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Abstract 
 It has been previously shown that actual network traffic exhibits long-range dependence.  The Hurst parameter 
captures the degree of long-range dependence; however, because of the nature of computer network traffic, the 
Hurst parameter may not remain constant over a long period of time.  An iterative method to compute the value of 
the Hurst parameter as a function of time is presented and analyzed.  Experimental results show that the proposed 
method provides a good estimation of the Hurst parameter as a function of time.  Additionally, this method allows 
the detection on changes of the Hurst parameter for long data series.  The proposed method is compared with 
traditional methods for Hurst parameter estimation.  Actual and synthetic traffic traces are used to validate our 
results.  The proposed method allows detecting the changing points on the Hurst parameter, and better results can 
be obtained when modeling self-similar series using several values of the Hurst parameter instead of only one for 
the entire series.  A new graphical tool to analyze long-range dependent series is proposed.  Because of the nature 
of this plot, it is called the transition-variance plot.  This tool may be helpful to distinguish between LAN and 
WAN traffic.  Finally, the software LRD Lab* is deployed to analyze and synthesize long-range dependent series.  
The LRD Lab includes a simple interface to easily generate, analyze, visualize and save long-range dependent 
series.  
Keywords: Estimation of Hurst parameter, self-similarity, long-range dependence, time-varying Hurst parameter. 
 
Resumen 
Ha sido previamente propuesto que el tráfico real de redes de computadoras exhibe dependencia de rango amplio.  
El parámetro de Hurst captura la cantidad de dependencia de rango amplio; sin embargo, debido a la naturaleza 
del tráfico en redes de computadoras, el parámetro de Hurst puede no permanecer constante durante un periodo 
largo de tiempo.  Un método iterativo para calcular el valor del parámetro de Hurst como una función del tiempo 
es presentado y analizado.  Los resultados experimentales demuestran que el método propuesto proporciona una 
buena estimación del parámetro de Hurst como una función del tiempo.  Adicionalmente, este método permite la 
detección de cambios en el parámetro de Hurst para series largas.  El método propuesto es comparado con 
métodos tradicionales para estimar el parámetro de Hurst.  Series de datos reales y sintéticas son usadas para 
validar los resultados.  El método propuesto permite detectar los puntos de cambio del parámetro de Hurst, y 
mejores resultados pueden ser obtenidos al modelar series similares a sí mismas usando varios valores del 
parámetro de Hurst en lugar de solamente uno para toda la serie.  Una nueva herramienta gráfica para analizar 
series con dependencia de rango amplio es propuesta.  Debido a la naturaleza de esta gráfica, ésta se llama gráfica 
de transición de varianza.  Esta herramienta puede ser usada para distinguir entre tráfico LAN y WAN.  
Finalmente, el software LRD Lab* es desarrollado para analizar y sintetizar series con dependencia de rango 
amplio. El LRD Lab incluye una interfase sencilla para generar, analizar, visualizar y almacenar series con 
dependencia de rango amplio. 
Palabras clave: Estimación del parámetro de Hurst, similar así mismo, dependencia de rango amplio, parámetro 
de Hurst variante en el tiempo. 
 
* The LRD Lab can be downloaded at http://www.fimee.ugto.mx/profesores/sledesma/documentos/ index.htm 
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1 Introduction 
 
A standard assumption of time series analysis is that observations separated by a large time span are roughly 
independent. However, in some time series, the observations are not independent and exhibit long-range dependence. 
Thus, long-range dependence involves the tail behavior of the autocorrelation function.  The simplest models with 
long-range dependence are self-similar processes, which are characterized by a hyperbolically decreasing 
autocorrelation function. Self-similar and asymptotically self-similar processes are particularly attractive models 
because the long-range dependence can be characterized by a single parameter called the Hurst parameter, H (the 
degree of both self-similarity and long-range dependence increases as .1→H )  On the other hand, it has been 
pointed out that it may be unrealistic to characterized the process only by a single value of H [Stoev et al., 2006].   

