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Abstract. Both the Local Binary Pattern (LBP) and the 
Coordinated Clusters Representation (CCR) are two methods 
used successfully in the classification and segmentation of 
images. They look very similar at first sight. In this work we 
analyze the principles of the two methods and show that the 
methods are not reducible to each other. Topologically they 
are as different as a sphere and a torus. In extracting of image 
features, the LBP uses a specific technique of binarization of 
images with the local threshold, defined by the central pixel of 
a local binary pattern of an image. Then, the central pixel is 
excluded of each local binary pattern. As a consequence, the 
mathematical basis of the LBP method is more limited than 
that of the CCR. In particular, the scanning window of the LBP 
has always an odd dimensions, while the CCR has no this 
restriction. The CCR uses a binarization as a preprocessing of 
images, so that a global or a local threshold can be used for 
that purpose. We show that a classification based on the CCR 
of images is potentially more versatile, even though the high 
performance of both methods was demonstrated in various 
applications. 
Keywords: Texture Image Analysis, Classification, 
Segmentation, Coordinated Clusters Representation, Local 
Binary Patterns. 
 
Resumen. La Representación de Imágenes por Cúmulos 
Coordinados (RICC) y el Local Binary Pattern (LBP) son 
métodos eficazmente usados para la clasificación y 
segmentación de imágenes. A primera vista éstos parecen 
muy similares. Con un análisis de los principios de dos métodos 
demostramos que no son reducibles uno a otro; en términos 
de topología matemática son tan diferentes como esfera y 
dona. En la etapa de extracción de características de una 
imagen, el LBP usa una técnica específica de binarización de 
imágenes con umbral local, que se define por el píxel central 
de un patrón local de la imagen. Después, el píxel central se 
excluye de cada patrón local. Por tanto, el sustento 
matemático del método de LBP es más limitado que el de la 
RICC. En particular, la ventana de barrido en LBP siempre tiene 
dimensiones impares, la de la RICC no tiene esta restricción. La 
RICC requiere la binarización como una etapa de 
preprocesado de imagen y, por tanto, puede usarse un umbral 
global o local adaptable. La clasificación basada en la RICC es 
más versátil, aunque las eficiencias terminales de clasificación 

por los dos métodos pueden ser muy cercanas en muchas 
aplicaciones. 
Palabras clave: Análisis de Imágenes de Textura, Clasificación, 
Segmentación, Representación de Imágenes por Cúmulos 
Coordinados, Patrones Binarios Locales. 

1   Introduction 

In general, classification implies the assignment of 
an object (image) to one of the predefined classes. 
Classification consists of learning and recognition 
phases. In the first, features are extracted from a set 
of texture images with known class labels, each 
class being characterized by its prototype feature 
vector. Then, in the recognition phase, a feature 
vector of test image is calculated and one of the 
known classifiers is used to assign the image to the 
class it matches best.  Classification is related 
closely to the following three concepts. By 
recognition we mean the identification of an image 
among a set of test images. Clustering distributes 
images into groups of similar images. Segmentation 
is the partitioning of an image into a set of regions 
with similar visual properties. Any classification 
requires a set of features that permits the 
discrimination between the images of different type. 
So the problem of establishing an adequate set of 
characteristics is of great practical importance. The 
techniques of feature extraction for texture 
description and analysis can be divided into the four 
mayor groups: statistical, model based, signal 
processing and structural methods (Tuceryan and 
Jain, 1993). Once the features of images are 
selected, a classification can be done by means of 
one of several known methods (Chen et al., 1996; 
Duda et al., 2001; Fukunaga, 1990; Young and Fu, 
1986).    
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A natural texture image has usually a significant 
statistical component in the intensity and color 
distribution that complicates its classification. Hence 
statistical techniques, based mainly on correlation 
moments and co-occurrence matrices, are widely 
used in the classification of texture images (Berry 
and Goutsias, 1989; Chetverikov, 1999; Elfadel and 
Picard, 1994; Goon and Rolland, 1999; Haralick, 
1979; Ohanian and Dubes, 1992; Soh and 
Tsatsoulis, 1999; Valkealahti and Oja, 1998). Other 
techniques are based on models of Markov random 
fields (see, for example (Chellappa and Chatterjee, 
1987)), window transforms (Turner, 1986; Azencott 
and Wang, 1997; Gonzalez-Garcia et al., 2007). 
Among the statistical methods of feature extraction 
and classification of images, the recently developed 
LBP/C and CCR were proven to be practical and 
efficient. At first sight they look similar. The purpose 
of this work is to analyze the principles of the two 
methods and show that they are not reducible to 
each other; then, to show limitations and potential 
advantages of each one. This analysis provides a 
deeper understanding of these methods and helps 
to find out its most efficient applications. The paper 
is organized as follows. Section 2 describes briefly 
the CCR method followed by the description of the 
LBP/C in Section 3. Comparative analysis of the 
LBP and the CCR is given in Section 4. Conclusions 
are presented in Section 5. 

