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Abstract 	 1 Introduction 

A new reformulatio.n of Philips' algorithm for the comWhen an image is discretized at two levels, say O and 1, 
putation of discrete image moments is presented. As a bilevel or a binary image is obtained. This image is 
Phillips' method, the new reformulatíon produces the composed of all the flat connected regions representing 
same exact results but in a faster manner. the projections of the objects onto the discrete plane. 

Moment contributions due to the presence of holes Prom the subsets of points representing these objects 
in the shape (which are not taken into account, to our several geometrical and topological déscriptors can be 
knowledge, into any boundary based method for moment obtained to characterize these objects. 
calculation including Philips ') are also introduced into Among the geometrical descriptors, the discrete mo
the new method. 	 ments have proven to be very important features in 

many image analysis, pattern recognition and visual 
inspection applications (Hu, 1962), (Dudani, 1977), 

Keywords: 	 (Teague, 1980), (Teh, 1988), (Mingfa, 1989), (Belkasim, 
1991), (Prokop, 1992), (Flusser, 1993), (Flusser, 1994), 

Discrete image moments, Green's Theorem, Phllips'_ (Flusser, 1996), and (Zhao, 1997). To be really useful, 
method, Moment computation, Fast algorithm. such features need to be computed in a fast manner 

producing also exact results. 
The discrete moments of a binary image I(x, y), de

fined on the range O ::; x ::; M, O ::; y ::; N are given 
as 

M N 

mpq = LL xPyqI(x, y) (1) 
x=o¡¡=o 

Direct computation of tlais double sum requires addi
tions and multiplications of order N 2 . Thus, the com
putational cost is too heavy for many applications. 

Many algorithms have been developed to speed up the 
computation of equation 1 by reducing computational 
redundancy. Fu et al. (Fu, 1993) compute the moments 
from four projections of a binary object. The algorithm 
uses the 1D Hadamard transform, and is very efficient. 

5 


mailto:hsossa@cic.ipn.mx


J.H. Sossa, 1. Mazaira and J.M. lbarra: An Extensión to Phflips' Algorithm for Moment Calculation 

Unfortunately it is limited to the computation of the 10 
low order moments. 

Another way of reducing the computational redun
dancy is to compute the moments via the object bound
ary. The shape of a binary object is totally determined 
by íts boundary. Many boundary based methods have 
been proposed. Among them the Delta method pro
posed by Zakaria et al. (Zakaria, 1987), for example, 
assumes that the object under computation is a set of 
contiguous 1-pixels, lying on lines parallel to the x-axis. 
The starting position (Xs,k, Ya,k) and the length bk of 
each line ís then used to compute the cumulative mo
ments. This makes Zakaria et al. 's method only suitable 
for convex bínary shapes. This drawback was recently 
overcome by Li by using multiple-line-integrals instead 
of Zakaria et al.'s one-line-segments integrals (Li, 1993). 
The number of multiplications and additions needed for 
the computation of mpq by Zakaria et al.'s method is re
duced from cp(MN) to cp(M). Unfortunately. an addi
tional cp(MN) increment and test operations are needed 
to determine the numbers bk. 

Li and Shen (Li, 1991) solve this problem by using a 
contour tracing algorithm and a discrete approximation 
of Green's theorem. Depending on the chosen approx
imation, very different results are obtained. Recently, 
Philips (Philips, 1993) presented an algorithm to com
pute the discrete moments of a binary shape using an 
e~act discrete analogous of Green's theorem producing 
exact results as if the moments were computed by di
rect summation using equation 1. It also requíres fewer 
calculations than previously exact methods. 

Recent results on geometric moment computatíon 
for a binary shape in the case of similarity and affine 
transformations can be found in (Flusser, 1993), (Yang, 
1994), (Lin, 1994), (Yang, 1996), (Zhou, 1996), (Zhao, 
1997), and (Salama, 1998). 

In the next sections a reformulation of Philips' algo
rithm for the computation of discrete image moments 
is presented. As Phillips' method the new reformula
tion produces the same exact results but in a faster 
manner. Moment contributions due to the presence of 
holes in the shape (which are not taken into account, 
to our knowledge, into any boundary based method for 
moment calculation, inc1uding Philips') are also intro
duced into the new method. 

1.1 Paper Outline 

The rest of the paper is organized as follows. In sec
tion 2 Philips' algorithm is described. The new refor
mulation along with sorne guidelines for its practical 
implementation are presented in section 3. Sorne ex
periments showing the advantages of the new method 
with regard to Phillips' and Hu's methods are presented 
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in section 4. A complexity analysis between the pro
posed approach, Phillips' and other popular methods ís 
presented in section 5. Finally, in section 6 sorne con
c1usions and present work are also given. 