Nowadays, computer network traffic affects significantly the performance of most Internet services [Krunz and 
Matta, 2002; Moulines, et al., 2002; Zukerman et al., 2003]. Practical network traffic modeling is crucial to 
efficiently accommodate data links, and may include the synthesis and analysis of long-range dependent series.  
Contrary to commonly held views that multiplexing traffic streams tends to produce smoothed-out aggregate traffic 
with reduced burstiness, aggregating self-similar traffic streams can actually intensify burstiness rather than diminish 
it [Leland, et al., 1994].  It is demonstrated in [Erramilli, et al., 1996; Karagiannis, et al., 2004; Ramirez and Torres, 
2006] that long-range dependence is not merely relevant for queuing performance but it is a dominant characteristic 
for determining several issues of network engineering.  

On the other hand, the synthesis of long-range dependent series has been intensively analyzed [Paxson, 1997; 
Ledesma et al., 2000; Purczynski and Wlodarski, 2005; Ledesma et al., 2007].  Several methods to estimate the Hurst 
parameter have been previously proposed, [Beran et al., 1995].  However, the detection on changes of the Hurst 
parameter is an open area for research.  This paper is organized as follows. Section 2 lists some of the traditional 
methods to estimate the Hurst parameter. Section 3 presents a new method to detect changes on the Hurst parameter. 
Section 4 shows experimental results to validate the proposed method.  Finally, section 5 offers conclusions and 
provides direction for future work.   
 
2 Estimation of H 
 
Consider a stochastic process { },2,1,0; == iXX i  where all }{ iX  have a common mean µ , a common finite 

variance 2σ and a stationary autocorrelation function )(kr that depends only on k, but not on i. A process with these 
properties is called second order or wide-sense stationary.   
 
Now, for each ,3,2,1=m  , let  

},,2,1,0;{ )()( == kXX m
k

m  
 
denote a new time series obtained by averaging the original series X; that is,  
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m
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k
−− ++

=
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Let 2

mσ and )(mr denote the variance and the autocorrelation function of }{ )(m
kX , then X is called an exactly 

second-order self-similar process, if, for all ,3,2,1=m  
 

)22(2)( )( Hm mXVar −−= σ  and  .0),()()( ≥= kkrkr m  
 

Additionally, X is called an asymptotically second-order self-similar process, if, for all k large enough,  
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  ),()()( krkr m →  as ∞→m . 
 

Additional information about second-order exact self-similar process and second-order asymptotical self-similar 
process can be found in [Tsybakov and Georganas, 1998].  

Before ending this section, it is important to mention that the new sequence )(m
kX is frequently used to estimate 

the Hurst parameter [Roughan, et al., 1998], and that generally, the Hurst parameter can be estimated using the:  
• Analysis of the variances of the aggregate processes )(mX .      
• Time-domain analysis based on the re-scaled adjusted range (R/S-statistics).   
• Frequency domain analysis based on the periodogram or Whittle's estimator.   
• Wavelet-based estimator, see Veitch and Abry (1998, 1999).      

 
2.1 The Aggregate Processes )(mX   
A valuable tool for assessing burstiness over different time-scales is the variance-time plot [Paxson and Floyd, 
1995].  For second-order self-similar processes, the variances of the aggregate processes )(mX , decrease linearly (for 
large m) in log-log plots against m with slopes arbitrarily flatter than -1.  On the other hand, the variances of )(mX  
for short-range dependent processes will eventually decrease linearly in log-log plots against m with a slope equal to 
-1.  A variance-time plot is obtained by plotting )](log[ )(mXVar  against )log(m and is used to determine whether the 
data support the asymptotic behavior of the form  
 

)22()( ][ Hm amXVar −−∝  (2) 
 

∞→m  when 0>a  and 12
1 << H .  Note that in this case a  is a positive constant to indicate that the variance of 

)(mX is proportional to )22( Hm −− . Thus, an estimate of the exponent of m, )22( H−− , can be obtained from the 
slope of a linear regression fitted through the resulting points in the plane, ignoring small values of m.   
 
