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Abstract 
We present an overview on how to perform non-monotonic reasoning based on paraconsistent logics. In 
particular, we show that one can define a logic programming semantics based on the paraconsistent logic G’3 
which is called G’3-stable semantics. This semantics defines a frame for performing non-monotonic reasoning in 
domains which are pervaded with vagueness and inconsistencies. In fact, we show that, by considering also a 
possibilistic logic point of view, one can use this extended framework for defining a possibilistic logic 
programming approach able to deal with reasoning, which is at the same time non-monotonic and uncertain. 
Keywords: G’3-stable semantics, Logic Programming, Non-Monotonic Reasoning. 
 
Resumen 
Presentamos un resumen acerca de cómo realizar razonamiento no-monótono basado en lógicas paraconsistentes. 
En particular, mostramos que es posible definir una semántica de programación lógica basada en la lógica 
paraconsistente G’3, la cual es llamada semántica G’3-estable. Esta semántica define un marco para realizar 
razonamiento no-monótono en dominios los cuales están plagados de vaguedades e inconsistencias. De hecho, 
mostramos que al considerar también un punto de vista lógico posibilista, es posible usar la extensión de este  
marco de trabajo para definir un enfoque de programación lógica posibilístico que puede tratar con razonamiento 
que es al mismo tiempo no monótono e incierto. 
Palabras Clave: Semántica : G’3-estable, Programación lógica, Razonamiento No-Monótono. 

 
1 Introduction 
 
Most logics (at least classical logic and all the constructive intermediate logics) share the property: Assuming a, ¬ a 
one can conclude b, meaning that in the presence of inconsistent information one can prove anything (such as the 
unrelated formula b in this example). Paraconsistent logics reject this principle; they are not explosive in the 
presence of inconsistent information. Recall that Minsky's “Frame paper” (1975) in its original form had an 
appendix entitled “Criticism of the Logistic approach” which states: “But I do not believe that consistency is 
necessary or even desirable in a developing intelligent system. No one is ever completely consistent. What is 
important is how one handles paradox or conflict, how one learns from mistakes, how one turns aside from 
suspected inconsistencies” (Minsky, 1975). 

We think that paraconsistent logic could help to give an answer to this important issue addressed by Minsky. In 
fact, in (Osorio et al, 2008) an interesting approach for Knowledge Representation (KR) was proposed. This 
approach can be supported by any paraconsistent logic stronger than or equal to Cω, the weakest paraconsistent logic 
introduced by da Costa. 

A second criticism that Minsky gave to the logistic approach is that logic is monotonic: “Because Logicians are 
not concerned with systems that will later be enlarged, they can design axioms that permit only the conclusions they 
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want. In the development of Intelligence the situation is different. One has to learn which features of situations are 
important, and which kinds of deductions are not to be regarded seriously” (Minsky, 1975). 

Non-monotonic logics were developed as an attempt to solve this problem. Actually the research community 
has long recognized the study of Non-Monotonic Reasoning (NMR) as a promising approach to model features of 
commonsense reasoning. On the other hand, monotonic logics have been successfully applied as a basic building 
block in the formalization of non-monotonic reasoning. The original idea, suggested by McDermott and Doyle 
(McDermott and Doyle, 1980), was to use well known modal logics. McDermott, in (McDermott, 1982), attempted 
to define non-monotonic logics based on the standard T, S4 and S5 logics. But he observed that, unfortunately, the 
non-monotonic version of S5 collapses to the ordinary logic S5. Grounded non-monotonic logic is a proposed 
solution to this problem. The term grounded in non-monotonic logics refers to the idea of enabling the agent to make 
only assumptions that are “grounded” in the world's knowledge. According to (Donini et al, 1997), the notion of 
groundedness was actually introduced by Konolige (Konolige, 1987). It is worth mentioning that groundedness has a 
rather intuitive motivation: “it corresponds to discarding the reasoning based on epistemic assumptions, which 
would enable, for example, to conclude that something is true in the world just by assuming to know it” (Donini et al, 
1997). Domini et al. (Donini et al, 1997) renewed the interest in non-monotonic S5 (and other normal modal logics) 
by studying their grounded versions. They showed, in particular, that grounded non-monotonic S5 does not collapse 
with S5. The authors in (Osorio and Navarro, 2003) observed that an expressive fragment of a grounded version of 
S5 can be captured by a 4-valued logic  that later was called MFOUR (the commented fragment consists of sentences 
with modalities applied only to literals). Gelfond proposes the interpretation of not a as ¬ a. In fact, (Baral, 2003) 
explains that the definition of stable models by Gelfond and Lifschitz (Gelfond and Lifschitz, 1988) was inspired by 
this transformation. This line of research was continued and developed in further detail in (Osorio et al, 2005). It has 
been observed that logics for which their negation operator is constructed by some modal logics (as S5 or MFOUR) 
using Gelfond's idea correspond to paraconsistent logics (Béziau, 2005). This means that by considering standard 
monotonic paraconsistent logics one can construct non-monotonic logics, see (Osorio et al, 2006; Osorio et al., 
2008). 