2 	 Philips' Algorithm for the Fast 
Computation of Discrete Mo
ments wl 

(t:
Philips' algorithm development begins with his defini
tion of contour of a discrete regíon defined in the xy t~
planeo 

Definition 1 Let n be a discrete regíon in the xY plane, ~ 
the contour, an 01 a regíon is defined as those elements (: 

in n whose right-neíghbors (EAST direction) are not in 
n plus those elements not in n whose right-neighbors " are in n. 	 il 

Equations 2 to 4 express mathematically this definition: 

an = an;- U an;; (2) 

where 

an;- {(x, y) : (x, y) E n, (x t 1,y) ~ n} (3) 

an;; = ((x,y): (x,y) ~ n,(x+ 1,y) En} (4) 

Figure 1 shows Philips' contour with regard to Defi
nition 1. 

x 
0000000 
0 ••••• 0 
i 1 ti 

- O ••••• O + 
anxp ••••• O anx 

y b••••• o 
d •••• ~o 
0000000 

• (x.y) en 
o (x.y)e n 

Figure 1: The contour 01 an object according to Philíps' 
definítíon. It is lormed by those pixels enclosed by the 
dotted rectangles. 
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2.1 Green's Theorem 

Different versions of Green's theorem exíst. The one 
adopted by Philips (Philips, 1993) states that: 

Let f (x, y) be any continuous functíon in the xy 
plane, then 

11 !f(x, y) dxdy = f f(x,y)dy (5) 
n an 

where n is a two-dimensional regíon and an its contour 
(traversed in the counterclockwíse direction). 

Following definition 1, the discrete analog of Green's 
theorem as stated by Philips is given as (Philips, 1993): 

LLVxf(x,y) L f(x,y)- L f(x, y) 
(x,¡¡lEn (x ,¡¡lEan; (x,¡¡lEan; 

(6) 
where Vxf(x,y) = f(x,y) - f(x - 1,y) represents the 
inferior differential of function f (x, y) with respect to x. 

2.2 Philips' Algorithm 

PhiHps uses equations 1 and 6 to derive its method 
for computing discrete moments by putting f(x, y) = 

b pg(x)yq, where g(x) satisfies Vxg(x) x . Since ¿ 
n=a 

Vnf(n) = f(b) fea -1), the equation for g(x) can be 
rewritten as 

x 

g(x) C+ L nP (7) 
n=O 

Remember also that if x is a variable, and that if 
x(k) is a polynomial in x of degree k, then x(!<) ,for 
k = O, 1,2, ... can be expanded to give 

x(O) 1 
x(l) x 

(8)x(2j x2 - x 
x(3) 3 x 3x2 + 2x, etc. 

which can be written as 

x(O) 1 O O O O 1 
x(!) ,0 1 O O O X 
x(2) x2O -1 1= ° O 
x(3) O 2 -3 1 O x3 

(9) 
The matrix of this equation is called the Stirling rna

trix of the first kind, for its discover. We symboHze it 
as S, and it ís seen to give Xli) as a polynornial in x, 
i.e., 

i 
Cil j

X = L [Slij x (10) 
j=O 

In reference (Morrison, 1969), page 39, it is shown 
that 

where S-l is the inverse of S. 
Finally, from equations 1 and 6 and the value of 

f (x, y) the discrete moments, integrating with respect 
to x can be directly evaluated as 

mpq = L Sp(x)yq- L Sp(x)yq (12) 
(x,¡¡)Ean; (x,¡¡)Ean; 

For each border pixel and for all required p and q, the 
value of Sp(x)yq is computed up to a constant factor 
then added or subtracted from (depending on whether 
the pixel Hes on oot or on an;) an accumulator Apq. 
Once the whole of OOx has been traced, Apq will contain 
the values of mpq up to a constant factor. 

Table 1 lists the equations needed for the computa
tion of the moments mpq of degree not exceeding 3. 
They require 9 multiplications and 2 aslditions per bor
der pixel. For each border pixel, the updating of ac
cumulators requires 10 extra additions while 8 compar
isons are needed for the contour tracing. Hence the total 
complexity of Philips's method is 9 multiplications and 
20 additions per border pixel. The method of Zakaria 
et al. requires a maximum of N + 6 additions and 25 
multiplications for each line of pixels or, since each Hne 
corresponds to 2 border pixels, 12.5 multiplications and 
N /2 + 3 additions per border pixel. Philips' algorithm 
is clearly faster. 