2.2 R/S-Statistics   
Let { }NkXX k ,,2,1; ==  be a record containing N readings uniformly spaced in time from 1=k  to ,Nk = and 
let 

∑
=

=
k

u
uk XX

1

*  

 
 and  

[ ]****),,( knkkuk XX
n
uXXunkW −−−= ++ . 

 
Thus, *1

nXn−  is the average of the first n readings and ][ **1
knk XXn −+

−  is the average of readings within the 
sub-record from time 1+k  to time nk +  [Mandelbrot, 1969].   
 

),(2 nkS is defined as the sample variance of the sub-record from time 1+k  to time nk + , namely,  
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),( nkR  is defined as follows  
 

),,(min),,(max),(
0

unkWunkWnkR
nunuo ≤≤≤≤

−= . 

 
The objective of the R/S analysis of an empirical record is to infer the degree of self-similarity, H, for the 

process that presumably generated the record under consideration.  Hurst's study of the re-scaled adjusted range 
found that many historical records appeared to be well represented by   
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The ratio ),(/),( nkSnkR  is then called a re-scaled adjusted range.  To construct a pox plot of R/S, a sequence 

of logarithmically spaced values of n is selected. For each n, a number of starting points k is selected. Plotting 

)(
)(log nS

nR  versus )log(n  results in the re-scaled adjusted range plot.  

 
 2.3 The Periodogram   
Parameter estimation for random fields and random processes based on smoothed periodogram has a long history.  
The idea derives from suggestive forms of Whittle's estimation procedure, which has formed the backbone of 
asymptotic estimation since its discovery [Heyde and Gay, 1995].  Thus, instead of using the autocorrelation function 
to estimate H, a mathematically equivalent expression in the frequency domain may be used [Michiel and Laevens, 
1997].  The resulting quantity is called the power spectrum or power spectral density [Oppenheim and Schafer, 
1989].   
 
Specifically, this method is based on the behavior of the spectral density )(λf at the origin as shown 
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where )(kr is the autocorrelation function, )(λL  is a slowly varying function and 12

1 << H .  The absence of any 
limit law makes the statistics, corresponding to the R/S analysis or the variance-time plot inadequate. A more refined 
data analysis is possible for maximum likelihood-type estimates (MLE) and related methods based on the 
periodogram (.)XI of X, defined by 
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3 Proposed Method 
 
The analysis of real traffic in [Leland, et al., 1994] has shown that the Hurst parameter can be expected to change 
during a measurement period.  It was also concluded in [Leland, et al., 1994] that modeling the changing points of H 
may be needed in the future in order to produce more realistic traffic models.  Moreover, it has been established in 
[Paxson and Floyd, 1995] that while large-scale correlations are present in wide area network traffic traces, it might 
be difficult to characterize the correlations over the entire trace with a single Hurst parameter.  Clearly, further 
research is required to understand the correlation structure of network traffic.  In this section, an algorithm for 
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detecting the changing points of H is developed and evaluated.  Additionally, it is shown how this algorithm can be 
used to obtain a fast estimation of the Hurst parameter.   
 
3.1 Analysis of Self-Similar Traffic with Variable Hurst Parameter 
Apart from making parameter estimation for large self-similar series computationally feasible, the procedure 
proposed by [Beran and Terrin, 1992] provides a method for checking whether H (and possibly additional 
parameters) remains constant over time series. The issue of deciding whether there are any deviations or not in H 
over time can be a complex problem.  These deviations could be the result of actual changes in the dependence 
structure in the data or due to randomness. Additionally, estimates of H turn out to vary considerably when they are 
calculated from disjoint parts of a long-range dependent series.  In order to assess quantitatively how much the 
estimates of H can vary when they are estimated from different portions of the data, Beran and Terrin (1992) 
obtained the joint asymptotic distribution of the Whittle estimates of H based on disjoint sub-series.   

