9.0
ref NM 001184896.1 Homo sapiens PHD finger protein 8 (PHF8),	37.4	9.0
ref NT 079573.4 Homo sapiens chromosome X genomic contig, GR	37.4	9.0
ref NT 011109.16 Homo sapiens chromosome 19 genomic contig,	37.4	9.0
ref NT 011295.11 Homo sapiens chromosome 19 genomic contig,	37.4	9.0
ref NT 010783.15 Homo sapiens chromosome 17 genomic contig,	37.4	9.0
ref NT 010498.15 Homo sapiens chromosome 16 genomic contig,	37.4	9.0
ref NT 033899.8 Homo sapiens chromosome 11 genomic contig, G	37.4	9.0
ref NT 008705.16 Homo sapiens chromosome 10 genomic contig,	37.4	9.0
ref NT 007933.15 Homo sapiens chromosome 7 genomic contig, G	37.4	9.0
ref NT 007819.171 Homo sapiens chromosome 7 genomic contig. G	37.4	9.0
refINT 007592.151 Homo sapiens chromosome 6 genomic contig. G	37.4	9.0
ref NT 022517.18 Homo sapiens chromosome 3 genomic contig, G	37.4	9.0
ref NT 032977.91 Homo sapiens chromosome 1 genomic contig, GR	37.4	9.0
ref NT 004610.191 Homo sapiens chromosome 1 genomic contig, G	37.4	9.0
ref NW 001842370.21 Homo sapiens chromosome X genomic contig	37.4	9.0
ref NW 001842361.21 Homo sapiens chromosome X genomic contig	37.4	9.0
ref NW 001838501.21 Homo sapiens chromosome 19 genomic contig	37.4	9.0
refINW 001838484.11 Homo sapiens chromosome 19 genomic contig	37.4	9.0
refINW 001838454.21 Homo sapiens chromosome 17 genomic contig	37.4	9.0
refINW 001838290 11 Homo sapiens chromosome 16 genomic contig	37 4	9 0
refINW 001838081 11 Homo sapiens chromosome 13 genomic contig	37 4	9 0
refINW 001838044 11 Homo sapiens chromosome 11 genomic contig	37 4	9 0
refINW 001837931 21 Homo sapiens chromosome 10 genomic contig	37 4	9 0
refINW 001839064 21 Homo sapiens chromosome 7 genomic contig	37 4	9 0
refINW 001838998 11 Homo sapiens chromosome 7 genomic contig	37 4	9 0
refine 001838980 1 Home sapiens chromosome / genomic contig	37.1	9.0
refINM 001838951 11 Homo sapiens chromosome 5 genomic contig	37 4	9.0
refINM 001838877 21 Homo sapiens chromosome 3 genomic contig	37 /	9.0
refINM 001838589 21 Homo sapiens chromosome 1 genomic contig	37 /	9.0
refine 001020572 11 Here appiers chromosome 1 genomic contig,	27 1	9.0
Terinw_001030373.11 Homo sapiens chromosome i genomic contig,	5/.4	9.0

Las secuencias encontradas en cada alinemiento fueron las siguientes:

NM_001012763.1	<pre>Score = 44.6 bits (48), Expect = 0.061 Identities = 24/24 (100%), Gaps = 0/24 (0%) Strand=Plus/Plus</pre>
Regiones encontradas:	Homo sapiens gonadotropin-releasing hormone receptor (GNRHR), transcript variant 2, mRNA Length=5715
	Query 180 GGTGAGTTTTTCTCCAAAAGGGGC 203

	Sbjct 3002 GGTGAGTTTTTCTCCAAAAGGGGC 3025
NM_000406.2	<pre>Score = 44.6 bits (48), Expect = 0.061 Identities = 24/24 (100%), Gaps = 0/24 (0%) Strand=Plus/Plus</pre>
Regiones encontradas:	Homo sapiens gonadotropin-releasing hormone receptor (GNRHR), transcript variant 1, mRNA Length=5843
	Query 180 GGTGAGTTTTTCTCCAAAAGGGGC 203
	Sbjct 3130 GGTGAGTTTTTCTCCAAAAGGGGGC 3153
NT_011630.14	Homo sapiens chromosome X genomic contig, GRCh37.p2 reference primary assembly Length=6136098
Regiones encontradas:	398504 bp at 5' side: zinc finger X-linked protein ZXDA
	<pre>Score = 44.6 bits (48), Expect = 0.061 Identities = 29/32 (91%), Gaps = 0/32 (0%) Strand=Plus/Plus</pre>
Query 259	CAGATTAAAAGCAAAAAGAATCTATTTGGAAA 290
Sbjct 5889	444 CAGATAAAAAGCAAAAAGAAGCTATTTGTAAA 5889475
NT_022778.16	<pre>Score = 44.6 bits (48), Expect = 0.061 Identities = 24/24 (100%), Gaps = 0/24 (0%) Strand=Plus/Minus</pre>
Regiones encontradas:	38946 bp at 5' side: ubiquitin-like modifier- activating enzyme 6 392 bp at 3' side: gonadotropin-releasing hormone receptor isoform 1
Query	180 GGTGAGTTTTTCTCCAAAAGGGGC 203
Sbjct	8816473 GGTGAGTTTTTCTCCAAAAGGGGGC 8816450
NW_001842371.1	<pre>Score = 44.6 bits (48), Expect = 0.061 Identities = 29/32 (91%), Gaps = 0/32 (0%) Strand=Plus/Plus</pre>
Regiones encontradas:	395819 bp at 5' side: zinc finger X-linked protein ZXDA

Query	259 CAGATTAAAAGCAAAAAGAATCTATTTGGAAA 290
Sbjct NW_001838914.1	607889 CAGATAAAAAGCAAAAAGAAGCTATTTGTAAA 607920 Score = 44.6 bits (48), Expect = 0.061 Identities = 24/24 (100%), Gaps = 0/24 (0%) Strand=Plus/Minus
Regiones encontradas:	<pre>38911 bp at 5' side: ubiquitin-like modifier- activating enzyme 6 392 bp at 3' side: gonadotropin-releasing hormone receptor isoform 1</pre>
Query Sbjct	180 GGTGAGTTTTTCTCCAAAAGGGGC 203
NT_016354.19	<pre>Score = 41.0 bits (44), Expect = 0.74 Identities = 44/56 (79%), Gaps = 2/56 (4%) Strand=Plus/Plus</pre>
Regiones encontradas:	pituitary homeobox 2 isoform a pituitary homeobox 2 isoform b
Query 245 TAGATCAGTCAG Sbjct TAGATAATTCAG 36094786	GATCAGATTAAAAGCAAAAAGA-ATCTATTTGGAAAT-TATACTC 298
NW_001838915.1	<pre>Score = 41.0 bits (44), Expect = 0.74 Identities = 44/56 (79%), Gaps = 2/56 (4%) Strand=Plus/Plus</pre>
Regiones encontradas:	pituitary homeobox 2 isoform a pituitary homeobox 2 isoform b
Query 245 TAGATCAGTCA	GATCAGATTAAAAGCAAAAAGA-ATCTATTTGGAAAT-TATACTC 298

 Para el fragmento 4 del gen *env* del MMTV se encontraron 65 hits como se puede observar en la siguiente figura

Figura 48. Distribución de los 47 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencia del gen env del MMTV para el fragmento 4. En la figura se observan 70 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuentran entre los valores de 37.4 y 42.8

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 4 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 49. Distribución genomica de los 47 hits encontrados mediante Blastn para el fragmento 4 del gen env del MMTV. En la figura se observan 47 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:

	Score	E
Sequences producing significant alignments:	(Bits)	Value
ref NT_034772.6 Homo sapiens chromosome 5 genomic contig, GR	42.8	0.21
ref NW_001838952.2 Homo sapiens chromosome 5 genomic contig,	42.8	0.21
ref NT_005612.16 Homo sapiens chromosome 3 genomic contig, G	41.0	0.74
ref NW_001838884.2 Homo sapiens chromosome 3 genomic contig,	41.0	0.74
ref XR_113353.1 PREDICTED: Homo sapiens hypothetical LOC1005	39.2	2.6
ref XR_112067.1 PREDICTED: Homo sapiens hypothetical LOC1005	39.2	2.6
ref XR_110507.1 PREDICTED: Homo sapiens hypothetical LOC1005	39.2	2.6
ref NT_011520.12 Homo sapiens chromosome 22 genomic contig,	39.2	2.6
ref NT_005403.17 Homo sapiens chromosome 2 genomic contig, G	39.2	2.6
ref NT_032977.9 Homo sapiens chromosome 1 genomic contig, GR	39.2	2.6
ref NW_001838745.1 Homo sapiens chromosome 22 genomic contig	39.2	2.6
ref NW_001838863.1 Homo sapiens chromosome 2 genomic contig,	39.2	2.6
ref NW_001838578.2 Homo sapiens chromosome 1 genomic contig,	39.2	2.6
ref NT_011651.17 Homo sapiens chromosome X genomic contig, G	37.4	9.0
ref NT_010783.15 Homo sapiens chromosome 17 genomic contig,	37.4	9.0
ref NT_026437.12 Homo sapiens chromosome 14 genomic contig,	37.4	9.0
ref NT_009952.14 Homo sapiens chromosome 13 genomic contig,	37.4	9.0
ref NT_029419.12 Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_009714.17 Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_009759.16 Homo sapiens chromosome 12 genomic contig,	37.4	9.0
ref NT_033899.8 Homo sapiens chromosome 11 genomic contig, G	37.4	9.0
ref NT_167190.1 Homo sapiens chromosome 11 genomic contig, G	37.4	9.0

iens chromosome 11 genomic contig, 37.4	9.0
iens chromosome 10 genomic contig, 37.4	9.0
iens chromosome 8 genomic contig, G 37.4	9.0
ens chromosome 8 genomic contig, GR 37.4	9.0
iens chromosome 7 genomic contig, G 37.4	9.0
iens chromosome 5 genomic contig, G 37.4	9.0
apiens chromosome X genomic contig, 37.4	9.0
apiens chromosome 17 genomic contig 37.4	9.0
apiens chromosome 14 genomic contig 37.4	9.0
apiens chromosome 13 genomic contig 37.4	9.0
apiens chromosome 12 genomic contig 37.4	9.0
apiens chromosome 12 genomic contig 37.4	9.0
apiens chromosome 12 genomic contig 37.4	9.0
apiens chromosome 11 genomic contig 37.4	9.0
apiens chromosome 11 genomic contig 37.4	9.0
apiens chromosome 11 genomic contig 37.4	9.0
apiens chromosome 11 genomic contig 37.4	9.0
apiens chromosome 10 genomic contig 37.4	9.0
apiens chromosome 8 genomic contig, 37.4	9.0
apiens chromosome 8 genomic contig, 37.4	9.0
apiens chromosome 7 genomic contig, 37.4	9.0
apiens chromosome 5 genomic contig, 37.4	9.0
	<pre>iens chromosome 11 genomic contig, 37.4 iens chromosome 10 genomic contig, G 37.4 iens chromosome 8 genomic contig, G 37.4 ens chromosome 7 genomic contig, GR 37.4 iens chromosome 7 genomic contig, G 37.4 iens chromosome 5 genomic contig, G 37.4 apiens chromosome 17 genomic contig 37.4 apiens chromosome 17 genomic contig 37.4 apiens chromosome 14 genomic contig 37.4 apiens chromosome 12 genomic contig 37.4 apiens chromosome 11 genomic contig 37.4 apiens chromosome 10 genomic contig 37.4 apiens chromosome 10 genomic contig 37.4 apiens chromosome 8 genomic contig 37.4 apiens chromosome 7 genomic contig 37.4</pre>

Las secuencias encontradas en cada alinemiento fueron las siguientes:

NT_0347	72.6	<pre>Score = 42.8 bits (46), Expect = 0.21 Identities = 32/38 (84%), Gaps = 0/38 (0%) Strand=Plus/Minus</pre>
Regiones encontradas:		das: 2831172 bp at 5' side: peroxisomal NADH pyrophosphatase NUDT12 989798 bp at 3' side: ephrin-A5 precursor
Query	263	AGAAAAGAGGATCTACTTTTCATATTTCCTGTTCTTCT 300
Sbjct	14041030	AGAAAAGAGGATATACTTTTCAGTTTTCCAATTGTTCT 14040993
NW_0018	338952.2	<pre>Score = 42.8 bits (46), Expect = 0.21 Identities = 32/38 (84%), Gaps = 0/38 (0%) Strand=Plus/Plus</pre>
Regione	es encontra	das: 986597 bp at 5' side: ephrin-A5 precursor 2825679 bp at 3' side: peroxisomal NADH pyrophosphatase NUDT12
Query	263	AGAAAAGAGGATCTACTTTTCATATTTCCTGTTCTTCT 300
Sbjct	33073441	AGAAAAGAGGATATACTTTTCAGTTTTCCAATTGTTCT 33073478
NT_0056	512.16	Score = 41.0 bits (44), Expect = 0.74 Identities = 27/29 (93%), Gaps = 1/29 (3%) Strand=Plus/Minus

Regione	s encontra	das:	255168 bp isoform a 77711 bp a gene 1 pro	at 5' side: li at 3' side: tum otein	poma-preferred pa or protein p63-re	artner egulated
Query	246	TCAGTT	AATAGATATA	GAGAAAA-GAGGA	273	
Sbjct	95342609	TCAGTT	 AATAAATATA	 GAGAAAATGAGGA	95342581	
NW_0018	38884.2		Score = 41 Identities Strand=Plu	1.0 bits (44), s = 27/29 (93%) as/Plus	Expect = 0.74 , Gaps = 1/29 (38	5)
Regione	s encontra	das:	77908 bp a gene 1 pro 254913 bp isoform b	at 5' side: tum otein at 3' side: li	or protein p63-re poma-preferred pa	egulated artner
		Query	246	TCAGTTAATAGATA	TAGAGAAAA-GAGGA	273
		Sbjct	5177400	ТСАСТТААТАААТА	TAGAGAAAATGAGGA	5177428

Para el fragmento 5 del gen *env* del MMTV se encontraron 23 hits como se puede observar en la siguiente figura

Figura 50. Distribución de los 23 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencia del gen env del MMTV para el fragmento 5. En la figura se observan 23

scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 42.8

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 5 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 51. Distribución genomica de los 23 hits encontrados mediante Blastn para el fragmento 5 del gen env del MMTV. En la figura se observan 23 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes

	Score	E
Sequences producing significant alignments:	(Bits)	Value
ref NT 167187.1 Homo sapiens chromosome 8 genomic contig, GR	42.8	0.21
ref NW_001839126.2 Homo sapiens chromosome 8 genomic contig,	42.8	0.21
ref NT_006713.15 Homo sapiens chromosome 5 genomic contig, G	39.2	2.6
ref NT_005612.16 Homo sapiens chromosome 3 genomic contig, G	39.2	2.6
ref NT_022184.15 Homo sapiens chromosome 2 genomic contig, G	39.2	2.6
ref NW_001838934.1 Homo sapiens chromosome 5 genomic contig,	39.2	2.6
ref NW_001838768.1 Homo sapiens chromosome 2 genomic contig,	39.2	2.6
ref NT_010718.16 Homo sapiens chromosome 17 genomic contig,	37.4	9.0
ref NT_008413.18 Homo sapiens chromosome 9 genomic contig, G	37.4	9.0
ref NT_007592.15 Homo sapiens chromosome 6 genomic contig, G	37.4	9.0
ref NT_022778.16 Homo sapiens chromosome 4 genomic contig, G	37.4	9.0
ref NT_022135.16 Homo sapiens chromosome 2 genomic contig, G	37.4	9.0
ref NT_004487.19 Homo sapiens chromosome 1 genomic contig, G	37.4	9.0
ref NT_004610.19 Homo sapiens chromosome 1 genomic contig, G	37.4	9.0
ref NW 001838403.1 Homo sapiens chromosome 17 genomic contig	37.4	9.0

ref NW_001839151.2	Homo	sapiens	chromosome	9	genomic	contig,	37.4	9.0
ref NW_001838980.1	Homo	sapiens	chromosome	6	genomic	contig,	37.4	9.0
ref NW_001838914.1	Homo	sapiens	chromosome	4	genomic	contig,	37.4	9.0
ref NW_001838848.1	Homo	sapiens	chromosome	2	genomic	contig,	37.4	9.0
ref NW_001838532.2	Homo	sapiens	chromosome	1	genomic	contig,	37.4	9.0
ref NW_001838573.1	Homo	sapiens	chromosome	1	genomic	contig,	37.4	9.0

Las secuencias encontradas en cada alineamiento fueron las siguientes:

NT_167187.1	Score = 42.8 bits (46), Expect = 0.21 Identities = 35/43 (81%), Gaps = 0/43 (0%) Strand=Plus/Plus
Regiones encontra	adas: 343206 bp at 5' side: tumor suppressor candidate 3 isoform a 9028 bp at 3' side: macrophage scavenger receptor types I and II isoform type 1
Query 192 (CATATCTGCTTTGATTGCTATTATTACTTCCTTTGCTGTAGCT 234
Sbjct 3816670 (CATATCTGCTCTAATTGCTATTATTTCTTTCCTTCCGCTAGCT 3816712
NW_001839126.2	<pre>Score = 42.8 bits (46), Expect = 0.21 Identities = 35/43 (81%), Gaps = 0/43 (0%) Strand=Plus/Minus</pre>
Regiones encontra	adas: 39952 bp at 5' side: macrophage scavenger receptor types I and II isoform type 2 337036 bp at 3' side: tumor suppressor candidate 3 isoform b
Query 192 (CATATCTGCTTTGATTGCTATTATTACTTCCTTTGCTGTAGCT 234

Sbjct 5663757 CATATCTGCTCTAATTGCTATTATTTCTTTCCTTCCGCTAGCT 5663715

Para el fragmento 6 del gen *env* del MMTV se encontraron 55 hits como se puede observar en la siguiente figura

Figura 52. Distribución de los 55 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencia del gen env del MMTV para el fragmento 6. En la figura se observan 23 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 41.0

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 6 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 53. Distribución genomica de los 55 hits encontrados mediante Blastn para el fragmento 6 del gen env del MMTV. En la figura se observan 55 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:

	Score	E
Sequences producing significant alignments:	(Bits)	Value
ref NT_007933.15 Homo sapiens chromosome 7 genomic contig, G	41.0	0.74
ref NT 006316.16 Homo sapiens chromosome 4 genomic contig, G	41.0	0.74
ref NW 001839071.2 Homo sapiens chromosome 7 genomic contig,	41.0	0.74
ref NW 001838900.1 Homo sapiens chromosome 4 genomic contig,	41.0	0.74
ref NT_010498.15 Homo sapiens chromosome 16 genomic contig,	39.2	2.6
ref NT_010194.17 Homo sapiens chromosome 15 genomic contig,	39.2	2.6
ref NT 009237.18 Homo sapiens chromosome 11 genomic contig,	39.2	2.6
ref NT_004487.19 Homo sapiens chromosome 1 genomic contig, G	39.2	2.6
ref NW 001838328.2 Homo sapiens chromosome 16 genomic contig	39.2	2.6
ref NW 001838214.2 Homo sapiens chromosome 15 genomic contig	39.2	2.6
ref NW 001838022.2 Homo sapiens chromosome 11 genomic contig	39.2	2.6
ref NW 001838921.1 Homo sapiens chromosome 4 genomic contig,	39.2	2.6
ref NT_079573.4 Homo sapiens chromosome X genomic contig, GR	37.4	9.0
ref NT 011515.12 Homo sapiens chromosome 21 genomic contig,	37.4	9.0
ref NT 010274.17 Homo sapiens chromosome 15 genomic contig,	37.4	9.0
ref NT 026437.12 Homo sapiens chromosome 14 genomic contig,	37.4	9.0

ref NT 024524.14 Ho	mo sapiens cł	nromosome 13	genomic contig,	37.4	9.0
ref NT_167190.1 Hom	o sapiens chi	comosome 11 g	enomic contig, G	37.4	9.0
ref NT_030059.13 Ho	mo sapiens ch	nromosome 10	genomic contig,	37.4	9.0
ref NT_008183.19 Ho	mo sapiens ch	nromosome 8 g	enomic contig, G	37.4	9.0
ref NT_167187.1 Hom	o sapiens chi	comosome 8 ge	nomic contig, GR	37.4	9.0
ref NT_007914.15 Ho	mo sapiens ch	nromosome 7 g	enomic contig, G	37.4	9.0
ref NT_007299.13 Ho	mo sapiens ch	nromosome 6 g	enomic contig, G	37.4	9.0
ref NT_006576.16 Ho	mo sapiens ch	nromosome 5 g	enomic contig, G	37.4	9.0
ref NT_016354.19 Ho	mo sapiens ch	nromosome 4 g	enomic contig, G	37.4	9.0
ref NT_022778.16 Ho	mo sapiens ch	nromosome 4 g	enomic contig, G	37.4	9.0
ref NT_022459.15 Ho	mo sapiens ch	nromosome 3 g	enomic contig, G	37.4	9.0
ref NT_032977.9 Hom	o sapiens chi	comosome 1 ge	nomic contig, GR	37.4	9.0
ref NW_001842362.1	Homo sapiens	chromosome X	genomic contig,	37.4	9.0
ref NW_001839914.1	Homo sapiens	unplaced gen	omic contig, alt	37.4	9.0
ref NW_001838716.1	Homo sapiens	chromosome 2	1 genomic contig	37.4	9.0
ref NW_001838224.2	Homo sapiens	chromosome 1	5 genomic contig	37.4	9.0
ref NW_001838111.1	Homo sapiens	chromosome 1	4 genomic contig	37.4	9.0
ref NW_001838081.1	Homo sapiens	chromosome 1	3 genomic contig	37.4	9.0
ref NW_001838023.1	Homo sapiens	chromosome 1	1 genomic contig	37.4	9.0
ref NW_001838006.2	Homo sapiens	chromosome 1	0 genomic contig	37.4	9.0
ref NW_001837986.1	Homo sapiens	chromosome 1	0 genomic contig	37.4	9.0
ref NW_001839133.2	Homo sapiens	chromosome 8	genomic contig,	37.4	9.0
ref NW_001839127.1	Homo sapiens	chromosome 8	genomic contig,	37.4	9.0
ref NW_001839078.1	Homo sapiens	chromosome 7	genomic contig,	37.4	9.0
ref NW_001838987.1	Homo sapiens	chromosome 6	genomic contig,	37.4	9.0
ref NW_001838953.2	Homo sapiens	chromosome 5	genomic contig,	37.4	9.0
ref NW_001838928.2	Homo sapiens	chromosome 5	genomic contig,	37.4	9.0
ref NW_001838920.1	Homo sapiens	chromosome 4	genomic contig,	37.4	9.0
ref NW_001838878.1	Homo sapiens	chromosome 3	genomic contig,	37.4	9.0
ref NW_001838589.2	Homo sapiens	chromosome 1	genomic contig,	37.4	9.0

Las secuencias encontradas en cada alineamiento fueron las siguientes:

NT_007933.15		Score = 41.0 bits (44), Expect = 0.74 Identities = 26/27 (96%), Gaps = 1/27 (4%) Strand=Plus/Plus				
Regiones encontradas:		77350 bp at 5' side: neural Wiskott-Aldrich syndrome protein 42165 bp at 3' side: hyaluronidase-4				
Query	20	GGATAATAGATTTAAAATTAGAAGCTA 46				
Sbjct	6149	8981 GGATAA-AGATTTAAAATTAGAAGCTA 61499006				
NT_006316.16		<pre>Score = 41.0 bits (44), Expect = 0.74 Identities = 27/30 (90%), Gaps = 0/30 (0%) Strand=Plus/Plus</pre>				
Regiones encontradas: 1965 mole 1734		5812 bp at 5' side: stromal interaction ecule 2 isoform 3 precursor 4545 bp at 3' side: protocadherin-7 isoform c				
precursor						
Query	47	GACTTAATGCTTTAGAAGAAGTAGTTTTAG 76				
Sbjct	2017	0268 GACTTTATTCTTTAGAAGAAGTTGTTTTAG 20170297				

- NW_001839071.2 Score = 41.0 bits (44), Expect = 0.74
 Identities = 26/27 (96%), Gaps = 1/27 (4%)
 Strand=Plus/Minus
 Regiones encontradas: 42167 bp at 5' side: hyaluronidase-4
- 77485 bp at 3' side: neural Wiskott-Aldrich syndrome protein
- NW_001838900.1 Score = 41.0 bits (44), Expect = 0.74 Identities = 27/30 (90%), Gaps = 0/30 (0%) Strand=Plus/Plus
- Regiones encontradas: 1966024 bp at 5' side: stromal interaction molecule 2 isoform 3 precursor 1740141 bp at 3' side: protocadherin-7 isoform c precursor
 - Query
 47
 GACTTAATGCTTTAGAAGAAGTAGTTTTAG
 76

 Sbjct
 19605778
 GACTTATTCTTTAGAAGAAGTTGTTTTAG
 19605807

Para el fragmento 7 del gen *env* del MMTV se encontraron 50 hits como se puede observar en la siguiente figura

Figura 54. Distribución de los 50 hits encontrados mediante Blastn para la secuencia obtenida de la fragmentación de la secuencia del gen env del MMTV para el fragmento 7. En la figura se observan 50 scores relacionados con los alineamientos encontrados mediante Blastn, los scores para cada alineamientos se encuntran entre los valores de 37.4 y 42.8

La distribución genómica de los alineamientos encontrados en la búsqueda realizada con el fragmento 7 del gen *env* del MMTV se muestra en la siguiente figura:

Figura 55. Distribución genomica de los 50 hits encontrados mediante Blastn para el fragmento 7 del gen env del MMTV. En la figura se observan 50 hits relacionados con los alineamientos encontrados en cada uno de los cromosomas. Cada cromosoma humano se encuentra representado mediante barras y el número esta indicado en color azul, así mismo el número de hits encontrados en cada cromosoma esta indicado en color rojo.

Los alineamientos encontrados fueron los siguientes:

	Score	E
Sequences producing significant alignments:	(Bits)	Value
ref NM 030755.4 Homo sapiens thioredoxin-related transmembra	42.8	0.19
ref NT 026437.12 Homo sapiens chromosome 14 genomic contig,	42.8	0.19
ref NW 001838111.1 Homo sapiens chromosome 14 genomic contig	42.8	0.19
ref NT 167197.1 Homo sapiens chromosome X genomic contig, GR	41.0	0.65
ref NW 001842360.1 Homo sapiens chromosome X genomic contig,	41.0	0.65
ref NM 024086.3 Homo sapiens methyltransferase 10 domain con	39.2	2.3
ref NM 198902.2 Homo sapiens tetraspanin 3 (TSPAN3), transcr	39.2	2.3
ref NM 005724.5 Homo sapiens tetraspanin 3 (TSPAN3), transcr	39.2	2.3
ref NT 011669.17 Homo sapiens chromosome X genomic contig, G	39.2	2.3
ref NT 011512.11 Homo sapiens chromosome 21 genomic contig,	39.2	2.3
ref NT 010718.16 Homo sapiens chromosome 17 genomic contig,	39.2	2.3
ref NT 010194.17 Homo sapiens chromosome 15 genomic contig,	39.2	2.3
ref NT 024524.14 Homo sapiens chromosome 13 genomic contig,	39.2	2.3
ref NT 025741.15 Homo sapiens chromosome 6 genomic contig, G	39.2	2.3
ref NT 006576.16 Homo sapiens chromosome 5 genomic contig, G	39.2	2.3
ref NT_016297.16 Homo sapiens chromosome 4 genomic contig, G	39.2	2.3
ref NT 032977.9 Homo sapiens chromosome 1 genomic contig, GR	39.2	2.3
ref NW_001838403.1 Homo sapiens chromosome 17 genomic contig	39.2	2.3
ref NW_001838219.1 Homo sapiens chromosome 15 genomic contig	39.2	2.3
ref NW_001838115.2 Homo sapiens chromosome 14 genomic contig	39.2	2.3
ref NW_001838082.1 Homo sapiens chromosome 13 genomic contig	39.2	2.3
ref NW_001838990.2 Homo sapiens chromosome 6 genomic contig,	39.2	2.3
ref NW_001838951.1 Homo sapiens chromosome 5 genomic contig,	39.2	2.3
ref NW_001838932.2 Homo sapiens chromosome 5 genomic contig,	39.2	2.3
ref NW_001838901.1 Homo sapiens chromosome 4 genomic contig,	39.2	2.3
ref NW_001838877.2 Homo sapiens chromosome 3 genomic contig,	39.2	2.3
ref NW_001838579.2 Homo sapiens chromosome 1 genomic contig,	39.2	2.3
ref NT_079573.4 Homo sapiens chromosome X genomic contig, GR	37.4	7.9
ref NT_011109.16 Homo sapiens chromosome 19 genomic contig,	37.4	7.9

ref NT_011295.11	Homo sapiens chromosome 19 genomic contig,	37.4	7.9
ref NT_008470.19	Homo sapiens chromosome 9 genomic contig, G	37.4	7.9
ref NT_008413.18	Homo sapiens chromosome 9 genomic contig, G	37.4	7.9
ref NT_007592.15	Homo sapiens chromosome 6 genomic contig, G	37.4	7.9
ref NT_016354.19	Homo sapiens chromosome 4 genomic contig, G	37.4	7.9
ref NT_022184.15	Homo sapiens chromosome 2 genomic contig, G	37.4	7.9
ref NW_001842362.1	Homo sapiens chromosome X genomic contig,	37.4	7.9
ref NW_001838706.1	Homo sapiens chromosome 21 genomic contig	37.4	7.9
ref NW_001838501.2	Homo sapiens chromosome 19 genomic contig	37.4	7.9
ref NW_001838218.2	Homo sapiens chromosome 15 genomic contig	37.4	7.9
ref NW_001838113.2	Homo sapiens chromosome 14 genomic contig	37.4	7.9
ref NW_001839221.1	Homo sapiens chromosome 9 genomic contig,	37.4	7.9
ref NW_001839149.2	Homo sapiens chromosome 9 genomic contig,	37.4	7.9
ref NW_001838983.1	Homo sapiens chromosome 6 genomic contig,	37.4	7.9
ref NW_001838920.1	Homo sapiens chromosome 4 genomic contig,	37.4	7.9
ref NW_001838769.1	Homo sapiens chromosome 2 genomic contig,	37.4	7.9

Las secuencias encontradas en cada alineamiento fueron las siguientes:

№_030755.4	<pre>Score = 42.8 bits (46), Expect = 0.19 Identities = 28/31 (90%), Gaps = 0/31 (0%) Strand=Plus/Minus</pre>				
Regiones encontradas:	Homo sapiens thioredoxin-related transmembrane protein 1 (TMX1), mRNA Length=4119				
Query	107 TCATTGTACTTATGATTTTCCCCATTGTTTT 137				
Sbjct	2263 TCATTGTATTTATGATTTTCCCCCTTCTTTT 2233				
NT_026437.12	<pre>Score = 42.8 bits (46), Expect = 0.19 Identities = 28/31 (90%), Gaps = 0/31 (0%) Strand=Plus/Minus</pre>				
Regiones encontradas:	1265 bp at 5' side: thioredoxin-related transmembrane protein 1 precursor 395420 bp at 3' side: putative uncharacterized protein C14orf82				
Query 107	TCATTGTACTTATGATTTTCCCCATTGTTTT 137				
Sbjct 3272.	2532 TCATTGTATTTATGATTTTCCCCCTTCTTTT 32722502				
NW_001838111.1	Score = 42.8 bits (46), Expect = 0.19 Identities = 28/31 (90%), Gaps = 0/31 (0%) Strand=Plus/Minus				
Regiones encontradas:	1260 bp at 5' side: thioredoxin-related transmembrane protein 1 precursor 395943 bp at 3' side: putative uncharacterized protein C14orf82				

Query I	LO7 	TCATTGTAC	TTATGATTTTTCCCCA	ATTGTTTT	137	
Sbjct 1	L0583539	TCATTGTAT	TATGATTTTCCCCC	CTTCTTTT	10583509	
NT_167197.1	Score Ident Stran	a = 41.0 bi ities = 22 d=Plus/Plu	ts (44), Expe 2/22 (100%), Ga 1s	ect = 0.65 eps = 0/22	(0%)	
Regiones encontrada	s: dystr dystr	dystrophin Dp260-2 isoform dystrophin Dp260-1 isoform				
	Query	184	GTGCTTCTTTTa	.aaaaagaaa 	a 205	
	Sbjct	29786730	GTGCTTCTTTTA	AAAAAGAAA	A 29786751	
NW_001842360.1	Score Ident Stran	<pre>Score = 41.0 bits (44), Expect = 0.65 Identities = 22/22 (100%), Gaps = 0/22 (0%) Strand=Plus/Plus</pre>				
Regiones encontrada	s: dystr dystr	dystrophin Dp260-2 isoform dystrophin Dp260-1 isoform				
Qı	uery 184	GTG	CTTCTTTTaaaaaag	faaaa 205	5	
Sł	ojct 2343	3345 GTG	СТТСТТТТАААААА	GAAAA 234	33366	

8. Discusión

Los primeros reportes en los cuales se evidenciaba la presencia de secuencias virales parecidas a las secuencias del gen env del MMTV en adenocarcinomas mamarios de humanos aparecieron hace poco más de 15 años en los reportes publicados por Wang Y y colaboradores (Wang Y y col., 1995). A partir de ahí diversos trabajos han sido publicados evidenciando la presencia de secuencias de DNA del MMTV en muestras de adenocarcinomas mamarios en humanos (Etkind P y col., 2000, Melana S y col., 2001, Lui B y col., 2001, Melana y col., 2002, Ford C y col., 2003, Mant C y col., 2004, Levine P y col., 2004, Luo T y col., 2006, Brinda A y col., 2007, Zapata-Benavides y col., 2007). La gran mayoría de éstos estudios se enfocan en la amplificación de una secuencia de 685 pb del gen env del MMTV y una secuencia interna de 250pb empleando una PCR anidada. La principal ventaja de realizar una PCR anidada es aumentar la especificidad de la reacción y lograr detectar cantidades muy pequeñas del genoma del retrovirus (probablemente hasta 10³ células). Estas secuencias amplificadas contienen muy baja similitud con regiones de retrovirus endógenos conocidos y se han utilizado para detectar DNA proviral y secuencias de expresión del retrovirus MMTV.

En México, los datos de incidencia reportados por Zapata Benavides y colaboradores en 2007 con relación a la detección de las secuencias parecidas al gen *env* del MMTV suponen una relación mucho menor a otros estudios reportados incluyendo el nuestro, ellos reportan haber encontrado secuencias parecidas al gen *env* del MMTV en 5 de 119 (4.2%) tumores de mama y en ninguno de los tejidos no afectados estudiados. Nuestros datos encontrados en 16 (40% de las 40 muestras de adenocarcinomas estudiados), cero muestras positivas en los 14 tejidos no afectados y cero muestras positivas en los 2 fibroadenomas mamarios mantienen la tendencia de los datos reportados por Wang Y en Estados unidos en 1998 (36% de muestras *env* positivas), Melana S en argentina en 2002 (31% de muestras positivas), Levine H en Italia en 2004 (38% muestras *env* positivas).

Nosotros consideramos que esta diferencia en los porcentajes reportados entre los dos estudios realizados en México radica principalmente en el origen de las muestras empleadas, la población de estudio en el trabajo publicado por Zapata Benavides pertenece a la región noreste del país (una región geolocalizada, un solo tipo de población) mientras que las muestras empleadas en nuestro estudio provienen de una clínica de referencia, sin una población definida (las muestras provienen de personas de diversos estados de la república mexicana) probablemente esta diferencia entre el origen de las muestras de estudio haya incrementado los porcentajes de detección de las secuencias *env* positivas en nuestro estudio.

Como se puede observar en las figuras 14 -17, los amplificados correspondientes a cada una de las muestras de adenocarcinomas mamarios tienen un tamaño aproximado de 250pb de igual forma que el control positivo (muestra amplificada del plásmido construido con el gen env del MMTV C3H) de acuerdo al diseño de realizado con los oligonucleótidos sin embargo, es notorio que la concentración de los amplificados no es la misma como se puede observar en los amplificados de las muestras 007CM y 004CM (figura 14). Esto también es notorio en las muestras 031CM y 032CM (figura 17). Estos datos sugieren una mayor concentración del amplificado en las muestras 007 y 032, al cargar en cada pozo el mismo volumen de reacción. Este comportamiento no se observa para los amplificados del gen GAPDH de las muestras 007 y 004 (figura 18). Esta relación implicaría que las secuencias MMTV integradas en el genoma humano no son integradas en la misma cantidad en cada una de las muestras mamarias (es necesario utilizar otra metodología para corroborar dichos datos, qPCR). Ford C y col., en el 2004 sugirieron la idea de que existe una relación entre el grado de malignidad del adenocarcinoma de mama y el porcentaje de secuencias relacionadas con el MMTV sin embargo, estos datos no pudieron ser verificados en el presente estudio.

Los análisis realizados a las secuencias amplificadas del gen *env* del MMTV en los adenocarcinomas mamarios muestran una similitud de hasta un 99% con respecto

a la secuencia depositada en el NCBI para el gen *env* del MMTV ver figuras 26 y 28. Estos porcentajes de similitud entre las secuencias encontradas a partir de los amplificados de los adenocarcinomas mamarios estudiados y las secuencias depositadas en el NCBI para el MMTV se encuentran en el mismo rango que los datos publicados por Wang y col., en 1995, Melana S y col., 2001, Lui B y col., 2001, Melana y col., 2002, Ford C y col., 2003, , Levine P y col., 2004 con datos entre 95 – 98% de similitud entre secuencias.