2   Coordinated Clusters Representation 
of Images 

The motivating idea of the coordinated cluster 
transform is that any classification or recognition of 
an image implies a kind of comparative correlation 
analysis of image regions (neighborhoods), and 
those must overlap. An application of the 
coordinated cluster representation (CCR) to the 
problems of analysis and classification of binary 
images was reported in (Kurmyshev and Cervantes, 
1996; Kurmyshev and Soto, 1996) for the first time. 
The origin of the transform dates back to an earlier 
work (Kurmyshev et al., 1985), though this was done 
for the characterization and analysis of amorphous 
solids. Further, the CCR was developed into an 
efficient method of analysis, recognition and 
classification of gray level and color texture images 
(Kurmyshev and Sánchez-Yáñez, 2001; Kurmyshev 
et al., 2003; Kurmyshev and Sánchez-Yáñez, 2005; 
Sánchez et al, 2003a, 2003b). Note that the term 

“coordinated clusters” originates from solid state 
physics. We present here a resume of the CCR in 
order to facilitate a conceptual comparison of the 
CCR with the LBP. The matrix representation of the 
coordinated cluster transform is given also.  

Let ][ lmsS =  be a matrix of binary image 
intensities, where l = 1, 2, .., L and m = 1, 2, .., M  
are the dimensions of the image. Each pixel can 
take one of the values (0,1). In order to calculate the 
CCR of a binary image S we first establish a 
rectangular window of size N = I x J and then scan 
sequentially, by means of this window, all over the 
image S with one pixel step. The coordinated cluster 
transform generates the histogram of occurrence of 
binary pattern units detected through the scanning 
window. This histogram is called the coordinated 
cluster representation of an image. A binary pattern 
unit (BPU) consists of N = I x J pixels. There are 2N 
BPU that describe an image that is 29 = 512 units for 
the neighborhood of 3x3 pixels. This number defines 
the length of the histogram. Every BPU is coded by 
a decimal number. To calculate the code, the BPU 
matrix is multiplied by the mask of potentials of 2, 
element by element, and results are summed.  

The number 2N defines the length of the primary 
CCR histogram that can be reduced by eliminating 
the BPUs of zero occurrences. When normalized by 
the number ( ) ( )11~ +−×+−= JMILW , the 
CCR histogram can be considered as a probability 
distribution function of occurrences: 

( ) ( ) ( )bHWbF JIJI ,
1

,
~)( −= , where W~   is the total 

number of occurrences, the subscript (I,J) indicates 
the size of the scanning window and b (= 1, 2, 2N) is 
the decimal code of BPU. Figure 1 shows a step of 
scanning of a binary image and a decimal code of 
the BPU detected.  

 

        
Fig. 1. The CCR calculation of a binary image 
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The matrix representation of the coordinated 
cluster transform of an image S is given by the two 
matrices:  
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Dimensions of matrices A and B are ( ) LIL ×+− 1  and 

( )1+−× JMM , respectively. The transformed matrix, 
 

BSAS ⋅⋅=~  (3) 
                          
has ( ) ( )11~ +−×+−= JMILW  elements and these 
are decimal codes of binary pattern units. It can be 
seen that matrices A and B provide a line and a column 
shift of the scanning window. In addition, they assign a 
decimal code to every BPU. The CCR histogram, a 
vector of 2N components, is obtained by counting the 
number of occurrences of each element of the S~ . The 
b-th component of ( ) ( )bH JI ,  is the number of 

occurrences of decimal code b in the matrix S~ .  
 