In order to detect the changing points of the Hurst parameter in a time series, the asymptotic relations of 
equations (2), (3), and (4) can be used.  Equations (2) and (3) provide a natural way to detect changes in the value of 
the Hurst parameter as a function of time, because they are time domain asymptotic relations of long-range 
dependence (LRD). Equation (2) is the time domain counterpart of equation (4).   Although equation (4) can be used 
to detect the changing points in the value of H, an iterative procedure based on this equation cannot be developed.  
Additionally, using the periodogram to detect the changing points in the Hurst parameter has already been analyzed 
by [Beran and Terrin, 1992].  Finally, note that equation (2) is the simplest method to estimate H, and that it can be 
iteratively implemented, which is one of the main advantages of using this approach to analyze data series with 
variable Hurst parameter.  
 

 
Fig. 1. Relationship between the variance-time plot and the transition-variance plot 

 
The analysis of self-similar traffic using the variance-time plot can be extended in a natural way to detect the 

changing points in the value of H.  From equation (2), it can be seen that the Hurst parameter may be calculated from 
the exponent of m.  Thus, in order to get an estimate of H, the variances of the aggregate processes )(mX , see 
equation (14), are plotted against m in log-log scales as described in section 2.1.  Figure 1 shows how the variance-
time plot is constructed; from this figure it can be clearly seen that the variance-time plot does not provide 
information about how the Hurst parameter is changing over time. 
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Fig. 2. Sliding window for several aggregation levels 

 
To detect changes on the Hurst parameter consider the following discussion. First, an aggregation base, ϕ , 

must be defined, see Figure 2. This results on logarithmic spaced values for m as shown 
 

,,,, 3210 ϕϕϕϕ=m    (5) 

 
Typical values for ϕ  are: 2 or 3; bigger values for ϕ  are recommended only for very long traces because the 

sequence length reduces quickly when the aggregation process is repeatedly applied. The value of ϕ  must be 
adjusted to obtain the desired resolution, a value of 2 results on the following aggregation values of ,8,4,2,1:m ; 
a value of 3, will produce the aggregation levels of ,27,9,3,1:m .  It is important to mention that as m (the 
aggregation level) becomes larger and larger, the variance is computed using fewer and fewer points. Therefore, 
there is a maximum value of m for which, it does not make any sense to keep computing the variance (as it will be 
small).   

Consider now, a window of size M whose elements are taken from a self-similar series X of length N with 
NM << , see Figure 2.  Hence,  

 

m
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=η  

 
is the length of )(mX .  Thus, an estimate of the sample variance for an aggregation level m using only the elements 
of the window can be calculated as follows:  
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where  
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for .1,,2,1,0 −= ηi  Observe that )(m

iR can be used to compute an estimate of the average value of )(mX while 
)(m

iQ can be used to compute an estimate of the average value of 2)( )( mX . 
By sliding the window through the whole series, it is possible to see how the variance changes through time. 

Moreover, the values of )(m
iQ  and )(m

iR  can be iterated as:  
 

2)(
1

2)(
1

)()(
1 ][][

22

m
i

m
i

m
i

m
i

m
M

m
M XXQQ −++++ −+=  

And 
 

.)(
1

)(
1

)()(
1

22

m
i

m
i

m
i

m
i

m
M

m
M XXRR −++++ −+=  

 
Thus, to see if the value of H remains constant through the whole series, we propose to plot )(myi , using 

equation (9), for several values of m and i, 
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Due to the nature of this plot, we have called transition-variance plot to the resulting graph. Figure 1 shows the 

relationship between the variance-time plot and the transition-variance plot.  It is seen from this figure that the 
variance-time plot provides an estimate of H for the whole series, while the transition-variance plot indicates how 
the Hurst parameter is changing with time. A typical variance-time plot can be seen from the left view of Figure 1.  
Mathematically, the transition-variance plot can be analyzed by writing equation (5) as 
 

,3,2,1,0, == µϕµm  (10) 
 
substituting equation (10) in equation (2), we  obtain 
 

)22()( ][ Hm aXVar −−∝ µϕ . (11) 
 

Applying the logarithm function on both sides of equation (11), we get 
 

.)log()22()](log[ )( CHXVar m +−−= ϕµ  
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A transition-variance plot is built by plotting )](log[ mXVar  for different values of µ ;  notice that for 0=µ ,  
 