Moment Values 
mOO x+1 
mOl (x + l)y 
m02 (x + l)y;¿ 
m03 (x + l'}y" 
mIO *(x + l)x 
ml1 j'(x + l)xy 
m12 ~(x + l)xy;¿ 
m20 Hx + l)x(x + 1/2) 
m21 Hx + l)x(x + 1/2)y 
m30 H(x + l)x):l 

Table 1: Values needed to update the accumulators at 
each border pixel according to Philips. 
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Example 1 method are presented next. 
In order to illustrate the functioning of Philips' 

method let us consider the sixteen element binary region 3.1 Integration Process Extension
shown in Figure 2 and let us outline the computation 
of its first moments moo, mOl and mlO. Suppose that Green's equivalent version in the case of the y axis can 
the starting point coordinates of the contour are x = 6, be written as follows: 
Y = 4. Table 2 resumes the followed steps and the par Let f(x, y) any continuous function in the xy plane, 
tial and final results in the computation of the required then 
moments. One can easily verify that these values are 
the sarue as if they were obtained through equation 1. JJ ~f(x,Y)dXdY=ff(x,Y)dX (13) 

123456789 

1 

2 
3 

4 

5 

6 

7 •
• 
8 • •• 
9 

Y 

o 	 80x , 
where again n is a two-dimensional region and an its Tal 
contour. This can be done due to symmetry reasons. US€ 

In the same way, Philips' contour equivalent defin
ition but with respect to the y axis ~ be stated as 
follows:· 

• Definition 2 Let n be a díscrete regíon in the xy plane,

• the contour, an of a regíon is defined as those elements • in n whose inferior-neighbors (SOUTH direction) are 
not in n plus those elements not in n whose inferior
neighbors do are in n. 

Equations 14 to 16 express mathematically this defini
tion: 

Figure 2: Bínary regio n of example 1. 

an 
 (14) 

In the next section a reformulation of Philips' algo
whererithrn producinl§ the sarue exact results but in a faster 

way is proposed. Moment contributions due to the pres
ence of holes in the shape (which are not taken into ac

ant = {(x,y): (x,y) E n,(x,y+ 1) ~ n} (15)
count into Philips' method) are also introduced into the 
new method. 

3 Proposed Approach 
an; = {(x,y): (x,y) ~ n,(x,y+ 1) En} (16) 

In this section a new reformulation of Philips' method 
Figure 3 shows the equivalent version of Philips' conis presented. This new reformulation comprises, in one 

tour, this time, with regard to definition 2.hand, a diminution in the time of computatíon of the 
The discrete analog of Green's theorem with respect moments of any planar shape without holes, and, in the 

to the y axis is given as: other hand, the generalization of its use for a planar oh
ject (any shape with and without holes). The proposed 
modifications are: LL Vyf(x,y) = L f(x,y)- L f(x,y)

1. an extension of the integration process in both axes (x,y)EO
of the plane, which along with a decision algorithm (17)
to determille the membership of a given pixel to where now V yf(x, y) = f(x, y) f(x, y - 1) represents
the different sections of the contour, it allows to the inferior differential of function f(x, y) with respect 
simplify the expressions to compute the moments, to y.
and that in lots of cases conveys time saving. Computation of the discrete moments, integrating 

with respect to the y axis can be obtained as follows: 2. 	 incorporate an algorithrn allowing the presence of 

holes in the shape. 


The proposed modifications along with some guide 'mpq L Sq(Y)xP- L Sq(Y)xP (18) 

lines for the practical implementation of the proposed (x,y) Eao;; (x,y)EaO; 
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step 
1 

x 
6 

y 
4 

Xl 

6 

yl 

4 
moo 

7 
mol 
28 

28+40=68 

mlO 
42 

42+56-98 
98+72=170 

2 7 5 7 5 7+8=15 
3 8 6 8 6 15+9=24 68+54=122 
4 8 7 8 7 I 24+9=33 122+63=185 170+72=242 
5 7 8 7 8 33+8=41 185+64=249 242+56=298 
6 5 8 4 8 41-5-36 249-40=209 298-20-278 

! 7 4 7 3 7 36-4=32 209-28=181 278-12-266 
8 5 6 4 6 32-5=27 181-30=151 266-20=246 
9 5 5 4 5 27-5=22 151-25=126 246-20=226 
10 6 4 5 4 I 22-6=16 126-24=102 226-30=196/2=98 

Table 2: Solution to example 1. x and y are the real coordinates of the pixel, Xl and yl are the actual coordinates 

I 

I 

! 