The fundamental properties of the CCR were 
established in two theorems (Kurmyshev and 
Cervantes, 1996; Sánchez et al., 2003a) that are given 
here without proof. The first theorem establishes the 
structure of the CCR of periodic images. In particular, it 
helps one to recognize a (pseudo-) periodic texture by 
means of analysis of the CCR histogram. 
 

Theorem 1. Let S  be a binary, translation invariant 
image with a primitive cell (texton) that has a size 1τ  

pixels in one and 2τ  in the other direction. Then any 

CCR histogram ( )( )bH JI ,  of image S has no more than 

21ττ=T  non-zero values. If the CCR scanning window 
has the size equal to or larger than the texton size, 

1τ≥I  and 2τ≥J , then ( )( )bH JI ,  takes 21ττ=T  
non-zero values exactly, each peak of the histogram 
being the same size.  

 
The second theorem establishes the relation 

between ( )( )bH JI ,  and the k-th order statistics of a 
binary image.  

 
Theorem 2. Let ][ lmsS =  be a binary image and 

( )( )bH JI ,  be its CCR histogram. Then, for all il  and 

im  such that Ili
i

≤max  and Jmi
i

≤max , where 

10 −≤≤ ki  and JIk ×≤≤1 , any autocorrelation 
function of  k-th order,  
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can be uniquely reconstructed from the histogram 

( ) ( )bH JI , , where MLW ×=  is an image size, 

ilLL max−=′  and imMM max−=′ .  
 

According to the theorem, the histogram ( ) ( )bH JI ,  
contains all information about the k-point correlation 
moments of a binary image S if and only if the 
separation vectors of k pixels fit into the scanning 
window. This means that a distribution function 

( ) ( )bF JI ,  provides sufficient information about a k-point 
joint probability function. Since the correlation moments 
are important features of an image, the CCR has 
proven to be highly suitable for recognition and 
classification of texture images. 

The CCR histogram is used as a feature vector in 
classification and segmentation of textures. In order to 
use the CCR for the classification of gray level and 
pseudo-color images, these must be binarized. For this 
purpose we can use different techniques using global 
or local adaptable thresholds in accordance with a 
specific application. It means that a thresholding is a 
preprocessing phase in the CCR method. A binarized 
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image preserves sufficient amount of information for a 
primary gray level image to be classified efficiently. 
 
3 Local Binary Pattern  

 
In the paper (Wang and He, 1990) was proposed a 
technique that characterizes a texture image by its 
spectrum of texture units. A texture unit (TU) is 
represented by eight elements of a 3x3 pixel 
neighborhood, each of which takes one of the three 
values (0,1,2) depending on whether it is less, equal 
to or larger than the intensity of the central pixel. It is 
a three level partition of an image neighborhood, the 
central pixel being excluded. Hence, there are 38 = 
6561 texture units that describe three level spatial 
patterns in the 3x3 neighborhoods. The occurrence 
histogram of TU is called texture spectrum of image. 
Unfortunately the technique resulted in neither 
theoretical nor practical significance.  
       A few years later a two level version of the 
Wang and He method had emerged. The new 
technique provides a robust description of texture in 
terms of local binary patterns (LBP) (Ojala et al., 
1996a). As in the case of the three level model, the 
intensity of each of the eight neighboring pixels is 
compared with the intensity of the central pixel in the 
3x3 neighborhood. Neighborhoods overlap, as in the 
case of the CCR. One of the two values (0,1) is 
assigned to a pixel in accordance with the rule: 

0=ip  if ci II < , 1=ip  if ci II ≥ , where 
8,..,2,1=i ,  pi is the binary value of the i-th pixel of 

the 3x3 neighborhood, Ii and Ic are intensities of the 
i-th pixel and the central pixel, respectively. The 
basic idea of the LBP method is explained in Figure 
2, where (a) is the original pattern of a 3x3 
neighborhood, (b) is the binary pattern of the 8 pixel 
neighborhood with the central pixel excluded, (c) is 
the mask of powers of 2 used for the decimal 
codification of the binary pattern, (d) is the decimal 
code of each of the eight binary pixels resulting in 
the number 93 for the whole neighborhood. In the 
two level version of texture units, there are only 28 = 
256 units, compared to 6561 as in Wang and He 
method. 
 