CXVar m =)](log[ )( , 
 
therefore, C is an inconsequential  constant that determines the absolute position of the lines of a transition-variance 
plot, see Figure 1. This constant is irrelevant to this analysis because it is not a function of H. In order to 
mathematically interpret a transition-variance plot, it is important to see how )](log[ )(mXVar  changes when m 

changes, namely when µ  changes. This can be observed by computing the partial derivative of )](log[ )(mXVar with 
respect to µ  as shown 

),log()22()](log[ )(
ϕ

µµ −=
∂

∂
= HXVarz

m
 (12) 

 
where µz  indicates the line spacing on a transition-variance plot for two consecutive values of µ .  Because of the 
self-similar structure of the series under consideration, the values of µz  must be approximately the same no matter 
what value of µ  or ϕ is chosen.  Any irregularity on the spacing is a clear symptom that the process originating the 
series under analysis is not an exact self-similar process.  More over, the variance of µz  can be clearly used to 
establish how close the data under analysis is to the one generated from an exact self-similar process. 
 

Additionally, an aggregation process over the elements of the window can be performed to estimate  
 

).( )(mXVar  
 

To speed up the computation of the transition variance-time plot, we suggest an iterative algorithm to compute 
the aggregation process described by 
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for ,3,2,1=i , where ))1(( ϕ+i

kX denotes a new time series obtained by averaging )( ϕi
kX ; that is,  
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Specifically, the aggregating process ))1(( ϕ+i

kX can be computed from )( ϕi
kX .  This means that for 2=ϕ , 

)4(X can be calculated by aggregating ,)2(X )8(X  from ,)4(X  and so on, making the computation of the aggregated 
process )(mX fast and easy.    
 
4 Results 
 
We proceed now to analyze synthetic and real LRD series with variable Hurst parameter using the proposed method.   
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4.1 Transition Detection 
There are several existing methods to generate series that exhibit LRD, see [Ledesma, et al., 2007].  In particular, the 
experiments of this section were performed using the fractional Gaussian noise which is one of the simplest models 
that exhibit self-similarity. Thus, a synthetic self-similar series of length 131,072 was created using the algorithm 
proposed in [Ledesma, et al., 2007];  the first third part of the series was synthesized using a value of H=0.55, while 
the remaining part was synthesized using a value of H=0.85. Figure 3 shows the transition-variance plot for this 
series. It is observed from this figure that the transition-variance plot is very helpful for detecting the changing 
points of H.  It is important to mention that the window size affects the resolution of the plot; as the window size 
increases, the transition-variance plot exhibits a more stable behavior and random transitions on the Hurst parameter 
are ruled out, this can be easily observed by comparing Figure 3(a) and 3(b). Note that wider windows require longer 
series.   

 
(a) 

 
 

(b) 

 
 

Fig. 3. Transition-variance plot for a self-similar sequence with H=0.55 and H=0.85.  
(a) Sliding window size = 4,096; (b) Sliding window size = 2,048 

 
On the other hand and despite the fact that a Hurst parameter transition can be easily inferred from Figures 3(a) 

and 3(b), it is important to note that the Hurst parameter is expressed by the line spacing of these figures, and not by 
the vertical distance from the lines to the Time-axis. Therefore, it would be possible to detect a rough estimate of the 
Hurst parameter by plotting only log(Variance) for two consecutive values of m, namely 2 and 4 (or 4 and 8). 
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However, a more stable estimate for H can be computed using more aggregation values for m as more information 
from the series self-similar structure is used to estimate H; after all the line spacing should be approximately the 
same for two consecutive values of m.  If the line spacing on a transition-variance plot is not uniform this would 
mean an irregularity on the series self-similar structure; namely the process is only asymptotically self-similar.  This 
can be mathematically understood by the fact that when the variance of an exact self-similar series is plotted for 
several aggregation levels (several values of m) using logarithmic scales, a straight line should be constructed; a 
straight line means that the log(Variance) is a linear function of log(m).  Thus, any deviation from linearity means 
that the data under analysis is not produced by an exact self-similar process. 
 