used according to definition 1. 

x 
On-y 

O O-_Q-n-.o.-o O 
0 ••••• 0 
0 ••••• 0 
0 ••••• 0 

y 0 ••••• 0 
O .-__-...-...-. O 

0000000 
Ol'"\+y• (x,y) E n u 

O (x,y)En 

Figure 3: Equivalent version of Philips' contour. 

where now 

y q [S-l) j 


8q (y) =¿ n: = (y + 1) ¿ .+ t ¿ [81 jv yv. 

n=O j=O J v=O 

(19) 
Again, S is the Stirling matrix of the first kind and 8-1 

its inverse. 
Following the same procedure used in the develop

ment of Philips' algorithm, but exchanging in this case 
x by y and vice versa, we get the set of equivalent ex
pressions for the evaluation of the same set of moments 
in an exact way, but integrating this time with respect 
to y. Table 3 lists the equations needed for the com
putation of the moments mpq of degree no exceeding 
3. Figure 4 sums up the two definitions of a contour. 
Sub indices x and y define the axis with regard to the 
contour which is defined. 

From the aboye discussion, it is clear that the results 
obtained, either, with respect to x or with respect to 
y, are the sarue and exacto Note also from tables 1 

Moment 
mOO 

Values 
y+1 

mOl ~(y + 1)y 
m02 Hy + 1)y(y + 1/2) 
m03 H(y + 1)y):l 
mlO (y + I)x 
mll ~(y + 1)xy 
mIZ Hy + 1)y(y + 1/2)x ! 

mZO (y + l)x:l 
mZl My+ 1)yx :l 
m30 (y + 1);1;3 

Table 3: Equivalent expressions for the evaluations of 
the moments according to Definition 2. ( 

and 3 that the expression to compute the same moment 
is simpler in one direction that in the other. We can 
thus use the simpler one to compute the corresponding 
moment without altering the final result obtaining, as a 
result, an extra time reduction. Column two of table 4 
lists the set of expressions chosen for the computation 
of the moments mpq of degree not exceeding 3. Five 
moments are obtained with respect to x (according to 
Definition 1); the other five are obtained with respect 
to y, i.e. according to Definition 2. 

Now, if we analyze Definitions 1 and 2, we note that, 
in the case of Definition 1, the elements of the negative 
section of the contour (left side of the objects) match 
those whose coordinates equal (x-1, y), where (x, y) are 
the coordinates of the pixel belonging to the real contour 
of the object. In the same way, for Definition 2, the 
elements of the negative secti;n of the contour (superior 
side ofthe object) match those whose coordinates equal 
(x, y - 1), where (x, y) are the coordinates of the pixel 
belonging to the real contour of the object. Besides, 
in both definitions the elements of the positive sections 
match with those elements of the real contour of the 
object. 

9 
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an-; 
O O-_Q-.o.-.o.-O O 

q •••• ~O 
b••••• o 

an~ P•••• ~ oan~ 
b••••• o
d .-__-.a-...-' O 

y 0000000 
an+'1• (X ,y) E n 


O (X,y) E n 


Figure 4: The dbjects' contour accordíng to definitions 
1 and 2. 

Taking into account this, if the expressions given in 
column two of table 4 are applied to the negative sec
tions of the contour, the resultant expressions are those 
shown in column three of table 4, where the values of 
x and y are now the coordinates of the pixels belongíng 
to the real contour of the object and not to the contour 
defined according to Definitions 1 and 2. Note that 
these expressions are much simpler than those used in 
column 2. This allows to get an extra time saving when 
the pixel belongs to the negative section of the contour. 

Besides, if it happens that a pixel of the contour being 
analyzed belongs to the positive section and if it has 
two white horizontal/vertical neighbors, we say that this 
pixel belongs to both sections of the contour. This fact 
can be summari~ed mathematically as follows: 

aot l - = {(x, y) : (x, y) E O, (x ± 1, y) ti. O} (20) 

aotl- = {(x, y) : (x,y) E O, (x,y ± 1) ti. O} (21) 

As it was said in section 2 the contribution of each 
contour pixel to the calculus of the moments is added 
or subtracted to accumulator Apq depending on if the 
pixel belongs to the positive or the negative section of 
the contour, respectively. This makes that for those pix
els belonging to both sections of the contour, the total 
contribution td the moments for a given object be the 
difference between the expressions given in columns 2 
and 3 of table 4. These differences are shown in column 
4. An extra time saving is gained. 