Adicionalmente. nosotros amplificado encontramos un cuva secuencia correspondía con un 99% de similitud con respecto al gen env del HMTV (EF495356.1) ver figura 28. Esta similitud cercana al 100% entre las secuencias obtenidas nos llevó a preguntarnos si existe homología entre dichas secuencias. El árbol filogenético construido a partir de las distancias calculadas por el alineamiento hecho con las secuencias amplificadas de los adenocarcinomas muestra claramente tres principales ramas en las que son organizadas las secuencias, una de ellas contiene a la secuencia depositada en el NCBI para el MMTV (MMTV NC 001503.1) y las secuencias obtenida a partir de las muestras tumorales 027CM y 007CM (ambas muestras con un diagnóstico de Carcinoma ductal infiltrante), y en otra rama se ven organizadas las secuencias obtenidas de los adenocarcinomas mamarios 032CM, 031CM y la secuencia del control positivo (construcción hecha con el gen env del MMTVC3H) con una distancia muy parecida entre ellas, lo cual indicaría una distancia evolutiva más cercana entre ellas con respecto a las secuencia MMTV_ NC001503.1. Estos datos confirman los datos publicados anteriormente, las secuencias amplificadas son similares pero no iguales al MMTV y manifiestan homología. Este hecho sustentaría la idea de un homólogo humano para el MMTV el cual ha sido denominado con anterioridad Virus del tumor mamario en humanos (HMTV de sus siglas en inglés Human Mammary Tumor Virus). Estos hechos podrían tener implicaciones mucho más serias al sugerir un evento evolutivo conjunto entre los genomas del MMTV y el HMTV mediante un ancestro común y como resultado la aparición de genes ortólogos para el gen env del MMTV y el HMTV.
Aunque existe la misma tendencia de encontrar tumores mamarios con secuencias de alta homología (98%-99% de similitud entre secuencias) relacionadas al gen *env* del MMTV los porcentajes de detección son heterogeneos como se puede observar en los datos de incidencia publicados por Zapata P en 2006, en dicho trabajo es posible analizar desde una perspectiva geográfica los datos reportados por Wang y col. en 1988, Melana y col. en el 2002, Mant y col. en el 2004, Levine y col. en el 2004 y Ford y col. en el 2003. Los porcentajes de incidencia son bastante heterogeneos desde un 74% reportado en Túnez hasta un 0% reportado en Reino unido y un 4.2% reportado en México en un primer trabajo por el grupo de Zapata-Benavides y col. Estos datos demuestran que los porcentajes de incidencia son heterogeneos y no presentan aparentemente

Los reportes anteriores destacan los porcentajes de detección de las secuencias *env* en los tejidos de mama no afectados (1-4% de las muestras analizadas). Nuestros datos encontrados en la detección de secuencias *env* del MMTV siguen esta misma tendencia (0% de muestras *env* positivas en los tejidos no afectados estudiados). Estos datos sugieren fuertemente una posible asociación entre la presencia de las secuencias *env* en los tumores mamarios y no en los tejidos no afectados del mismo paciente, lo que conllevaría una infección por el retrovirus MMTV al no encontrarse dicha secuencia en los tejidos no afectados del mismo paciente. Sugerentemente la secuencia permanece de forma exogena tal y como lo habia indicado Melana S y col. en 2001.

Analizando esta aparente asociación geográfica Steward T y colaboradores en el año 2000, encontró que la mayor tasa de incidencia de cáncer de mama en humanos se localizaba en lugares donde *Mus domesticus* era un residente común con los humanos. Notando que en el 50% de los ratones Mus domesticus, provenientes del sur California (USA), eran detectables regiones MMTV exógenas. Stewart y colaboradores sugirieron que una alta concentración de Mus domesticus en la población humana puede estar relacionado con una mayor incidencia del MMTV en los tumores mamarios de humanos. Lo que colocaría necesariamente a Mus domesticus como agente infeccioso del MMTV en humanos.

Sin embargo, aún es necesario aclarar los mecanismos por los cuales el MMTV puediera estar infectando células humanas. Las principales dudas sobre esta asociación entre la infección con MMTV y los adenocarcinomas mamarios radican en:

- El tumor murino debido al MMTV como modelo para los carcinomas de mama humanos está lejos de ser ideal, ya que la histopatología de estas lesiones es diferente: el primero se asemeja más una hiperplasia que a un carinoma ductal infiltrante (el tipo de cáncer mamario más común en humanos).
- En segundo lugar, si el virus humano MMTV(HMTV) tiene un ciclo de vida similar al MMTV, se esperaría que la transmisión a través de la leche materna deberia ocurrir (como ocurre de la forma endogena en los ratones infectados con MMTV). Titus-Ernstoff L en 1998 demostró en un amplio estudio de casos y controles en 8 300 mujeres con cáncer de mama que la lactancia materna por sus madres no fue un factor de riesgo en ellas, sin embargo partículas virales del MMTV han sido descritas en la leche materna humana (Titus-Ernstoff L y col., 1998, Johal H y col., 2010).

Los efectos mutagénicos del MMTV dependen del sitio de integración del DNA proviral en el genoma humano, lo que da como resultado múltiples mutaciones y la desregulación de WNT(una familia de genes que codifican factores de señalización extracelular y participan en la regulación del crecimiento de las células embrionarias y en procesos de diferenciación). En las células humanas el DNA del MMTV se integra en múltiples sitios en el genoma: en los cromosomas 1, 2, 3, 6, 7, 10,11, 12, 17 y 22. Resulta de particular interés una región en el cromosoma 17, donde ocurren dos sitios de integración (WNT15 y WNT3), estos sitios de inserción flanquean estrechamente un gen de susceptibilidad a cáncer mamario BRCA-1. Esta pequeña región en 17q21 también contiene varios oncogenes, incluyendo dos que se asocian con cáncer de mama: HER-2/neu [v-erb-b2 aviar eritroblásticos leucemia homólogo del oncogén viral 2 y RAB5C (un miembro de la familia de oncoproteínas RAS), quienes conjuntamente con el factor

de crecimiento de fibroblastos 3 (FGF3) resultan fundamentales para la inducción de tumores mamarios murinos.

Recientemente en 2007 el grupo de trabajo de Theodorou V, reportaron 33 sitios de inserción comunes los cuales fueron identificados mediante un "screninng masivo" en tumores mamarios inducidos por MMTV (Theodurou V y col, 1997).

Los genes encontrados en las búsquedas bioinformáticas realizadas y que posiblemente estén involucrados en inserciones virales del MMTV sugieren diversos procesos celulares y distintas rutas metabolicas involucradas. Los genes precursores de Caderina 7 (cadherin-7 NW_00183469.1) fueron encontrados 4 veces (Valor e = 0.40) situados sobre el cromosoma 18 y que al igual que el transcrito NT_004487.19 (Molecula de adhesion celular isoformas 1 y 2, valor e = 0.17) estan implicados en los procesos de adhesión celular, mecanismo implicado fuertemente en el desarrollo del cáncer y metástasis como consecuencia de la pérdida del señalamiento celular y la inflamación. Otra región encontrada fue la correspondiente al gen de la proteína Serpin B8 isoformas a y b (serin proteinase inhibitors, valor e = 0.40) las cuales corresponde a un grupo de proteinas que regulan un conjunto de procesos intra y extracelulares tales como la fibrinolisis, coagulacion, diferenciacion celular, supresion celular, apoptosis y migración celular. Tambien fueron encontradas las regiones correspondientes al gen HIC2 (Homo sapiens hypermethylated in cancer 2, valor de e = 0.59). De acuerdo a los datos reportados por Theodorou V y col. en 2007 ellos reportan 33 sitios comunes de insercion y genes de las familias FGT, RSPO3, WNT, ASTN2, ATP2b1 suceptibles de inserciones por MMTV. Nosotros logramos amplficar una región correspondiente al proto-oncogen WNT-1 (NT_029419.12 ver secuencia seq012) y el FGF (NT_030059.13, secuencia seq003) lo cual corresponde a los sitios reportados anteriormente como sitios susceptibles de una inserción por MMTV.

Los genes encontrados mediante PCR splinkerette en los adenocarcinomas mamarios *env* positivos (NM_001012763.1 y NT_034772.6 correspondientes al receptor de la hormona liberadora de gonadotropina (GNRHR) y a la Pirofosfatasa

peroxisomal de NADH (NUDT12) implicada en el metabolismo energético) también fueron encontrados mediante las búsquedas informáticas realizadas, lo cual corrobora los datos obtenidos en los adenocarcinomas y sugiere la posibilidad de complementar el protocolo de PCR splinkerette y la búsqueda bioinformática.