Recently, in (Osorio et al., 2008) an approach for KR was proposed. It can be used with any paraconsistent logic 
stronger or equal to Cω, the weakest paraconsistent logic introduced by da Costa himself. In particular, the authors 
have made a deep study of the paraconsistent logic G’3 which is a 3-valued and very expressive logic. G’3 can define 
the same class of functions as Lukasiewicz 3-valued logic. In G’3 we can express very directly the strongest 
intermediate logic (also known as the Gödel's 3-valued logic G3). With G’3 (which is monotonic) one can construct 
non-monotonic semantics such as the G’3-stable semantics (Osorio et al, 2006; Osorio et al., 2008). This approach is 
not restricted to a particular fragment of propositional logics, it is defined for any type of propositional theory. It is 
important to point out that with the G’3 semantics, one can express the well known stable semantics (Osorio et al., 
2008) (see (Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1990) to learn about the stable semantics). G’3 can 
also be used to model the well known preferred semantics of argumentation (Nieves et al, 2008). A preliminary 
implementation of the G’3 semantics has already been developed (López, 2006). One problem with  G’3-stable 
semantics is that it can not deal with inconsistent information. This is because G’3-stable semantics does not take 
advantage of the paraconsistent nature of G’3. 

This paper can be regarded in two parts. 
In the first part, we shall present an overview on how to perform non-monotonic reasoning based on 

paraconsistent logics. In particular, we concentrate our attention on the G’3-stable semantics, which is based on 
paraconsistent logics. We will see that the G’3-stable semantics is a prominent non-monotonic semantic able to 
capture the stable model semantics, one of the most successful logic programming semantics of the last years. One 
interesting result w.r.t. the G’3-stable semantics is that it is able to capture the preferred semantics which is one of 
the most accepted argumentation semantics in argumentation theory. It is worth to comment that argumentation 
theory is another prominent approach for performing NMR. 

In the second part of this paper, we explore two approaches about how to construct non-monotonic semantics 
based on  G’3 that can deal with inconsistent information. The first approach is based on borrowing ideas from 
possibilistic logic (Dubois et al., 1994). In particular, we will describe how one can discriminate possibilistic G’3-
stable models by considering their possibilistic degrees. It is worth to comment that, since possibilistic logic is a 
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suitable approach for capturing uncertain information, we will see that, by considering a possibilistic version of the 
G’3-stable semantics, one can perform NMR under uncertain information. The second approach stays with G’3 and 
works with extensions, but takes care of not becoming more inconsistent (so to speak) than the original theory. 
The structure of our paper is as follows. In section 2,  we summarize some basic concepts and definitions used to 
understand this paper; we present an overview on how to perform non-monotonic reasoning based on paraconsistent 
logics; we also present the characterization of a semantics for disjunctive programs, called the p-stable semantics, in 
terms of the paraconsistent logic G’3; we review a fixed point characterization of p-stable semantics for disjunctive 
programs using classical logic; and finally we review how G’3-stable semantics is useful to model different 
approaches. In section 3, we review some results around the p-stable semantics in order to represent uncertain, 
inconsistent and incomplete information and perform reasoning with it. In section 4, we explore two approaches 
about how to construct non-monotonic semantics based on  G’3 that can deal with inconsistent information. Finally 
in section 5, we present the conclusions. 

We assume that the reader has some familiarity with basic logic such as chapter one in (Mendelson, 1987). 
 
2 G’3-stable semantics 
 
This section starts summarizing some basic concepts and definitions used to understand this paper; we review two 
paraconsistent logics; we also present two characterizations of the G’3-stable semantics for disjunctive programs, the 
former is a fixed point characterization using classical logic and the latter is in terms of the paraconsistent logic G’3. 
We also include a  theorem that establishes an equivalence between the G’3-stable semantics and the p-stable  
semantics, only for disjunctive programs. So, we shall use any of the two terminologies when dealing with 
disjunctive programs. Finally, in this section, we review the expressivity of p-stable 
semantics. 
 