3.2 Practical Implementation 

To practically implement the new algorithm, a method 
to determine the pixel's membership to the different 
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Moment aot ao;;; aot/ 
moo x+1 x 1 
mOl (x + l)y xy y 
m02 (x + l)y:l xy:¿ y:l 

m03 (x + l)y.l xy3 y.l 

ml2 Hx + 1)xy:l ~(x - 1)xy:l xy:¿ 

mIO (y + 1)x yx x 
ml1 (y + l)xy Hy -1)yx yx 
m20 (y + 1)x:l yx" x"¿ 

m21 ~(y + 1)yx:¿ Hy l)yx:¿ yx"¿ 

m30 (y + 1)x.l yx3 x 3 

aot ao;; ao+/y 

Table 4: Column 2: Expressions to be used when the 
pixel beíng analysed belongs to the positíve section of 
the contour. Column 3: Expressions to be used when tlu 
the pixel being analysed belongs to the negative section ob. 
of the contour. Column 4: Expressions to be used when wc 
the pixel being analysed belongs to both sections of the ca 
con tour. In all cases, the coordinates values to be used a.IJ 
are the real ones. a4 

w' 
pesections of the object's contour is needed. For this the 

following definition is necessary. al 

ti 
Definition 3 Let O be a discrete region in the xy plane, O 

and ao its contour and let p E ao, we call (aí) the e 
actual direction ofp, to the direction from where pixel s 
p + 1 (p + 1 belongs also to the same contour) is found, i: 
and (ai-l) the anterior direction ofp, to the direction 
from where pixel p was found (see Figure 5 (a) for an 
example). 

p-l. • p+l 5 6 7 

4+-.~Oa~ /si ""i/ 
• /~~
p 3 2 1 

(a) (b) 

Figure 5: (a) Anterior and actual directions of pixel p. 
(b) Directions for 8-directional chain codeo 

Anterior and actual directions were also used in (Voss, 
1993) to determine if a point is a minimal or a maximal 
end point of a segmento ' 

As we are working with 8-connected contours, these 
two directions could be one of the eight directions shown 
in Figure 5 (b). This allows a direct application to re~ 
gions represented hy their chain code known as Free
man's code (Freeman, 1961). The pixel's memhership 
to the different sections of the contour is determined 
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1: if (p -+ 0,7 -+ p + 1 and p  1 -+ 0,1,4  7 -+ p) then p :::} 8ft;; 
2: if (p -+ O, 7 -+ p + 1 and p 1 -+ 4,5 -+ p) then p :::} 80;; 
3: if (p -+ 0,7 -+ p + 1 and p  1 -+ 4 7 -+ p) then p :::} 8f1:;; 
4: if (p -+ 3,4 -+ p + 1 and p  1 -+ 0-5 -+ p) then p :::} 80t 
5: if (p -+ 3,4 -+ p + 1 and p 1 -+ 0,1 -+ p) then p :::} 8ft;; 
6: if (p -+ 3,4 -+ p + 1 and p  1 -+ O 3 -+ p) then p :::} 80;t 
7: if (p -+ 5,6 -+ p + 1 and p  1 -+ 2 - 7 -+ p) then p :::} 80;; 
8: if (p -+ 5,6 -+ p + 1 and p 1-+2-5-+p) then p :::} 80+ 
9: if (p -+ 5,6 -+ p + 1 and p  1 -+ 2,3 -+ p) then p :::} 8n;t 
10: if (p -+ 1,2 -+ p + 1 and p  1 -+ O - 3,6,7 -+ p) then p :::} 80; 
11: if (p -+ 1,2 -+ p+ 1 andp 1-+ 0,1,6,7 -+ p) then p :::} 80u 

12: if (p -+ 1,2 -+ p + 1 and p  1 -+ 6,7 -+ p) then p :::} 8nx 

Table 5: Set of rules to determine the pixel 's membership. 

through one of the of rules shown in table 5 while the 
object's contour is followed. From this table, rule 2 
would mean, for example, that if pixel p + 1 is found 
comíng from actual direction ao or actual direction a7 
and if pixel p is found coming from anterior directions 
a4 or a5 then assign pixel p to regíon 80t. These rules 
were obtained after a making an analysis of the different 
possibilities a pixel p can be reached from pixel p 1 
and pixel p can reach pixel p+ 1. This way the computa
tion of the discrete moments is reduced to the following 
of the object's contour, determining at each instant for 
each pixel its belonging section and applying the expres
sions given in columns 2 to 4 from table 4 according to 
its membershíp to update the corresponding moment's 
values. 