Otra región amplificada en los adenocarcinomas mamarios corresponde a la NM_005204.2 correspondiente a la MAP3K8 (mitogen-activated protein kinase) la cual pertence a la familia de las proteincinasas que se activan en respuesta a estímulos extracelulares (mitogenos, estrés osmótico, calor y citosinas proinflamatorias) y regulan de manera rigurosa diversas mecanismos celulares tales como diferenciación celular, proliferación y apoptosis.

Finalmente, el conjunto de datos obtenidos correspondientes a las búsquedas informáticas empleando las secuencias LTRs y la secuencia del gen env del MMTV nos han arrojado datos interesantes que corroboran los estudios publicados anteriormente y confirman la participación del MMTV en el proceso de carcinogenesis debido a la mutagenesis insercional que provoca. La mutagénesis insercional provocada por el MMTV en el genoma humano pudiera estar participando conjuntamente con los factores de riesgo conocidos, confirmando la teoría del daño múltiple y coadyuvando con el diagnóstico de una enfermedad multifactorial. Nosotros coincidimos que aún es necesario responder diversas preguntas relacionadas con la forma en que la infección por MMTV se lleva a cabo en los humanos para sugerir una etiología viral del cáncer de mama, sin embargo también aportamos evidencia clara de que secuencias con similitud cercana al 99% con respecto al gen env del MMTV están presente y pueden ser amplificadas mediante PCR en tumores mamarios humanos y no en tejidos no afectados de pacientes con cáncer mamario. En adición, los genes encontrados mediante PCR splinkerette en las muestras tumorales, se ha documentado anteriormente que participan en diversos procesos relacionados en la iniciación y mantenimiento de los tumores mamarios en humanos. Esta evidencia acumulada en los últimos 15 años indica esa fuerte asociación entre una infección viral por MMTV y la manifestación de cáncer de mama en humanos.

9. Conclusiones

- Las secuencias *env* del MMTV son posibles detectarlas en muestras de pacientes mexicanas con cáncer de mama.
- Los porcentajes de similitud entre las secuencias amplificadas de las muestras de adenocarcinomas mamarios de mujeres mexicanas y las secuencias depositadas en el NCBI son muy parecidos a los porcentajes reportados con anterioridad (98 y 99% de similitud).
- Es posible detectar regiones de similitud de secuencias entre el gen *env*, las LTRs del MMTV y el genoma humano mediante búsquedas bioinformáticas.
- Los genes o regiones detectadas como posibles sitios de inserción del MMTV en el genoma humano son genes de las familias WTN, FGT.
- Los genes encontrados participan estrechamente en inicio y el mantenimiento de la carcinogénesis mamaria así como en procesos de diferenciación y apoptosis.
- Los datos encontrados mediante PCR splinkerette corroboran los genes encontrados en las búsquedas bioinformáticas.

10. Referencias

- 1. Adams, J., and Cory, S. (2007). The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337.
- Amit, I., Citri, A., Shay, T., Lu, Y., Katz, M., Zhang, F., Tarcic, G., Siwak, D., Lahad, J., Jacob-Hirsch, J., et al. (2007). A module of negative feedback regulators defines growth factor signaling. Nat. Genet. 39, 503–512.
- 3. Kesteloot H, Zhang J (2006): Differences in breast cancer mortality worldwide: unsolved problems Eur J Cancer Prev 15: 416-423.
- 4. Hanahan D, Weinberg R (2011): Hallmarks of Cancer: The Next Generation. Cell DOI 10.1016/j.cell.2011.02.013
- Isselbacher K, Braunwald E, Wilson J, Martín J, Fauci As, Kasper D. Harrison: (1994). Principios de Medicina Interna. 13^a ed. Madrid: McGRAW-Hill-Interamericana de España; P. 2089-2104
- 6. Osin P, Lakhani S (1999). The pathology of familial breast cancer: inmunohistochemistry and molecular analysis. Breast cancer research 1:36:-40
- 7. Stratton M, Campbell P, Futreal A (2009): The Cancer genome. Nature Reviews, doi:10.1038/nature07943
- Desai K, Kavanaugh C, Calvo A, Green J (2002): Chipping away at breast cancer: insights from microarray studies of human and mouse mammary cancer. Endocr Relat Cancer 9: 207-220.
- 9. Talbot S., & Crawford, D. H (2004) Viruses and tumours—an update. Eur. J. Cancer 40,1998–2005
- 10. Chatterjee A., Mambo, E. & Sidransky, D. (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663–4674
- 11. Ruiz E. (1993) Manual de patología mamaria. 1ª ed. Barcelona: Editorial JIMS SA;
- Lozano R, Knaul F, Gómez-Dantés H, Arreola-Ornelas H, Méndez O. (2008) Tendencias en la mortalidad por cáncer de mama en México, 1979-2006. Observatorio de la Salud. Documento de trabajo. Competitividad y Salud, Fundación Mexicana para la Salud
- 13. Aceves E. (2003) Boletín trimestral del Johnson & Johnson Medical Mexico, 3:7
- 14. Zamora P, Espinosa E, González M (2001). Cáncer de mama. Clasificación y concepto. Medicine 8(57): 3041-3049.
- Marinez J (1995). Biología molecular y cáncer. En: Herruzo AJ, Rodriguez-Escudero FJ, Comino R, editors. Avances en Oncologia Ginecologica y mamaria. 1ª ed. Granada. Proyecto Sur de Ediciones; 1995. P. 15-25.
- Russo J, Russo I (2000). Desarrollo y aspectos patogeneticosdel cáncer de mama humano. En: Perez Lopez FR, editors. Cancer de mama: biología, diagnóstico y tratamiento 1ª ed. Zaragoza. SEISGE, P. 7-16
- 17. Zur Hausen H (1991). Viruses in human cancers. Science. 54(5035):1167-73.
- S.M. Cohen, in: J. Parsonnet (Ed.), Microbes and Malignancy: Infection as a Cause of Human Cancers, Oxford University Press, Oxford, UK 1999, pp. 89–106
- 19. M. Minami, Y. Daimon, K. Mori, H. Takashima, T. Nakajima, Y. Itoh, T. Okanoue, Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as

an early drastic genetic change leading to hepatocarcinogenesis, Oncogene 24 (2005) 4340–4348.