 
Fig. 4. Transition-variance plot for a self-similar sequence with H=0.51, H=0.70 and H=0.90  

(Sliding window size = 8,192) 
 

Before analyzing real series, observe Figure 4 which shows the transition-variance plot for a synthetic sequence 
with three different Hurst parameters. The first third of the sequence was created with a target value of H=0.51, the 
second third using H=0.70 and the last part of the sequence using H=0.90; observe the space between lines: as the 
value of H increases the spacing decreases.  

Real Ethernet traffic traces will be now analyzed.  These traces were obtained from an Internet traffic archive 
(http://ita.ee.lbl.gov/html/traces.html).  A brief discussion of some of the traces of LAN and WAN traffic in this 
archive is presented next.   

The BC traces contain a million packet arrivals seen on an Ethernet network at the Bellcore Morristown 
research and engineering facility, [Leland and Wilson, 1991; Leland, et al., 1994].  Two of the traces in this archive 
are LAN traffic (with a small portion of transit WAN traffic), and the other two are WAN traffic.  

The trace BC-pOct89 began at 11:00 on October 5, 1989, and ran for about 11,760 seconds.  A transition-
variance plot is shown in Figure 5(a). We can observe from this figure that the Hurst parameter is almost constant for 
the first half part of the sequence. Then, a slight transition on the Hurst parameter can be appreciated at 
approximately the middle of the sequence; a bigger line spacing means a decrement on the value of H.   

The trace BC-Oct89Ext began at 23:46 on October 3, 1989, and captured the first 1 million external arrivals 
(packets headed between Bellcore and the rest of the Internet), ending about 122,797 seconds later.  The trace BC-
Oct89Ext4 comes from the 4th tape of a 307-hour trace begun at 14:37 on October 10, 1989.  The tape started at 
time-stamp 774,019, about 215 hours into the trace, and BC-Oct89Ext4 ends about 75,943 seconds later.  Figure 5(b) 
shows the transition-variance plot for the series BC-Oct89Ext4.  From Figure 5(b), it can be observed that WAN 
traffic has severe changes on the Hurst parameter when compared to LAN traffic (Figure 5(a)).   Moreover, the 
transition-variance plot from LAN and WAN traffic are clearly different.   
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(a) 

 
 

(b) 

 
Fig. 5. Transition-variance plot with a sliding window size of 16,396 

(a) LAN traffic, trace BC-pOct89; (b) WAN traffic, Trace BC-Oct89Ext4 
 
4.2 Fast Estimation of H 
Most estimates and test statistics have a slower rate of convergence for long-range dependent processes.  Thus, 
assuming independence or some kind of short-range dependence will lead to underrating uncertainty (measured by 
the size of confidence intervals) by a factor which approaches infinity as the sample size approaches infinity, [Beran 
and Terrin, 1992b].  The rate of convergence for many standard statistics is determined by the value of the parameter 
H.  For reliable statistical inference, it is therefore important to obtain a good estimate of H from the data [Fox and 
Taqqu, 1985].   

From a statistical point of view, LRD may, in some cases, have unexpected and perhaps serious consequences.  
For example, the accuracy of a statistical measurement generally depends on having a large enough sample for the 
statistics to converge meaningfully.  Confidence intervals (CI) are used widely in performance analysis to gauge the 
accuracy of parameter estimates.  The conventional CI calculation not only assumes that measurement errors are 
Normally distributed, but also that they are i.i.d.  For short-range dependent processes (i.e., having an exponentially 
decreasing autocorrelation function), the correlations become negligible after a finite and usually small lag, and 
confidence intervals are reasonably accurate.  For long-range dependent processes, however, this is not the case 
[Garret and Willinger, 1994].  The importance of a fast estimation of H lies in the fact that it provides information, 
which can help the routing and admission control devices to improve the use of the resources.   
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Fig. 6. Estimation of H from the variance-time plot and 

the transition-variance plot 
 

An estimate of the Hurst parameter can be obtained from the transition-variance plot as shown in Figure 6.  
Consider equation (2), which can be written as:  
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Thus, a Hurst parameter estimate for each value of i can be calculated when there are K aggregation levels by 
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(d) 