It is important to note that if the pixel belongs solely 
to a contour given by Definition 1 only the first 5 ex
pressions of the corresponding column of table 4 will be 
evaluated. In the same way, if the pixel belongs solely 
to a contour given by Definition 2, then only the last 5 
expressions of the corresponding column of table 4 will 
be evaluated. If a pixel belongs to both sections, then 
all 10 expressions will be applied. Note also that when 
using table 4 the real coordinates of the pixel must be 
adopted. 

Example 2 

In order to illustrate the functioning of the method let 
us consider the same sixteen element binary regíon used 
example 1 (Figure 2) and let us outline the computation 
of its first moments moo, mOl and mIO. Suppose again 
that the starting point's coordinates of the contour are 
x 6, y 4. Table 6 resumes the followed steps and 
the partial and final results in the computation of the re
quired moments. Note that the results obtained by the 
new method are the same as those provided by Philips 
in example 1. 

3.3 Taking Holes into Account 

As mentioned at the beginning of section 3, the new 
method would incorporate moment contributions due 
to the presence of holes in the shape. These, as we 
said are not taken into account for any boundary based 
method for moment calculation including Philips'. 

In this section we derive the expressions needed for 
the computation of the discrete moments for the general 
case of a shape with holes. This result can be summa
rized by the following proposition: 

Proposition 1 Let O be a discrete regíon in the xy 
plane with n hales, 80 its extemal contour and 80i the 
contour af each cf the its n hales, the final moments 
of O in terms af its extemal cantour and each hole 's 
contour (íntemal cantaur) can be obtained eíther as 

mpq( object) mpq(external contour) 
n (22)- ¿ mpq(internal contourfij) 

i=l 

where mpq(external contour) is the contribution to 
the moment mpq from the external contour and 
mpq(internal contourli]) is the contribution to the moment 
mpq from the internal contour of each of the n holes 
accordíng to equations 8, 9, 18 and 19. 

Proof. Trivial. 
The only reference we found where the authors say 

how to compute the moments of a hole can be found 
in (Voss, 1993, pp. 233-235). Unlike, this work, we do 
explain clearly how to use this information to compute 
the moments of a whole object comprising holes. 

To obtain exact results when equation 22 is applied it 
is necessary to count on a good definition of an internal 
contour; this with the aim of not including in the com
putations elements belonging to the object when the 
contributions due to holes are being computed. 

If instead of giving a new definition for an internal 
contour, we adopt the same definitions already given for 

11 
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step x y ai ai-l membership moo mOl mIO 
1 6 4 1 7 80",,80-;%,801] 1 4 -24 
2 7 5 1 1 80-;%,80 1+8=9 4+40=44 -24-35=-59 
3 8 6 2 1 HHfOO. 9+9=18 44+54=98 -59-48=-107 
4 8 7 3 2 80;; 18+9=27 98+63=161 -107+64=-43 
5 7 8 4 3 ",,80;; 27+8=35 161+64=225 -43+63=20 
6 6 8 4 4 80t 35 225 20+54=74 I 

7 5 8 5 4 80.",,80.+ 35-5=30 225-40=185 74+45=119 
8 4 7 7 5 80x , 801], 80.;; 30-4=26 185-28=157 119+4=123 

I 9 5 6 6 7 80", 26-5=21 157-30=127 123 
10 5 5 7 6 80",,801] 21-5=16 127-25=102 123-25=98 

Table 6: Solution to example 2. 

,..-------+ X 

00~ 

.. ..-_.-..-....-.... 
•• ~ooooq • •• 

y ••• 0000p ••• 
I 1

ao+ .... O O O p....ao;
XII 
••• O-_Q-.Q-.o. ••• 

• 
hole 

• (x,y) e O 
00-; 

~Object
O (x,y)i! O 

Figure 6: Internal contour. 

a contour, but this time applied to a hole (see Figure 6), 
it can be easily shown that equations 9 and 18 become: 

mpq = ¿ Sp(x)yq- ¿ Sp(x)yq (23) 

(x,y)Eé/n; (x,Y)Eé/n; 

mpq = ¿ Sq(Y)xP- ¿ Sq(Y)xP (24) 

(x,y)Eé/n; (x,y)Eé/n; 

Substituting equations 9, 18, 23 and 24 into equation 
22 we get the fi~al expressions for the evaluatíon of the 
discrete moments for any planar shape in the planeo 

To correctly implement the aboye method, an algo
ritnm to determine when an internal contour belongs 
to an object or not is needed. The one proposed in 
(Mazaira, 1994) is used here. Generally speaking this 
algorithm scans an input image until a pixel belong
ing to an external contour is found. The algorithm 
proceeds to follow the corresponding external con tour 

and computes its contributing moments. Once the ini
tial pixel has been reached, the algorithm continues to 
scan the image to see if a pixel belonging to an inter
nal contour is found. If this is case, it takes into ac
count the label of the last external contour found, fol
lows the corresponding interna! contour and computes 
the contributing moments updating the initial object's 
moments. This process is repeated untíl all objects in 
the image have been processed. For more detaíls refer 
to (Mazaira, 1994) . 