381
559
746

 

010
11
101

 
765

43

210

222
22
222

 

0640
168
401  

(a) (b) (c) (d) 
 

Fig. 2. Calculation of the LBP = 1+4+8+16+64 = 93 and 
the contrast C = (6+7+9+5+8)/5 - (4+1+3)/3 = 9.7. 

As we can see, the LBP method is, in a certain 
sense, a method of binarization of neighboring pixels 
that uses the central pixel intensity of every 
neighborhood as a local threshold. In this method a 
texture image is characterized by its histogram of 
LBP code. The LBP method is invariant to the 
change of the gray level scale and easily combined 
with the local contrast measure. The latter is 
calculated as the difference between the average 
intensity of pixels that have a binary value 1 and the 
average value of those that have value 0. In Figure 
2, the contrast is calculated as follows: C = 
(6+7+9+5+8)/5 - (4+1+3)/3 = 9.7. When the contrast 
is used besides the LBP, the method is called 
LBP/C. In spite of having only an empirical 
justification, the LBP/C method of texture analysis 
has demonstrated a high performance in 
classification and segmentation of texture images 
using the LBP/C histogram as a “two dimensional” 
feature vector (Ojala et al., 1996b; Ojala et al., 2000; 
Pietikainen et al., 2000; Maenpaa, 2003; Maenpaa 
and Pietikainen, 2004).  

In order to enhance the mathematical validation 
of the LBP method we prove here an analog of 
theorem 1 of the CCR. Note that in case of the LBP 
there is no analog of Theorem 2 proven for the CCR 
because the “drilled” domains have lost a part of the 
information about the pixel statistics of different 
orders. 

 
Theorem 1 (LBP). Let S  be a gray scale or color, 
periodic image with a primitive cell of a size 1τ  
pixels in one and 2τ  in the other direction. Then any 
LBP histogram ( )( )bH JI ,  of image S has no more 

than 21ττ=T  non-zero values, no matter how large 
is a scanning window.  

 
Proof.   Let start one pixel step scanning of a 
periodic image with a window of a size equal to or 
larger than a size of primitive cell. Then, after 1τ  
steps in one direction we meet the same (simply 
connected) domain of pixels. In other direction we 
face with the same pixel configuration after 2τ  
steps. None of the domains is repeated in between 
these steps. Thus, the number of different simply 
connected domains we meet is equal to 21ττ=T  
exactly. The calculation of the LBPs is based on the 
comparison of the intensity of neighboring pixels 
with that of a central one. Because this calculation 
can transform different gray level neighborhoods into 
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the same LBP, then the number of different LBP 
neighborhoods is less than or equal to 21ττ=T . 
When the size of a sampling window is less than 
that of a texture primitive cell, even in one of the two 
directions, then the number of different simply 
connected domains we face with is equal to 

21ττ=T  at most. The calculation of the LBPs can 
even reduce this number. That completes the proof 
of the theorem. 

As in the case of the CCR, this theorem helps 
one to recognize a (pseudo-) periodic texture 
analyzing its LBP histogram. Some simple examples 
of 1-D textures are given here in order to illustrate 
the theorem. Each digit of a sequence represents a 
pixel intensity.   

 
Example 1. The texture is given by the “infinite” 
repeating of the five pixel primitive cell (…12223…), 

5=τ . Let a 1-D scanning window be 5 pixel size. 
Then, the histogram of four pixel LBP 
neighborhoods has five peaks at (0111), (1110), 
(0000), (1111) and (1011). Those are different LBPs 
of the five pixel domains (12223), (22231), (22312), 
(23122) and (31222) respectively. In case of 3 pixel 
scanning window we have only three different LBPs 
(01), (11) and (00), because the following three 
domains (222), (223) and (312) are transformed into 
the same LBP (11).  
 