         
Fig. 7. Hurst-time plot for a synthetic self-similar series with H=0.55 and H=0.85  
(a) Proposed method; (b) Variance-time plot; (c) R/S plot; (d) Whittle's estimator 

 

 
Fig. 8. Hurst-time plot for a synthetic self-similar series with H=0.51, H=0.70 and H=0.90  

(Sliding window size=8,192) 
 

 
Fig. 9. Hurst-time plot for the series BC-pOct89  
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(LAN traffic, sliding window size=16,386) 

 
Fig.10. Hurst-time plot for the series BC-pOct89Ext4  

(WAN traffic, sliding window size=16,386) 
 

Figure 6 illustrates graphically how to estimate the Hurst parameter from the variance-time plot and the 
transition-variance plot. The proposed method computes the transition-variance plot and estimates the Hurst 
parameter continuously.  In other words, the transition-variance plot may be iteratively implemented to plot the 
Hurst parameter as a function of time.  We called this plot the Hurst-time plot. Figure 7 shows the Hurst-time plot 
using the proposed method and three traditional methods (with an overlapping window size of 4,096).  Figures 8, 9, 
and 10, show the respective Hurst-time plot for the synthetic and real LRD series previously discussed using the 
proposed method.  A closer look to Figure 10 reveals that WAN traffic exhibits periods of self-similarity (H>0.5), as 
well as periods of non self-similarity ( 5.00 ≤< H ).  By comparing Figure 9 and 10, it is clear that WAN traffic 
exhibits more changes in the Hurst parameter than LAN traffic. 
 

Table 1. Running Time to compute the Hurst-time plot using an overlapping window on a series of size 131,072 

Method Running Time 
Proposed method 0.008 seconds 

Variance-time plot 60.20 seconds 
R/S plot 98.69 seconds 

Whittle's estimator 2 hours and 20 minutes 
 

Table 1 shows the required running time to calculate the plots of Figure 7 using the proposed method, the 
variance-time plot, the R/S plot, and Whittle's plot on a computer with an Intel Xeon 3.2 GHz processor.  The Hurst 
parameter was calculated using an overlapping sliding window of size 4,096.  As it can be seen the proposed method 
is faster than the other ones; while Whittle's estimator is the slowest.  

Finally, we note that the estimation of H from the transition-variance plot underestimates the value of the Hurst 
parameter for highly correlated series (values of H close to 1). This underestimation of H is also presented in the 
variance-time plot as it is well known, see Karagiannis (2004).   
 
5 Conclusions 
 
A new method to detect changes on the Hurst parameter for self-similar network traffic, called transition-variance 
plot, is proposed. This is a time-based estimation method to assess whether or not the Hurst parameter remains 
constant over a period of time. It detects the changing points on the Hurst parameter. Thus, this method allows the 
modeling of LRD series using several values of the Hurst parameter instead of only one for the entire series.  It is 
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established that the transition-variance plot is a great descriptor for analysis of self-similar traffic.  It allows 
distinguishing between LAN and WAN traffic.   

An iterative algorithm is suggested to speed up the computation of the transition-variance plot. Several 
experimental results using synthetic and real self-similar traces are performed to validate our results. Finally, an 
iterative procedure to quickly estimate the Hurst parameter is reviewed.  This iterative procedure generates a new 
plot called Hurst-time plot and allows observing the value H as a function of time.   

The software LRD Lab is presented.  This software is a graphical tool to create and analyze long-range 
dependent series; it generates the variance-time plot, the R/S pox plot, the periodogram and Whittle's estimator.  
Moreover, this software includes the two new plots: transition-variance plot and Hurst-time plot.   

It would be interesting to explore the use of artificial intelligence algorithms to the analysis of network traffic 
that exhibits LRD.   
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