2.1 Background 
A signature L is a finite set of elements that we call atoms, or propositional symbols. The language of a 
propositional logic has an alphabet consisting of proposition symbols: p0, p1, …; connectives:  ∧, ∨, , ¬;  and 
auxiliary symbols: (, ), where ∧, ∨,  are 2-place connectives and ¬ is a 1-place connective. Formulas are built up as 
usual in logic. If F is a formula we will refer to its signature LF as the set of atoms that occur in F. A literal is either 
an atom a, called positive literal; or the negation of an atom ¬ a, called negative literal. 

A clause is a formula of the form H  B (also written as B  H), where H and B, arbitrary formulas in 
principle, are known as the head and the body of the clause respectively. The body of a clause could be empty, in 
which case the clause is known as a fact and can be noted just by H . We define a disjunctive clause, as a clause of 
the form a1 ∨…∨ ak  b1 ∧ … ∧  bn ∧ ¬bn+1 ∧ …∧ ¬bn+m where ai and bi are atoms, and k ≥ 1. The size of such a 
clause is k+n+m. In the case k=1 such a clause is a normal clause. We will abbreviate a disjunctive clause with the 
expression A  B+ ∧ ¬ B -, where A is the set of atoms in the head of the clause, B+ is the set of atoms that appear 
without negation in the body of the clause, and B - is the set of atoms that appear negated in the body of the clause, 
that is to say: A = {a1,…, ak}, B+ ={ b1,…,  bn}, B - = {bn+1,…,bn+m }. The symbol ¬ before a set of atoms, denotes 
the conjunction of the negations of the atoms belonging to the set. Given a set of atoms M and a signature L , ¬ M’= 
{¬a | a∈ L \ M}.  

Finally, a program is a finite set of clauses. If all the clauses in a program are of a certain type, we say the 
program is also of that type. For instance, a set of arbitrary clauses is an arbitrary program, a set of disjunctive 
clauses is a disjunctive program. The size of a disjunctive program is the sum of the sizes of the clauses in the 
program.  
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2.2 Motivation and logical foundations of the G’3-stable semantics 
In (Osorio et al., 2008) the authors discuss and illustrate why paraconsistent logics are also interesting for logic 
programming semantics. They use an example for that purpose and consider the normal program P1 :{a  ¬ b}. The 
well known stable semantics (Gelfond and Lifschitz, 1988) of P1 gives {a} as the unique intended model of this 
program. If we use classical logic we obtain {b} as a second model, but this is against the spirit of logic 
programming. However, it would be convenient to have some semantics, which share several properties with the 
stable semantics, but are closer to classical logic. For example, let us consider the following program P2:{a  ¬ b,  a 

 b,  b  a}. 
P2 does not have stable models, but the set {a,b} could be considered the intended model for P in classical logic. 

So, we need logics weaker than classical logic in order to be able to model logic programming. A major 
mathematical question then arises: Are there other well known semantics such that the unique intended model of 
program P1 is {a} and the unique intended model of program  P2 is {a,b}? The answer is “yes” when we consider 
semantics defined by some paraconsistent logics, at least, the two logics that we consider in this paper: the Cω logic 
and the G’3 logic. 
 
The Cω  logic (da Costa, 1963) is defined as positive logic1 plus the following two axioms: Cω 1: a ∨ ¬ a and Cω 2: 
¬¬ a  a. 

Table 1. Truth tables of connectives in G’3 

x ¬x  0 1 2 
0 2  0 2 2 2 
1 2  1 0 2 2 
2 0  2 0 1 2 

 
The G’3 logic is defined  as a 3-valued logic with truth values in the domain D ={0,1,2} where 2 is the designated 
value. The evaluation functions of the logic connectives are then defined as follows: x ∧ y = min(x, y); x ∨ y = max(x, 
y); and the ¬ and  connectives are defined according to the truth tables given in Table 1. (Osorio and Carballido, 
2008) present an axiomatization of G’3 that consists of all the axioms of Cω plus the following four axioms: 
 

E1: (¬A ¬B) ↔ (¬¬B  ¬¬A)  where  F ↔ G := (F G) ∧ (G F)          E2: ¬¬(A B) ↔ ((A B) ∧ (¬¬A  ¬¬B)) 
    E3: ((B∧¬B) ∧ (~~A ∧ ¬A))  A   where  ~A := (A  (¬A ∧¬¬A))            E4: ¬¬(A ∧ B) ↔ (¬¬A ∧ ¬¬B) 
 

(Osorio and Carballido, 2008) also present a soundness and completeness theorem: a formula can be inferred 
from the axioms and using modus ponens, if and only if, it takes the designated value 2 for any choice of truth values 
taken by the atoms in the formula. In other words a formula is a theorem if and only if it is a tautology. 

