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Abstract 
In this paper is described the application of an on-line algebraic identification methodology for parameter and 
signal estimation in vibrating systems. The algebraic identification is employed to estimate the frequency and 
amplitude of exogenous vibrations affecting the mechanical system using only position measurements. The 
algebraic identification is combined with an adaptive-like sliding mode control scheme to asymptotically stabilize 
the system response and, simultaneously, cancel the harmonic vibrations. Numerical and experimental results 
show the dynamic and robust performance of the algebraic identification and the active vibration control scheme. 
Keywords: Active vibration control, On-line algebraic identification, Sliding mode control. 
 
Resumen 
En este artículo se describe la aplicación de una metodología para la identificación algebraica en línea para 
estimación de parámetros y señales en sistemas vibratorios. La identificación algebraica se utiliza para estimar la 
frecuencia y la amplitud de vibraciones exógenas que afectan a un sistema mecánico, usando únicamente 
mediciones de posición. La identificación algebraica se combina con un esquema de control por modos deslizantes 
del tipo adaptable para estabilizar asintóticamente la respuesta del sistema y, simultáneamente, cancelar las 
vibraciones armónicas. Resultados numéricos y experimentales muestran el desempeño dinámico y robusto de la 
identificación algebraica y del esquema de control activo. 
Palabras clave: Control activo de vibraciones, Identificación algebraica en línea, Control por modos deslizantes. 

 
1 Introduction 
 
The identification of dynamical systems, involving explicitly the parameter identification, is a well-known process to 
develop or improve the mathematical description of a physical system by means of a proper use of experimental data. 
System identification methods provide the analytical tools, algorithms, computational programs and real-time 
implementation to get good approximations to an adequate model for analysis and control purposes. There exists a 
vast literature on the area, although most of the identification and estimation methods are essentially asymptotic, 
recursive or complex that lead to unrealistic implementations. See, e.g., [Ljung, 1987; Soderstrom, 1989; Sagara and 
Zhao, 1989; Sagara and Zhao, 1990]. 

This paper deals with the application of an on-line algebraic identification approach to estimate the physical 
parameters on mass-spring-damper systems as well as the amplitude and excitation frequency of harmonic 
perturbations affecting directly the mechanical system. The algebraic identification is combined with an adaptive-
like sliding mode control scheme to asymptotically stabilize the system response and, simultaneously, cancel the 
harmonic vibrations. The main virtue of the proposed identification and adaptive-like sliding mode control scheme 
for vibrating systems is that only measurements of the transient input/output behavior are used during the 
identification process, in contrast to the well-known persisting excitation condition and complex algorithms required 
by most of the traditional identification methods [Ljung, 1987; Soderstrom, 1989]. The proposed results are strongly 
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based on a theoretical framework on algebraic identification methods reported recently by [Fliess and Sira-Ramírez, 
2003]. 

 
2 Algebraic parameter identification 
 
To illustrate the basic ideas of the algebraic identification methods proposed by [Fliess and Sira-Ramírez, 2003], it is 
considered the on-line parameter identification of a simple one degree-of-freedom mass-spring-damper system as 
well as the parameters associated to an exogenous harmonic perturbation affecting directly its dynamics. 

The mathematical model of the mechanical system is described by the ordinary differential equation  
 

 (1) 
 
where x denotes the displacement of the mass carriage, u is a control input (force) and  is a 
harmonic force (perturbation). The system parameters are the mass m, the stiffness constant of the linear spring k and 
the viscous damping c.  

In spite of a priori knowledge of the mathematical model (1), it results evident that this is only an approximation 
for the physical system, where for large excursions of the mass carriage the mechanical spring has nonlinear stiffness 
function and close to the rest position there exist nonlinear damping effects (e.g., dry or Coulomb friction). Another 
inconvenient is that the information used during the identification process contains small measurement errors and 
noise. It is therefore realistic to assume that the identified parameters will represent approximations to equivalent 
values into the physical system. As a consequence the algorithms will have to be sufficiently robust against such 
perturbations. Some of these properties have been already analyzed by [Fliess and Sira-Ramírez, 2003]. 
 