- 20. Martin D y Gutkind J., Human tumor-associated virus and new insights into the molecuñar mechanisms of cancer. Oncogene 2009 27, S31-S42
- 21. Ganem D, Prince A. (2004). Hepatitis B virus infection–natural history and clinical consequences. N Engl J Med 350: 1118–1129
- 22. Guidotti LG, Chisari FV. (2006). Immunobiology and pathogenesis of viral hepatitis. Annu Rev Pathol 1: 23–61
- 23. Kao JH, Chen DS. (2002). Global control of hepatitis B virus infection. Lancet Infect Dis 2: 395–403.
- 24. Colombo M, Kuo G, Choo QL, Donato MF, Del Ninno E, Tommasini MA et al. (1989). Prevalence of antibodies to hepatitis C virus in Italian patients with hepatocellular carcinoma. Lancet 2: 1006–1008
- 25. Thomas DL, Astemborski J, Rai RM, Anania FA, Schaeffer M, Galai N et al. (2000). The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA 284:450–456.
- 26. Arvanitakis L, Yaseen N, Sharma S. (1995). Latent membrane protein-1 induces cyclin D2 expression, pRb hyperphosphorylation, and loss of TGF-beta 1-mediated growth inhibition in EBV-positive B cells. J Immunol 155: 1047–1056.
- Brown KD, Hostager BS, Bishop GA. (2001). Differential signaling and tumor necrosis factor receptor-associated factor (TRAF) degradation mediated by CD40 and the Epstein-Barr virus oncoprotein latent membrane protein 1 (LMP1). J Exp Med 193:943–954.
- Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E. (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80: 389–399.
- 29. Mant C, Hodgson S, Hobday R, D'Arrigo C, Cason J: A viral aetiology for breast cancer: time to re-examine the postulate. Intervirology 2004, 47: 2-13.
- 30. Stewart TH, Sage RD, Stewart AF, Cameron DW. Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus. Br J Cancer. 2000;82:446–451.
- 31. Choi Y, Kappler JW, Marrack P: A superantigen encoded in the open reading frame of the 3' long terminal repeat of mouse mammary tumour virus. Nature 1991, 350: 203-207.
- Brandt-Carlson C, Butel JS, Wheeler D: Phylogenetic and structural analyses of MMTV LTR ORF sequences of exogenous and endogenous origins. Virology 1993, 193: 171-185.
- 33. Hoshino A, Yee CJ, Campbell M, Woltjer RL, Townsend RL, van der MR et al.: Effects of BRCA1 transgene expression on murine mammary gland development and mutagen-induced mammary neoplasia. Int J Biol Sci 2007, 3: 281-291
- 34. Theodorou V, Kimm MA, Boer M, Wessels L, Theelen W, Jonkers J et al.: MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nat Genet 2007, 39: 759-769.

- 35. Davies BR, Platt-Higgins AM, Schmidt G, Rudland PS: Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-c-erbB-2 and MMTV-TGFalpha transgenic rats. Am J Pathol 1999, 155: 303-314.
- Stewart TH, Sage RD, Stewart AF, Cameron DW: Breast cancer incidence highest in the range of one species of house mouse, Mus domesticus. Br J Cancer 2000, 82: 446-451
- 37. Bock M. y Stoye J.P. (2000). Endogenous retroviruses and the human germ line. Curr. Op. Genet. Develop. 10, 651-655.
- Löwer R., Löwer, J. y Kurth, R. (1996). The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177-5184.
- 39. Indik S, Gunzburg WH, Salmons B, Rouault F: Mouse mammary tumor virus infects human cells. Cancer Res 2005, 65: 6651-6659.
- 40. Etkind PR, Stewart AF, Dorai T, Purcell DJ, Wiernik PH: Clonal isolation of different strains of mouse mammary tumor virus-like DNA sequences from both the breast tumors and non-Hodgkin's lymphomas of individual patients diagnosed with both malignancies. Clin Cancer Res 2004, 10: 5656-5664
- 41. Ford CE, Faedo M, Crounch R, Lawson JS, Rawlinson WD. Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in man and women. Cancer Res 2004;64:4755-9.
- 42. Etkind P, Du J, Khan A, Pillitteri J, Wiernik PH: Mouse mammary tumor virus-like ENV gene sequences in human breast tumors and in a lymphoma of a breast cancer patient. Clin Cancer Res 2000, 6: 1273-1278.
- 43. Melana SM, Nepomnaschy I, Sakalian M, Abbott A, Hasa J, Holland JF et al.: Characterization of viral particles isolated from primary cultures of human breast cancer cells. Cancer Res 2007, 67: 8960-8965.
- 44. Liu B, Wang Y, Melana SM, Pelisson I, Najfeld V, Holland JF et al.: Identification of a proviral structure in human breast cancer. Cancer Res 2001, 61: 1754-1759.
- 45. Zapata-Benavides P, Saavedra-Alonso S, Zamora-Avila D, Vargas-Rodarte C, Barrera- Rodriguez R, Salinas-Silva J et al.: Mouse Mammary Tumor Virus-Like Gene Sequences in Breast Cancer Samples of Mexican Women. Intervirology 2007, 50: 402-407.
- 46. Titus-Ernstoff L, Eagen KM, Newcomb PA, Baron JA, Stampfer M, Greenberg ER, Cole BF, Ding WM, Willet WM, Trichopoulous D: Exposure to milk in infancy and breast cancer risk. J Natl Cancer Inst 1998;90:921–924.
- 47. Litvinov SV, Golovkina TV, Kriukova IN, Vasilevskaia LN: A protein related to the main core protein of the mouse mammary cancer virus in a microparticle fraction of human milk (in Russian). Biull Eksp Biol Med 1987;103:338–340.
- 48. Wang Y, Holland JF, Bleiweiss IJ, Melana S, Liu X, Pelisson I, Cantarella A, Stellrecht K, Mani S, Pogo BG: Detection of mammary tumor virus env gene-like sequences in human breast cancer. Cancer Res 1995; 55: 5173–5179.
- 49. Wang Y, Pelisson I, Melana SM, Go V, Holland JF, Pogo BG: MMTV-like env gene sequences in human breast cancer. Arch Virol 2001; 146: 171–180.

- 50. Melana SM, Go V, Holland JF, Pogo BGT: Search for mouse mammary tumor virus-like env sequences in cancer and normal breast from the same individuals. Clin Cancer Res 2001; 7: 283–294.
- 51. Liu B, Wang Y, Melana S, Pelisson I, Najfeld V, Holland J, Pogo B: Identification of a proviral structure in human breast cancer. Cancer Res 2001; 61: 1754–1759.
- 52. Mant C, Gillett CD, Arrigo C, Cason J: Human murine mammary tumor virus-like agents are genetically distinct from endogenous retroviruses and are not detectable in breast cell lines or biopsies. Virology 2004; 318: 393–403.
- 53. Bindra A, Muradrasoli S, Kisekka R, Nord-gren H, Wärnberg F, Blomberg J: Search for DNA of exogenous mouse mammary tumor virus-related virus in human breast cancer samples. J Gen Virol 2007; 88: 1806–1809.
- 54. Levine PH, Pogo BG, Klouj A, Coronel S, Woodson K, Melana SM, Mourali N, Holland JF: Increasing evidence for a human breast carcinoma virus with geographic patterns. Cancer (Phila) 2004; 101: 721–726.
- 55. Ford CE, Tran D, Deng Y, Ta VT, Rawlinson WD, Lawson JS: Mouse mammary tumor virus-like gene sequences in breast tumors of Australian and Vietnamese women. Clin Cancer Res 2003; 9: 1118–1120.
- 56. Melana SM, Picconi MA, Rossi C, Mural J, Alonio LV, Teyssie A, Holland JF, Pogo BG: Detection of murine mammary tumor virus env gene-like sequences in breast cancer from Argentine patients. Medicina (B Aires) 2002; 62: 323–327.
- 57. Luo T, Wu XT, Zhang MM, Qian K: Study of mouse mammary tumor virus-like gene sequences expressing in breast tumors of Chinese women (in Chinese). Sichuan Da Xue Xue Bao Yi Xue Ban 2006; 37: 844–846, 851.
- 58. Ford CE, Faedo M, Crounch R, Lawson JS, Rawlinson WD: Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in man and women. Cancer Res 2004; 64: 4755–4759.
- 59. Holland JF, Melana SM, Wang Y, Bleiweiss I, Levine P, Gombe Mbalawa C, Kalengayi M, Ndom P, Ramirez M, Cervantes G, Pogo BGT: Geographic variation in proportion of breast cancers with sequences homologous to MMTV env gene. Proc Am Assoc Cancer Res 1998; 39: 55.
- 60. Etkind P, Du J, Khan A, Pillitteri J, Wiernik P: Mouse mammary tumor virus like env gene sequences in human breast tumors and in a lymphoma of breast cancer patient. Clin Cancer Res 2000; 6: 1273–1278
- 61. Ford CE, Faedo M, Crounch R, Lawson JS, Rawlinson WD. Progression from normal breast pathology to breast cancer is associated with increasing prevalence of mouse mammary tumor virus-like sequences in man and women. Cancer Res 2004;64:4755-9.