We observe that one of the important features of Cω  and G’3 is that the formula (¬a ∧ a) b is not a theorem. 
This fact, a formula and its negation do not entail any arbitrary formula, is what makes these logics paraconsistent. 

It turns out that the two paraconsistent logics mentioned in this section are related to a semantics which is an 
alternative answer to the question posed above. We now turn our attention to this semantics: the p-stable semantics. 
The p-stable semantics is based on the following definition of X-stable model of an arbitrary program given an 
arbitrary logic X. We use the notation Q╟─X M  to denote that M is a classical model of Q and Q proves, in logic X, 
each atom in M. 
 
Definition 1 (Osorio et al, 2006) Given any logic X and an arbitrary program P, a set of atoms M ⊆ LP is a X-stable 
model of P if P ∪¬M’╟─X M. The semantics defined by these models is called the X-stable semantics. 
 

                                                 
1 A logic whose connectives do not include any negation (Osorio et al., 2008). 
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Example 1 Let X be the G’3 logic. Let P be the following program {b  ¬ a,  a ¬ b, p ¬ a, p ¬ p}. It is easy 
to verify that {a, p} and {b, p} are G’3-stable models of P. Let us observe that the formula (¬a a)  a is a 
tautology in G’3. 
 

Now, we review a fixed point characterization of the p-stable semantics for disjunctive programs using classical 
logic, since this kind of characterizations is commonly useful for implementations of a semantics. A preliminary 
implementation of the p-stable semantics based on this characterization is presented in (López, 2006). Following a 
similar approach to (Gelfond and Lifschitz, 1988) for the stable semantics, the p-stable semantics uses the RED(P,M) 
reduction defined below. It also uses a fixed-point operator in terms of classical logic. From now on, we shall use the 
symbol ╞═C  to denote the consequence relation in classical logic. 
 
Definition 2  (Osorio et al, 2006)  Let P be a disjunctive program and M be a set of atoms. We define RED(P,M) := 
{A  B+ ∧ ¬( B - ∩ M)  | A  B+∧ ¬ B - ∈ P}. 
 
Example 2 (Osorio et al, 2006) Take the following disjunctive program P: {b  ¬ a,  a ¬ b,  p  ¬ a,  p  ¬ p,  c 
∨ a  p}. Given M = {a, p}, it follows that RED(P,M) is the program: { b ¬ a,  a,  p  ¬ a,  p  ¬ p,  c ∨ a p}. 
 
Definition 3 (Osorio et al, 2006)  Let P be a disjunctive  program, and M  be a set of atoms. We say that M is a p-
stable model of P if M is a classical model of P and  RED(P,M)╟─C M. 
 
Example 3 (Osorio et al, 2006) }Let us consider  the disjunctive program P of Example 2. We know that given M = 
{a, p}, it follows that RED(P,M) is the program: { b ¬ a,  a,  p  ¬ a,  p  ¬ p,  c ∨ a p}. Hence, since 
RED(P,M)╟─C M, M is a p-stable model of P, and it is the only one. 
 

Now we present the characterization of the p-stable semantics for disjunctive programs in terms of the 
paraconsistent logic G’3. This characterization is based on the definition of X-stable model of an arbitrary program 
given an arbitrary logic X. In particular, when the logic X corresponds to the logic G’3 in the Definition 1, we obtain 
G’3-stable models and the G’3-stable semantics. Let us observe that the condition that P ∪¬M’ proves, in logic X, 
each atom in M in Definition 1, is strictly stronger than the condition that every model of P ∪¬M’ in the G’3 logic is 
a model of M. To see this, let us look at an example. Let P be the program {a ¬ b,  b  b}. Any G’3 valuation of a 
and b that makes true the rules of P∪{¬ a}, gives b the designated value 2; however {b} is not a G’3-stable model of 
P. The characterization of the p-stable semantics for disjunctive programs in terms of the paraconsistent logic G’3 is 
described in the following theorem. 
 