On-line algebraic identification 
Consider the unperturbed system (1), that is, when , where only measurements of the displacement x and the 
control input u are available to be used in the on-line parameter identification scheme. To do this, the differential 
equation (1) is described in notation of operational calculus [Fliess and Sira-Ramírez, 2003] as follows  
 

 (2) 
 
where  and  are unknown constants denoting the system initial conditions at . In order 
to eliminate the dependence of the constant initial conditions, the equation (2) is differentiated twice with respect to 
the variable s, resulting in  
 

 (3) 

 
Now, multiplying (3) by s-2 one obtains that  
 

 (4) 

 
and transforming back to the time domain leads to the integral equation 
 

 (5) 
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where  and  are iterated integrals of the form , with  

 and n a positive integer. 
 

The above integral-type equation (5), after some more integrations, leads to the following linear system of 
equations  

 

 (6) 
 
where  denotes the parameter vector to be identified and ,  are  and  matrices, 
respectively, which are described by  
 

 

 

whose components are time functions specified as  
 

  

  

  

 

  

 

  

 

  

 

  

 
From the equation (6) can be concluded that the parameter vector θ is algebraically identifiable if, and only if, 

the trajectory of the dynamical system is persistent in the sense established by [Fliess and Sira-Ramírez, 2003], that 
is, the trajectories or dynamic behavior of the system (1) satisfy the condition . 

In general, this condition holds at least in a small time interval , where δ is a positive and sufficiently 
small value. 

By solving the equations (6) it is obtained the following algebraic identifier for the unknown system parameters  
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 (7) 

where  
 

 

 
 

 
 

 
 
Simulation and experimental results 
The performance of the on-line algebraic identifier of the system parameters (7) is now evaluated by means of 
numerical simulations and experiments on an electromechanical platform (ECP™ rectilinear plant) with a single 
degree-of-freedom mass-spring-damper system. The physical parameters were previously estimated through several 
experiments with different excitation inputs (natural and forced vibrations, step and sine sweep inputs, etc.) resulting 
in the following set of parameters:  
 

  
 
Nevertheless, it is convenient to remark that the real system clearly exhibits nonlinear effects like nonlinear 

stiffness and damping functions (hard springs and Coulomb friction on the slides) that were not considered during 
the synthesis of the algebraic identifier. 

Fig. 1 shows the simulation results using the algebraic identifier for a step input u=4 [N]. Here it is clear how 
the parameter identification is quickly performed (before t=1.02 s) and it is almost exact with respect to the real 
parameters. It is also evident the presence of singularities in the algebraic identifier, i.e., when the determinant 
den=det(A) is zero. The first singularity, however, occurs about t=1.02 s, that is too much time (more than 5 times) 
after the identification has been finished. 

 
Fig. 1. Simulation results of the algebraic identifier. The subscript “e” denotes estimated values and den=detA(t) 
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Fig. 2 presents the corresponding experimental results using the on-line algebraic identification scheme (7). In 
this case the actual system response is quite similar to the numerical simulation, resulting in the following 
(equivalent) parameters:  

 
  

 
These values represent good approximations for the real parameters. Nevertheless, the identification process 

starts with some irregular behavior and the estimation takes more time (about ), which we have attributed 
to several factors like neglected nonlinear effects (stiffness and friction), presence of noise on the output 
measurements and especially the computational algorithms based upon a sampled-time system with fast sampling 
time  and numerical integrations based on trapezoidal rules. Some of these problems in the parameter 
estimation have been already analyzed by [Sagara and Zhao, 1990]. 

 
Fig. 2. Experimental results obtained on a ECP™ Rectilinear Plant using algebraic identification methods 

 
Many numerical and experimental results validate the good response of the on-line algebraic identification 

methods of unknown parameters. In addition, it can be proved the good robustness properties of the algebraic 
identifiers against stochastic perturbations, noisy measurements, small parameter variations and nonlinearities, which 
are not included here for space limitations. Moreover, because the algebraic identification process is quickly 
achieved with a high-speed DSP board, then any possible singularity does not affect significantly the identification 
results. Otherwise, close to any singularity or variations on the system dynamics, the algebraic identifier can be 
restarted. 
 
3 Algebraic identification of harmonic vibrations 
 
The algebraic identification methods can be applied to estimate the parameters associated to exogenous perturbations 
affecting a mechanical vibrating system. 

Consider again the mechanical system (1) with known parameters m, k and c and only measurements of the 
displacement x and the control input u are available for the identification process of the harmonic signal 

. In this case we proceed to synthesize algebraic identifiers for the excitation frequency ω and amplitude F0. 
 