Example 2. The texture is generated by the five 
pixel primitive cell (…11223…), 5=τ . Let a 1-D 
scanning window be 5 pixel size. The four pixel 
LBPs (0011), (0110), (0000), (1111) and (1111) are 
the maps of the following five pixel domains (11223), 
(12231), (22311), (23112) and (31122) respectively. 
We see that the LBP histogram has only four peaks 
because the last two domains have the same LBP 
(1111).  

4 Comparative analyses of the CCR and 
the LBP  

In order to complete a comparison between the two 
methods, CCR and LBP, we outline the main virtues 
of both. As shown in Section 1, the intrinsic 
characteristics of a texture are expressed by virtue 
of correlation functions. To capture the essence of a 
texture, the CCR was developed as a transform of 
binary images that preserves the correlation 
moments of different orders between image pixels; 
this is expressed by the two theorems in Section 2. 

The CCR histogram is used as a feature vector for 
tasks of recognition, classification and segmentation 
of images. The extension of the CCR to the grey 
level and color images is done by means of 
thresholding in a preprocessing of an image. On the 
contrary, the LBP is a “synthesized” method in which 
the binarization (with a local one pixel threshold 
only) is inseparable from the feature extraction. 
Features are expressed by means of the spectrum 
of binary texture units. The CCR method implements 
the two operations separately. First an image is 
binarized (or multi thresholded, if necessary) and 
then features are extracted by means of the 
coordinated cluster transform. The separation of the 
two operations provides more flexibility to the CCR 
method, because the binarization can be done by 
means of a large variety of techniques with both 
local and global thresholds.  

The difference between the CCR and LBP 
methods is seen even greater if we apply both 
transforms to a binary image (an “asymptotic” case 
of grey level images). The coordinated cluster 
transform does not change the pattern of a binary 
neighborhood. In the case of LBP we have: 0=ip  if 

ci II < , 1=ip  if ci II ≥  (see Section 3). This rule 
applied to a binary image gives the following two 
very different results. If the value of the central pixel 
of a neighborhood is 1=cp , then the pattern of the 
8 pixel vicinity does not change. Nevertheless, when 

0=cp , then every pixel of the LBP vicinity takes 
the value 1=ip  (i = 1, 2, .., 8). The latter result is 
completely different of that given by the CCR (see 
Figure 3). So, all domains that have the central pixel 
intensity 0=cp  are transformed into the unique 
LBP neighborhood of white pixels only. This effect of 
a local one pixel threshold of the LBP method can 
cause some trouble in the analysis and classification 
of images with a significant number of such 
domains. In this case we expect an appreciable 
difference between the rate of classification by 
means of the CCR and the LBP methods. In practice 
the LBP transform is applied to gray level images 
where the variation in the intensity of adjacent pixels 
is gradual compared to that in a binary image. That 
diminishes the negative effect. 

 
 
 



58   E.V. Kurmyshev 
 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 53-60 
ISSN 1405-5546 

 
 

Fig. 3. The CCR and LBP calculation of a binary domain 
with the central pixel intensity 0=cp  

 
Another aspect distinguishing the CCR from the 

LBP is that the scanning window of the CCR can 
have any suitable dimension JI ×  and needs not 
be centrally symmetric. This gives an advantage in 
dealing with correlation moments of different ranges 
and orders (short, medium and long range 
correlations). On the contrary, only odd 
numbers JI =  are used in the LBP, since there has 
to be a central pixel as a reference for the 
binarization. In addition, the central pixel is excluded 
from the vicinity after being used as a threshold; that 
is the vicinity is a “drilled” cluster, a double 
connected domain. In terms of mathematical 
topology, the CCR uses a sphere and the LBP uses 
a torus to cover a texture pattern. These are not 
reducible to each other, as are the CCR and the 
LBP methods.  

In order to illustrate, rather than prove 
differences between the two methods we give here 
an example of multi class classification using the 
CCR and the LBP. The same conditions are 
maintained for both methods. A minimum distance 
classifier is used to assign test images into 8 
classes. Eight color images of the Rosa Porriño 
granite, which were converted to gray level ones, 
are used as source (master) images of the classes 
(see Figure 4).  