Theorem 1 (Osorio et al, 2006) Let P be a disjunctive program. Let M be a set of atoms. M is a p-stable model of P 
iff M is a G’3-stable model of P. 
 

Let us stress the fact that this theorem establishes an equivalence between the p-stable semantics and the G’3-
stable semantics, only for disjunctive programs. From now on, we shall use any of the two terminologies when 
dealing with disjunctive programs. 

It is worth to mention that the only p-stable model of program P2, at the beginning of this subsection 2.2, is 
{a,b}, which is also the intended model of this program P2 in classical logic. 

We want to mention that in (Pearce, 1999), Pearce characterized the well known stable semantics defined in 
(Gelfond and Lifschitz, 1988) for disjunctive programs in terms of an arbitrary intermediate logic2 X and the 
definition of the X-stable model. This characterization is described in the following theorem. 
 

 
2 A logic stronger than or equal to Intuitionistic logic and strictly weaker than Classical logic, such as logic G3. 
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Theorem 2 (Pearce, 1999) Let X be an intermediate logic. Let P be a disjunctive program. Let M be a set of atoms. 
M is a stable model of P iff M is a X-stable model of P. 
 

We also remark that the authors of (Osorio et al., 2008) present some results that give conditions under which 
the concepts of stable and p-stable models agree. They present a translation of a disjunctive program D into a normal 
program N, such that the p-stable model semantics of N corresponds to the stable semantics of D when restricted to 
the common language of the theories. Besides, they show that if the size of the program D is n then the size of the 
program N is bounded by An2 for a constant A. The relevance of this last result is that it shows that the p-stable 
model semantics for normal programs is powerful enough to express any problem that can be expressed with the 
stable model semantics for disjunctive programs. 

In order to finish this section, we consider the expressivity of the p-stable semantics. We mention three different 
approaches for knowledge representation based on this semantics: updates, preferences and argumentation. 

In case intelligent agents get new knowledge and this knowledge must be added or updated to their knowledge 
base, it is important to avoid inconsistencies. An update semantics for update sequences of programs based on p-
stable semantics is proposed in (Osorio and Zepeda, 2007). 

The concept of preferences is considered a vital component of reasoning with real-world knowledge. In (Osorio 
and Zepeda, 2008), the authors introduce preference rules which allow us to specify preferences as an ordering 
among the possible solutions of a problem. Their approach allow us to express preferences for arbitrary programs. 
They also define a semantics for those programs. The formalism used to develop their work is the p-stable semantics. 

The main purpose of argumentation theory is to study the fundamental mechanism humans use in 
argumentation, and to explore ways to implement this mechanism on computers. Recently, in (Carballido et al., 
2009) it was shown that given an argumentation framework, its preferred semantics3 can be characterized by means 
of a normal program, such that the preferred extensions of the argumentation framework correspond exactly to the 
G’3-stable models of the normal program. This kind of result helps to understand the close relationship between two 
successful approaches of non-monotonic reasoning: argumentation theory and logic programming with negation as 
failure. 
 
3 G’3-stable extensions to handle uncertainty 
 
Uncertain, inconsistent and incomplete information is an unavoidable feature of daily decision-making. In order to 
deal with uncertain, inconsistent and incomplete information intelligently, we need to be able to represent it and to 
reason about it.  Currently, several proposals for dealing with inconsistent programs have been suggested. One of 
particular interest is proposed in (de Amo et al., 2002). This approach is based on a family of the so called Logics of 
Formal Inconsistency (LFIs). A major point of about these logics consists in the internalization of the concepts of 
consistency and inconsistency inside the object language, see (de Amo et al., 2002; de Amo et al. 2000; Carnielli et 
al. 2007). These logics are used in (de Amo et al., 2002) as a logical framework to model integrated databases. (de 
Amo et al., 2002) also presents a method that consists basically in constructing a repaired version of the integrated 
database where inconsistent information could appear. More closer to our work is the research presented in (Sakama, 
1995). Here, the stable semantics was generalized to deal with inconsistent programs. However this approach only 
allows disjunctive programs. In the approach by (Sakama, 1995) it is not clear which proof theory supports their 
proposal. 

In this section, we will outline some results around the p-stable semantics in order to represent uncertain, 
inconsistent and incomplete information and perform reasoning with it. 