Identification of the excitation frequency ω 
System (1) is then expressed in notation of operational calculus as  
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 (8) 
 
where  and  are the initial conditions. By multiplying (8) by  is 

obtained  
 

 
 
 

(9) 
 
where  are unknown constants depending on the system initial conditions and the excitation frequency 
ω, that is,  
 

 
 
In order to eliminate the presence of the amplitude F0 and the constants  we differentiate the 

equation (9) four times with respect to s and the result is multiplied by s-4, resulting  
 

 (10) 
 
where  

 
 

               
 

               
 

 
 
 
The algebraic equation (10) is now transformed into the time domain, that is,  
 

 (11) 
where  
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Therefore, if the system trajectory or its solution is persistent in the sense formulated by [Fliess and Sira-
Ramírez, 2003] (i.e., when the condition  be satisfied at least for a small time interval , where 

 is a sufficiently small quantity), we can find from (11) a closed-form expression for the estimated excitation 
frequency  

 (12) 

 
which is independent of the amplitude  and the initial conditions.  
 
Identification of the amplitude  
To synthesize an algebraic identifier for the amplitude F0 of the harmonic vibrations acting on the mechanical system 
(1), we first express the differential equation in notation of operational calculus as follows  
 

 (13) 
 
Taking derivatives, twice, with respect to s and multiplying by s-2 makes possible to remove the dependence on 

the initial conditions and , resulting 
 

 (14) 

 
Now, a time domain representation of (14) leads to 
 

 

 

 
 

(15) 

It is important to note that equation (14) still depends on the excitation frequency ω. Therefore, it is required to 
synchronize both algebraic identifiers for ω and . This procedure is sequentially executed, first by running the 
identifier for ω and, after some small time interval with the estimation  is then started the algebraic 
identifier for , which is obtained by solving   

 
 (16) 

 
In this case the system trajectory is persistent if, and only if, the condition  is satisfied for all  

 with  [Fliess and Sira-Ramírez, 2003]. Then the solution  of (16) yields the 
algebraic identifier 

 

 (17) 

 
where  
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Simulation and experimental results 
The performance of algebraic identifier of harmonic vibrations (12) and (17) is now evaluated by means of numerical 
and experimental results on the ECP™ rectilinear plant, where is configured a single degree-of freedom mechanical 
system with . The real force applied to the system is given by  
 

 [N] 
 
where the true amplitude and excitation frequency are  [N] and  [rad/s], respectively. 

In Fig. 3 are shown some numerical simulations using the algebraic identifiers for the excitation frequency ω 
and amplitude . First of all it is started the identifier for ω, which takes about  s to get a good estimation. 
After the time interval  s, where  s and  s with an estimated value  [rad/s], it is 
activated the identifier for . In this case the identification process is faster, taking a very small time to obtain a 
good estimation for . Both estimations are almost exact with respect to the true values. 

 
Fig. 3. Simulation results using algebraic identification of the excitation frequency ω and amplitude  

 
The experimental results are presented in Fig. 4, where it is easy to note that both identification processes are 

slower with respect to the numerical simulations. 
Again, we assume that such incompatibility is caused by unmodelled dynamics and nonlinearities into the 

physical system (e.g., nonlinear stiffness, dry and Coulomb friction, backlash), the numerical methods used in the 
computational algorithms (e.g., sampling-data measurements, numerical integrations) and presence of noise into the 
input/output measurements. Such obstacles, however, do not affect substantially the algebraic identification process, 
resulting in fast and good estimations  [rad/s] and  [N]. 
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Fig. 4. Experimental results using on-line identification for ω and  

 
4 An Active Vibration Control Scheme 
 
Consider the vibrating mechanical system shown in Fig. 5.a, which consists of a passive vibration absorber 
(secondary system) coupled to the perturbed mechanical system (1). The generalized coordinates are the 
displacements of both mass carriages,  and , respectively. In addition, u represents the (force) control input and f  
a harmonic perturbation. Here ,  and  denote mass, linear stiffness and linear viscous damping on the primary 
system; similarly, ,  and   denote mass, stiffness and viscous damping of the passive/active vibration 
absorber. 
 