4 Experiments, Performance 
and Discussion 

In this section, we show experimentally that the pro
posed modifications introduced to Philips' algorithm 
makes it faster, giving as a result the new algorithm. 
In this case, the algoríthm if of course compared with 
Philips' method taking as reference Hu's method (Hu, 
1962). For this we use the set of objects shown in Figure 
7. For each shape the ten moments mpq, (p + q) -:; 3, 
were computed. The results are shown in table 7. We 
can see that the total time required to compurte the 
10 moments by our method, is smaller compared to the 
other two methods. 

Phillip'sHu's NewObject No 
0.257 0.155 0.0871 

'0.1412 0.233 0.080 
0.197 0.119 0.0673 

0.134 0.0764 0.222 
Total time 0.909 0.549 0.310 

Table 7: Time (in seconds) requiered to compute the 
10 moments for the four objects shown in figure 7 as 
computed by Hu's and Phillips' methods and new. In 
all cases a 133 Mhz Pentium pe computer was used. 

The reduction on time is due to the number of ad
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mpq(object) = ¿: Sp(X)yq- ¿: Sp(X)yq
(x,y)Eant(ext cont) (x,y)Ean; (ext cont) 

(25)
¿: Sp(X)yq- ¿: Sp(X)yq)( (x,y)Ean; (ínt cont ti]) (x,y)Eant (int cont[iJ) 

Figure 7: Set 01 objects lor experiment number 1 

ditions and the number of multiplications implied in 
the computation of the moments for each pixel using 
the new method are in general less that in the case of 
the other methods including Philips' one. This is par
ticularly noticeable if the pixel belongs to the negative 
section of the contour or to both sections of the con tour 
(section 3.1). This is next explained in more detail in 
the next section. 

5 Complexity Analysis 

In this section a complexity analysís between the pro
posed approach and Phillips' is presented. As it will be 
shown our method is surpassed only in the case of ex
actly horizontal enlarged regions, whose probability of 
occurrence is ra~her small. 

Taking into account just the operations needed to 
compute the moments, and supposing that nx +, nx 

and ny+, ny~ are, respectively, the number of pixels 
belonging to the positive and negative sections of the 
shape's contour according to Definitions 1 and 2, we 
can see that: 

• 	 4 x (nx+ + n x -) + 5 x (ny-r + ny ) multiplications, 
and 

(26) 

• 1 x (nx+ + n x-) + 1 x (ny+ + ny-) additions 

are needed to the compute the moments. 
In the same way, from column 4 of table 4, and sup

posing that n x+/- and n y+/_ are, respectively, the num
ber of pixels belonging to both sectíons of the contour 
according to Definitions 1 and 2, one can also see that 
for those pixels belonging to both sectíons of the con
tour, the complexity of the algorithm is reduced to: 

• 3nx+/- + 4ny+/- multiplications, and 

• O additions. 

Using the same nomenclature, and without taking 
ínto acount the 10 extra additions for updating the ac
cumulators and the 8 comparisons needed for contour 

t 

tracing,.the complexity of the Philips' algorithm is: 

• 9(nx + + n x -) multiplications, and 

• 	 2(nx + + n x -) additions. 

If both methods are compared, one can conclude that: 

• 	If (nx+ + nx-) < (ny+ + ny-) then Philips' algo
rithm is faster than the proposed one. 

• 	If (nx+ + nx-) > (ny+ + ny-) then Philips' algo
rithm is slower than the proposed one. 

• 	If (nx+ + n:¡;-) = (ny+ + ny-) then Philips' algo
rithm IS equal to or slower than the proposed one. 

It IS obvlous from aboye analysis that the modifica
tions intrl)duced to Phillips' algorithm represent an im
provement in relation to the time needed to compute the 
moments through the obj~ct's contour. This improve
ment is surpassed only in the case of enlarged regions 
exactly horizontal (see example 3), whose probability of 
occurrence is, of course, very small. 

Example 3: Case where Philips' algoritm is 
faster than the proposed one. 