Although the G’3-stable models semantics (see Definition 1) is interesting, it is explosive and can not handle 
contradictions. The problem is that in Definition 1, we require M to be a classical 2-valued model of the given 
theory. We suggest a simple solution to this problem. Our idea is to substitute this condition for a weaker form, one 

                                                 
3 It is worth mentioning that the preferred semantics is one of the most accepted argumentation semantics in argumentation theory (Bench-Capon 
and Dunne, 2007) 

Computación y Sistemas Vol. 13 No.1, 2009, pp 75-86 
ISSN 1405-5546 



G’3-Stable Semantics and Inconsistency   81 
 
that avoids making the program more inconsistent (so to speak). As we recognize in the conclusions, we need further 
research to obtain something more valuable. 

In the rest of this subsection we present the details of our construction, which is a revised version of the one 
presented in (Osorio and Carballido, 2008). First, we will review some basic notions that we will need later. 

For a given set L of literals and a program P, we say that L is complete w.r.t P if every atom that appears in P, 
either belongs to L or its negation belongs to L. For a given set of negative literals N, we write PN to denote the 
program P∪N. For a given program P, we say that it is literal complete if for every atom x in the language of P, 
either P ├─ G’3  x or P ├─ G’3  ¬x. 

Let us consider an example to explain what we have in mind w.r.t a nonmonotic semantics that can deal with 
inconsistent programs. Suppose that we have a program P consisting of 3 formulas: ¬ a b, ¬ c, and c. Then P does 
not have G’3-stable models. 

We are interested in the definition of a semantics that can give the following set of literals as the unique output 
of P, namely {¬a, b, ¬c, c}. For a given program P, let li be a function that counts basic inconsistencies as follows: 
li(P) :=  |{x ∈ LP  : P ├─ G’3  x , P ├─ G’3  ¬x.}|. 
 
Definition 4 Let P be any program and  let N be a set of negative literals. We said that PN is a suitable extension of P 
if PN is literal complete and li(P)=li(PN). Let L be a set of literals that is complete w.r.t. P and let N := {¬ x : ¬ x ∈ 
L}. We say that L is a semi-G’3 stable model of P if PN is a suitable extension of P and PN ├─ G’3  ¬L. 
 

Following this approach, it turns out that {¬a, b, ¬ c, c} is the unique semi-G’3 stable model of our example 
program given before. 

The following result is new and important, because it shows that our semantics is indeed a reasonable 
generalization of the G’3-stable semantics with respect to normal programs. Informally speaking it says that both the 
G’3-stable semantics and the semi- G’3 stable agree for normal programs. 
 
Theorem 3 Let P be a normal program and M be a set of atoms. Then the following two properties hold: 
(a) if M is a G’3-Stable model of P then ¬(LP \ M) ∪ M is a semi-G’3 stable model of P. 
(b) if L is a semi-G’3 stable model of P then At(L) is a G’3-Stable model of P, where At(L) denotes the set of atoms in 
L. 
Proof. 
First, note that li(P)=0. 
We first prove (a). Let M be a G’3-Stable model of P. Let N be the set ¬(LP\ M). Observe that PN is literal complete 
and  li(PN)=0. Hence, PN is a suitable extension of P. (*) 
Let L be N∪M. Note that L is a set of literals that is complete w.r.t. P. Moreover,  PN ├─ G’3  ¬L. (**) 
By (*) and (**) L is a semi- G’3 stable model of P. So, ¬(LL\ M) ∪ M is a semi- G’3 stable model of P, as desired. 
 

We now prove (b). Suppose that L is a semi- G’3 stable model of P. L is of the form N∪M, where N is the set of 
negative literals in L and M is the set of positive literals in L. It is immediate that PN is a suitable extension of P.  

To prove that M (also At(L)) is a G’3-Stable model of P we need to show that  PN ├─ G’3 M and that M is a 
standard 2-valued model of P. The first condition follows immediately. Hence, we concentrate on proving the second 
condition. Note that for every atom x, x∈ M iff PN ├─ G’3 x. In addition, since PN is literal complete, we also have that 
for every atom x, x∉M iff PN ├─ G’3 ¬ x. Suppose (in order to obtain a proof by contradiction) that M is not a model 
of P. Then there exists  an atom or a rule r in P that is not modeled by M. If r is an atom (say x) then one can easily 
verify that PN ├─ G’3 x and PN ├─ G’3 ¬ x. Hence, li(PN) > 0 and so PN  is not a suitable extension of P, but this is a 
contradiction. Suppose then that r is rule of the form α  x. Then M models α but M does not model x. By the 
second condition, we know that PN ├─ G’3 ¬x. Now, since M models α, M models every literal l that appears in α and 
hence PN ├─ G’3 l, so PN ├─ G’3 α. Since PN ├─ G’3 r, by modus ponens:  PN ├─ G’3 x. Hence, li(PN) > 0 and so PN is not a 
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suitable extension of P, but this is a contradiction. Hence, M is a model of P. Thus, At(L) is a G’3-stable model of P, 
as desired.  