 

 

 
(a) (b) 

Fig. 5. Mechanical system: a) Schematic diagram, and b) ECP™ rectilinear control system 
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The mathematical model of the two degree-of-freedom system is described by two coupled ordinary differential 
equations  

 
 

 
 

(18) 

 
where . In order to simplify the analysis we have assumed that  and . 
Defining the state variables as , ,  and , one obtains the following state space 
description  
 

 
 

 
 

 
 

 
 

 
 

(19) 

 
It is easy to verify that system (19) is completely controllable and observable, as well as marginally stable in 

case of c1=0, f=0 and u=0 (asymptotically stable when ). Note that the disturbance decoupling problem of f(t) 
using state feedback is not solvable because the output  has relative degree 4 with respect to u and relative 
degree 2 with respect to f. 

To cancel the exogenous harmonic vibrations on the primary system, the dynamic vibration absorber should 
apply an equivalent force to the primary system, with the same amplitude but in opposite phase. This means that the 
vibration energy injected to the primary system is transferred to the absorber through the coupling elements (i.e., 
spring k2). Of course, this vibration control method is possible under the assumption of perfect knowledge of the 
exogenous vibrations f(t) and stable operating conditions. See, e.g., [Korenev and Reznikov, 1993] and references 
therein. 
In what follows we will apply the algebraic identification method to estimate the harmonic force f(t) and design an 
active vibration controller based on state feedback and feedforward information of  f(t). 
 
Differential flatness property 
Because the system (19) is completely controllable then, it is differentially flat, with flat output given by . 
Then, all the state variables and the control input can be parameterized in terms of the flat output y and a finite 
number of its time derivatives [Fliess et al., 1993]. As a matter of fact, from y and its time derivatives up to fourth 
order we can obtain:  
 

 
 

 
 

 
 

 
 

(20) 
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where c1=0 and f=0. Therefore, the parameterization results as follows 
 

 

 
 

 
 

 
 

 
 

(21) 

 
From (21) we can obtain a control law to asymptotically track some desired reference trajectory  given by  
 

 
 

 
 

(22) 

 
where , are positive real constants, which are chosen such that the characteristic polynomial 

 be Hurwitz, i.e., all its roots lying in the open left half complex plane. Nevertheless, this 
controller is not robust with respect to exogenous signals or parameter uncertainties in the model. In case of 

, the parameterization should explicitly include the effect of f  and its time derivatives up to second order. 
Next, we will synthesize a sliding mode controller, which combines the property of differential flatness and the 

integral reconstruction approach, in order to get a robust controller against external vibrations. 
 
Sliding mode control 
Consider the perturbed system (19), where only the output  and the input u are available for use on a sliding 
mode control scheme, under the temporary assumption that the excitation frequency ω is perfectly known. 

The state variables and the control input u can be expressed in terms of the flat output y, the perturbation and 
their time derivatives:  

 
 

 

 
 

 
 

 
 

 
 

(23) 

 
 

Then, when , the output y satisfies the following perturbed input-output differential equation 
 

 (24) 
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For simplicity, we have supposed that . 
In the equation (24), one can see that when the excitation frequency ω coincides with the uncoupled natural 

frequency of the dynamic vibration absorber (i.e., ) the vibrations affecting the primary system 
are cancelled. 

The main goal is the design of a robust controller that allows to the active dynamic vibration absorber to cancel 
harmonic vibrations of any excitation frequency affecting the primary system and, simultaneously, the mechanical 
system follows an off-line pre-specified desired reference trajectory. In addition, we want to preserve the main 
application of a passive dynamic vibration absorber. This means that the control effort must be zero (u=0) at the 
tuning frequency of the vibration absorber (ω2). 

To do that, we differentiate (24) twice with respect to time, resulting 
 

 (25) 

 
Multiplication of (24) by ω2 and adding it to (25), leads to 
 

 (26) 
where  
 

  
  

  

 
The input-output differential equation (26) allows us to design a controller that does not depend on the 

amplitude of the vibrations . 
A traditional sliding surface that, under ideal sliding conditions: , gets asymptotic tracking of a 

desired output reference trajectory  is given by 
 

 
 

 
(27) 

 
where the design gains  are chosen so that the characteristic polynomial 

 is Hurwitz, i.e., all its roots lying in the open left half complex plane. 
However, the sliding surface (27) requires the knowledge of some time derivatives of the output variable y. 

From (26), the time derivatives of the output variable y up to fifth order can be reconstructed by means of integral 
reconstruction. That is, they can be expressed in terms of the output y, the input u and iterated integrals of the input 
and output variables. For more details on this topic see [Fliess et al., 2002]. 