 

    
RP2_00R1 RP2_10R1 RP2_23R1 RP2_30R1 

    
RP2_41R1 RP2_52R1 RP2_61R1 RP2_72R1 
 

Fig. 4. Eight source images of Rosa Porriño granite 

 
Original 512x512 master images have been shrunk 
to 204x204 (0.4x0.4 reduction) and 102x102 
(0.2x0.2 reduction) pixel size in order to diminish an 
image scale influence over the classification. 3x3 
neighborhoods of the LBP and the CCR are used to 
create a feature vector (histogram). Note that a 
similarity of source images is a challenging problem 
of the classification of subimages randomly 
extracted of those. Forty subimages extracted 
randomly from each master image are used to 
generate a class prototype histogram (the medium 
of 40 histograms) of both the CCR and the LBP. 300 
subimages of the same size randomly extracted 
from each source image are used as test images, 
giving in total 3200 test subimages in each 
experiment.  

We made four experiments. In the first, eight 
source images were of 204x204 pixel size (0.4x0.4 
reduction), while prototype and test subimages were 
154x154 pixels. In the second, we changed the 
subimage size for 102x102 pixels remaining the size 
of source images. The third and fourth experiments 
were done with the 102x102 source images (0.2x0.2 
reduction) and 77x77 and 51x51 subimages, 
respectively. The classification of a test subimage is 
considered to be correct when it is assigned to the 
class of source image, on the contrary it is a 
misclassification. In the four experiments the 
average efficiency of classification into the 8 classes 
is equal to: 1) 97.6% LBP and 100% CCR; 2) 97.4% 
LBP and 98.4% CCR; 3) 97.5% LBP and 100% 
CCR; 4) 96.8% LBP and 100% CCR. Thus, in these 
particular experiments the CCR method has proven 
to be slightly superior to the LBP.  

The algorithm of the coordinated cluster 
transform is simple and the CCR does not preserve 
information about the location of scanning window. 
In this respect the CCR is similar to the LBP. The 
matrix representation of the coordinated cluster 
transform besides the two theorems, given in 
Section 3, enhances more the mathematical basis of 
the CCR. On the contrary, the LBP method lacks the 
mathematical foundation (at least published) that 
weakens its formal mathematical justification. The 
main applications of the two methods, the CCR and 
the LBP, are classification, recognition and 
segmentation of texture images. 

 
 
 

CCR 

LBP 

= 1 

= 0 
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5   Conclusions 

The local binary pattern and the coordinated cluster 
representation are two methods used efficiently for 
the classification and segmentation of images. Both 
the CCR and the LBP histograms can be interpreted 
as a kind of image decomposition. The conceptual 
analysis of the two methods shows that they are not 
reducible each to the other. In terms of mathematical 
topology they are as much different as a sphere and 
a torus. 

The LBP is a technique of statistical feature 
extraction by means of the binarization of a 
neighborhood of every image pixel with a local 
threshold determined by the central pixel, the latter 
being excluded from the neighborhood. As a 
consequence there is no analog to Theorem 2 of the 
CCR method, though an analog to Theorem 1 was 
proven above. The scanning window of the LBP 
always has odd dimensions, the CCR does not. 
Since the CCR method requires the thresholding as 
a stage of image preprocessing, both global and 
local threshold methods can be used depending on 
a potential application. Note that an image 
binarization with local adaptable threshold can easily 
fail to detect visual defects because it is used to 
restore the texture of a defect. So it can not 
distinguish the real defect, caused by a shade 
variation, from the effect of non homogeneous 
illumination.  

Matrix representation of the coordinated cluster 
transform, reported in this work, enhances the 
mathematical basis of the method and facilitates the 
use of the powerful computer programs of MATLAB. 
The CCR and the LBP can be seen loosely as 
different bases in a feature space of local 
characteristics of an image. For example, in a linear 
vector space there exist an infinite set of distinct 
bases to span any vector of the space. One of the 
bases can be preferable in order to solve a given 
mathematical problem. Nevertheless, every basis 
will lead to the same solution. This is the case of the 
CCR and the LBP; they are “bases” of different kind. 
The efficiency of classification and recognition of 
images by both methods can be very similar in many 
cases. Each of the two methods, especially the 
advanced versions of those, has its own virtues 
(Ojala et al., 2002). The question is how to get more 
profit of that. Concerning this question we think that 
the mathematical foundations of a method provide a 
deeper understanding of its use. 
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