Not much has been done with respect to extending a non-monotonic semantics to deal with inconsistent 
programs. The semi- G’3 stable semantics is one proposal in this line of research. It has two basic but appealing 
properties that we claim makes it a reasonable proposal. First, as Theorem 3 shows, it properly generalizes the 
original G’3-stable semantics, namely, for normal programs both semantics agree. Second, as our example illustrates, 
the semantics has the non-interference property, namely if a program P is made up of two programs P1, P2 that have 
disjoint languages, then the semantics of P with respect to the language of P1 corresponds exactly with the semantics 
of P1. 
 
4 Uncertain reasoning and p-stable semantics 
 
In this selection, we will outline some results around the p-stable semantics in order to represent uncertain, 
inconsistent and incomplete information and perform reasoning with it. 

Possibilistic logic (Dubois, et al. 1994) is a logic of uncertainty tailored for reasoning under incomplete 
evidence and partially inconsistent knowledge. In this logic all the formulas are attached by degrees of uncertainty; 
where, these degrees are quantifications of necessity or possibility of the corresponding possibilistic formulas. Based 
on ideas of possibilistic logic and stable semantics, in (Nicolas et al., 2006; Nieves et al., 2007), the authors defined a 
possibilistic logic programming approach which is able to deal with reasoning that is at the same time non-
monotonic and uncertain. In this approach, a possibilistic logic normal program P is a finite set of possibilistic 
normal clauses such that a possibilistic normal clause is a standard normal clause attached by a degree of uncertainty 
α (α belongs to a complete lattice). 

In (Nieves et al., 2007), the authors proposed an alternative approach for capturing the semantics of possibilistic 
normal logic programs. Since this approach is based on the p-stable semantics (the so called possibilistic p-stable 
semantics), it is less sensitive (in the sense of inconsistency) than the possibilistic logic programming approach based 
on the stable semantics. 

Like the p-stable semantics, the definition of the possibilistic p-stable considers a reduction which is defined as 
follows: 
 
Definition 5 (Nieves et al., 2007; Nieves, 2008) Let P be a possibilistic normal program and M a set of atoms. We 
define PRED(P,M) := {(α : a  B+ ∧ ¬( B - ∩ M) )| (α : a  B+ ∧ ¬B - ∈ P}. 
 
Observe that the reduction PRED is a straightforward generation of the reduction of the p-stable semantics (see 
Definition 2). 

Now by considering the reduction PRED and the proof theory of possibilistic logic, the possibilistic p-stable 
semantics is defined. In order to define it, we use the projection * which removes either the uncertain degrees 
attached to a possibilistic atom or to a possibilistic clause, and also the operator ≤ which defines a partial order 
between sets of possibilistic atoms4. 
 
Definition 6 (Nieves et al., 2007; Nieves, 2008) Let P be a possibilistic normal logic program and M be a set of 
possibilistic atoms such that M* is a p-stable model of P*. We say that M is a possibilistic p-stable model of P if and 
only if PRED(P,M*) ├─ PL M and there does not exist a set M' such that the following three conditions holds: M' ≠M, 
PRED(P,M*) ├─ PL M' and M ≤ M'. 
 

In this definition, ├─ PL denotes the inference in possibilistic logic. Observe that the definition of the 
possibilistic p-stable semantics is close related to the p-stable semantics. In fact, M is a possibilistic p-stable model of 

                                                 
4 A ≤ B ⇔ A* ⊆ B*, and ∀x, q1, q2, (x, q1) ∈ A ∧ (x, q2) ∈B  then  q1≤ q2 
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the possibilistic logic program P if and only if M* is a p-stable model of the logic program P* (* denotes a projection 
which removes the possibilistic degrees of any set of possibilistic atoms or a set of possibilistic logic clauses). 