For zero initial conditions, the integral input-output parameterization of the time derivatives of the output 
variable is given by 

 

 

 

 

 

(28) 
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These expressions were obtained by successive integrations of the equation (26). For simplicity, we have 
denoted the integral  by  and  by  and so on.  

For non-zero initial conditions, these expressions differ from the actual values by at most a fourth order time 
polynomial of the form: , where , , are all real constants depending on the 
unknown initial conditions. 

A sliding surface can now be proposed as 
 

 
 

 
(29) 

 
where  is a desired output reference trajectory and . Then, the ideal sliding condition  
results in a tenth order dynamics  

 (30) 
 
which is completely independent of any initial conditions. Therefore, selecting the design parameters , , 
such that the associated characteristic polynomial for (30) be Hurwitz, one guarantees that the error dynamics on the 
sliding surface  be globally asymptotically stable. In addition, by forcing the sliding surface  to satisfy the 
discontinuous closed loop dynamics:  
 

 (31) 
 
where sign stands for the signum function, one then gets the sliding mode control as a solution of the differential 
equation  
 

 
 

 
 

       
 

(32) 

 
where . This controller employs only measurements of  and the excitation 
frequency ω. 
 
Simulation and experimental results 
Fig. 6 shows the numerical and experimental dynamic behavior of the sliding mode control scheme. In this case, the 
harmonic perturbation  was applied to the mechanical system, which is close to the system's 
resonance. In the implementation of this controller, an error in the measurement of the excitation frequency was 
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introduced intentionally, this is ω=19 [rad/s]. In spite of that, we can see how the active vibration absorber dissipates 
the vibrating energy from the primary system  and allows the asymptotic output regulation about  
[mm]. The parameters for the ECP™ rectilinear plant are 

. 

 
Fig. 6. Numerical and experimental responses of the close-loop system 

 
Algebraic identification of harmonic vibrations 
The main goal is the algebraic identification of the harmonic force f(t), which will be obtained through similar 
procedures stated in previous sections using only measurements of the output  and considering that the system 
parameters are perfectly known. 
Consider the input-output differential equation (24) written in operational calculus terms  
 

 
(33) 

 
where , , denote unknown constants depending on the unknown system initial conditions. Now, equation 
(33) is multiplied by , leading to 
 

 
(34) 

 
This equation is differentiated six times with respect to s in order to cancel the constants ai and the unknown 

amplitude  . The resulting equation is then multiplied by s-6, and next transformed into the time domain, to get 
 

 (35) 
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Where 
 

 
 

 
 

 

 

  
 

 

With 
 

 

 

               
 

 

 

 

 

 

 
Finally, solving for the excitation frequency ω in (35) leads to the following on-line identifier 
 

 (36) 

 
This estimation is valid if, and only if, the condition  holds in a sufficiently small time interval  

 with . 
By using the same procedure to estimate the amplitude  in the section 2, we obtain the following on-line 

identifier for the amplitude  
 

 (37) 

where  
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At this point we assume that the excitation frequency has been previously estimated, during a small time 

interval , using (36). After the time  it is started the on-line identifier for the amplitude. Such 
an estimation is valid as far as the system trajectory be persistent, that is, if the condition  holds for a 
sufficiently small time interval    with . 
 
Simulation results 
Fig. 7 shows the identification process of the resonant harmonic vibrations  [N] and the 
dynamic behavior of the adaptive-like control scheme (32), which starts using the nominal value  [rad/s]. We 
can see that the resonant vibrations are asymptotically and actively cancelled from the displacement of the primary 
system . A desired reference trajectory was considered for regulating the evolution of the output variable toward 
the desired equilibrium  [m], which is given by a Bezier type polynomial in time. The parameters for 
the ECP™ rectilinear plant are . 

 
Fig. 7. Controlled system responses and identification of frequency and amplitude of  

 
5 Conclusions 
 
In this paper we have described the application of a novel algebraic identification approach for parameter and signal 
estimation in vibrating systems. This approach is quite promising, in the sense that only input-output information is 
needed to get precise and fast parameter and signal estimations. This fact was exploited in the formulation of an 
active vibration control scheme based on sliding modes. Since this active controller requires measurements of the 
excitation frequency of the harmonic vibrations, the algebraic identification is combined to get an adaptive-like 
controller. The adaptive-like control scheme results quite precise, fast and robust against parameter uncertainty and 
variations on the excitation frequency and amplitude of the exogenous perturbations. Further work is being 
conducted to extend the application to nonlinear vibrating systems. 
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