13 
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.--------~ x Philips' 
algorithm

O ••••• 
n x+·=3d ••••• 

d ••••• nx' =3 

54 multlplications 
1 2 additions 

y 

¡--------___i>_ x Newalgorlthm 
'O:U.O..'O..01 nx+/·=Q

O ••••• ny+/' =0b. ••••• nx+=3b r 
.::••••:·.·.1 nx' =3 

n y+=5 
ny' =5 

y 
74 multiplications 
1 6 additions 

Figure 8: Case where Philips' algorithm gives better 
times than the proposed method. 

With respect to other popular methods also using 
contour information and providing exact results our 
method is comparable and in sorne cases faster. Let's 
suppose that the image has N rows and N columns, and 
that the object occupies the entire intensity matrix, we 
nave thus an object composed of N by N pixels. Now, if 
Nv and Ny are the number of pixels of the border ofthe 
shape according to Voss and Yang, and 1'.:1 is the num
ber of pixels of the border of the shape and n = logz N 
according to Fu. 

Suppose also for the moment that we do not take 
into consideration the lONy additions to cumnpute the 
Hatamian filtering in the case of Yang's method and the 
8M and ION 13-n (n + 6) operations to compute the 
ID Hadamard Transform in the case of Fu's method. 
Table 8 lists the number of operations required to com
pute the first ten moments by our algorihtm and those 
proposed by Voss (Voss, 1993), Fu (Fu, 1993) and Yang 
(Yang, 1996). If, for example, that N = 16, this is M = 
60,n = 4,Nv = N y n;x+ = n x - ny+ = n;x- = 32, 
and that a multiplication takes 2 times more time than 
an addition to be computed, then we have the following 
results (see table 9). We can see from these two tables 
that under these considerations our method is slower 

\
than Fu's method, as fast as Yang's method but faster 
than Voss'. However, if we now take into account the 
number of operations to compute the Hatamian filtering 
and the ID Hadamard Transform, we can see in table 10 
that our method requires less operations than the other 
methods. To see this, suppose again that N = 16, and 
that a multiplication takes 2 times more time than an 
addition to be computed. In table 11 we see the numer
ical results. Clearly, our method is faster than the other 
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methods. In all cases we did not take into account the 
number of operations to update the accumulator and to 
strace the boundary of the shape. 

Method Multiplications Additions 
Voss 13N" 4Nv 

Fu 17 I 2na + 2n~ + 6n + 23 
Yang 6Ny 8Ny 
New 4(n",+ + n",- } + (n",+ +n.,. } + (ny-l" + 

5(n + +nv-) n,,_ ) 

Table 8: A first comparison of complexity in computing 
all the moments of order up to t1 for an object of N x N 
pixels. 

Method Mults. Additions Total No. of I 
operations 

Voss 416 128 960 
Fu 17 207 241 

Yang 192 256 640 
New 288 64 640 I 

Table 9: A first comparison in number of operations in 
computing all the moments of order up to 3 for an object 
of N x N pixels. 

Method Multiplicatíons Additions 
Voss 13Nv 4N" 
Fu 17 8M+lON+2n~+n"+ 

10 
Yang 6Ny 18Ny 
New 4(n",+ + n.,- ) 

5(n'U+ + n,,-) 
+ (n.,+ +nx-) + (ny+ + 

nu- ) 

Table 10: A second comparison of complexity in com
puting all the moments of order up to 3 lor an object of 
N x N pixels. 

6 Conclusions and Present Re
search 

A new reformulation of Philips' algorithm for the com
putation of discrete image moments is presented. As 
Phillips' method the new reformulation produces the 
same exact results but in fas ter manner. The only time 
Philips method gives faster results is in the case of en
larged regions exactly horizontal whose probability of 
occurrence very small. 

Moment contributions due to the presence of holes in 
the shape (which are not taken into account into any 
boundary based method for moment calculation includ
ing Philips') were also introduced into the new method. 
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Method Mults. Additions Total No. of 
operations 

Voss 416 128 960 
Fu 17 794 828 

Yang 192 576 960 
New 288 64 640 

Table 11: A second comparison in number of operations 
in computing all the moments of order up to 3 for an 
object of N x N pixels. 

The only situation Philips' method can give faster re
sults than the proposed one is in the case of enlarged 
regions exactIy horizontal. This is a direct consequence 
of the definition of contour used by Philips where only 
border pixels to the left and to right of the region are 
considered in the computations. The probability of oc
currence of this situation is, of course, very small. 

At the moment, we are working to obtain a more gen
eral methodology for the computation of discrete image 
moments but under general affine transformation which 
may be used for recognition of affine-deformed objects 
considering the presence of holes. 

Acknowledgments.- The authors would like to thank 
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