Just as the p-stable semantics is related to stable semantics (also called answer set semantics), the possibilistic p-
stable semantics is closely related to the possibilistic semantics defined in (Nicolas et al., 2006; Nieves et al., 2007). 
For instance, the following proposition shows a relationship between the possibilistic answer set semantics (Nieves 
et al., 2007) and the possibilistic p-stable semantics. 
Proposition 1 (Nieves, 2008) Let P be a possibilistic normal program. If M is a possibilistic answer set of P, then the 
two following conditions hold:  (a) M* is a p-stable model of P*. (b) there exists a possibilistic p-stable mode M' of 
P such that M ≤ M' and M* = M'*. 
 

An interesting property of the possibilistic p-stable semantics is that this semantics supports a kind of monotony 
w.r.t. the inference under possibilistic logic. In order to enunciate this property, we say that P is equivalent to P' 
under the possibilistic p-stable semantics if and only if any possibilistic p-stable model of P is also a possibilistic p-
stable model of P' and vice versa. 
 
Proposition 2 (Nieves, 2008) Let P be a possibilistic normal program. If P├─PL (x,α) then P is equivalent to P ∪{(x, 
α)} under the possibilistic p-stable semantics. 
 

Prioritizing logic clauses, as it is done in possibilistic logic programming, can be also regarded as a preference 
relation between rules. In fact, by considering the certainty degrees as preferences, two criteria for restoring 
inconsistent possibilistic knowledge bases were defined in (Nieves, 2008). These criteria are based on the notion of 
maximal consistent subsets of premises. In other words, one tries to recover the maximal consistent subset of 
possibilistic clauses from an inconsistent possibilistic program to infer consistent information. For instance, let us 
consider the following possibilistic logic program P: {0.3: a   ¬b,   0.5: b  ¬c,  0.6: c  ¬ a}. Observe that P* 
has no answer sets, neither p-stable models; hence, P has no possibilistic answer sets neither possibilistic p-stable 
models. However, an important property of possibilistic logic, that was proved in (Dubois et al., 1994), is that P├─PL 
(x,α)  if and only if Pα  ├─PL (x,α), where Pα =  {c | c∈P and  n(c)≥α}. This property is a key point to restore 
consistency of an inconsistent possibilistic knowledge base. In fact, in (Dubois et al., 1994), it was introduced the 
concept of α-cut. Essentially, possibilistic logic, by using α-cut, deletes the set of possibilistic formulae which are 
lower than the inconsistent degree of the inconsistent knowledge base. In order to illustrate these ideas, let us 
consider again the program P, specially let us consider the subprogram P3 : {0.5: b  ¬c,  0.6: c  ¬a}. All we 
want to point out is that 3 is the inconsistent degree of P (see (Nieves, 2008) for a formal definition of this degree). 
Now observe that P3 has a possibilistic answer set which is {(c, 0.6)}. Observe that by removing the possibilistic 
clause 0.3: a  ¬b, one can recover a consistent subprogram of P. By lack of space, we do not present the formal 
details of the α-cut w.r.t. possibilistic logic program; however, the interested reader can find in (Nieves, 2008) all the 
technical details. 

As we can see, by considering prioritized logic clauses, as it is done in possibilistic logic programming, one can 
restore the consistency of possibilistic logic programs. 
 
5 Conclusions  

 
In this paper, we have presented an overview of how to perform non-monotonic reasoning based on paraconsistent 
logics. In particular, we concentrate our attention on a logic programming semantics, called G’3-stable, which is 
based on paraconsistent logics. We have seen that the scope of the G’3-stable semantics is at least the same as that of 
the stable models semantics (Gelfond and Lifschitz, 1988). In fact, we have pointed out that this semantics is able to 
capture the preferred argumentation semantics which is one of the most accepted argumentation semantics in 
argumentation theory. It is worth to comment that by considering the relationship between argumentation and logic 
programming semantics, we can explore the non-monotonic reasoning properties of the argumentation semantics. 
For instance, since the G’3-stable semantics can be constructed by some paraconsistent logic (Osorio et al. 2006; 
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Osorio et al., 2008), one can study the non-monotonic reasoning properties of the preferred semantics in terms of 
these logics. 

Also we have described an approach for managing uncertain, incomplete and inconsistent information. This 
approach has features of possibilistic logic. These features allow restoring consistency from an inconsistent 
possibilistic knowledge base. 

The issue of non-monotonic reasoning in the context of inconsistent knowledge bases is still open; however, we 
have presented enough evidence that suggests that paraconsistent logics could support the definition of robust non-
monotonic approaches in order to deal with inconsistent knowledge bases. In fact, we have introduced a 
generalization of the G’3 stable semantics in order to deal with inconsistent programs.  
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