Computacién y Sistemas Vol. 1 No. 4 pp. 239-250
© 1998, CIC-IPN. ISSN 1405-5546 Impreso en México

A Fast Algorithm for Scheduling Equal-Lenght
Jobs on Identical Machines

Nodari Vakhania
Facultad de Ciencias
Universidad Autonoma del Estado de Morelos

Cuernavaca, Mexico

Article Received on November, 1997; accepted on April, 1998.

Abstract

The problem of sequencing jobs of equal durations with
avatlable (readiness) times and the additional tails on
a set of parallel identical processors is considered. The
objective is to minimize the mazimal completion time.
We present a new polynomial algorithm which improves
the running time of the previously known best algorithm
under the realistic assumption that tails of all jobs are
bounded by some sufficiently large constant.

Keywords: Scheduling, Identical Processors, Readi- _

ness Time, Tail, Computational Complexity.

1 Introduction

Scheduling problems constitute part of the combinator-
ial optimization problems. Combinatorial optimization
itself is relatively new field, traditionally belonging to
Operations Research, now also it significantly intersects
with Computer Science. The combinatorial optimiza-
tion problems are discrete optimization problems with
the finite set of feasible solutions and a goal function,
which has to be minimized {(or maximized). A problem
is (exactly) solved if a feasible solution with the minimal
(maximal) value of a goal function is found. Though the
set of feasible solutions is finite, it might turn out that it
is “too big”, so that the complete enumeration would be
practically impossible, since it would take inadmissible
amount of machine time and memory. The dependence
of the number of feasible solutions of a problem P on the
length of input (the size of P) might be polynomial, as
well as exponential. In the latter case we are not able
to find an algorithm for P with polynomial dependence.
The problems with polynomial dependence are typically
much easier to solve than the problems with exponential
dependence, since they take significantly less computa-
tional time. For a polynomial problem P, there may exist
several algorithms with different degrees of the polyno-
mial. Then the algorithmn with the smallest degree is
preferable, since it takes less computational time. In this
paper we propose an-algorithm for a polynomial problem
of scheduling n equal-length jobs (or tasks) on m identi-
cal processors to minimize the total completion time of
all jobs. Our algorithm has a smaller degree of the poly-
nomial than the earlier ones under a realistic restriction
which we impose on the problem data.

The sequencing problem P1 we conseder, can be stated
as follows: There are given a set I = {1,2,...,n} of jobs
and a set M = {1,2,...,m} of machines (or processors).
Each job has to be performed on any of the given m ma-

W——

239



Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Length Jobs on identical Machines

em+]

em+ R

m— 2

—

1

R m

7

R m

Figure 1: An ESS S.

chines; the processing time of any job {on any machine)
is a given integer number p. Jobi (1 = 1,2,...,n) is avails
able at its integer readiness time a; (this job cannot be
started before the time a;) and has an integer tadl ¢; (in-
terpreted as the additional amount of time needed for
the termination of job i once it is processed on a ma-
chine). A schedule is a function which assigns a machine
to each job and a starting time (on that machine). An
(integer) starting time t7 of job i (in the schedule S) is
the time at which this job is scheduled to be performed
on a machine. The completion time of job i on a ma-
chine ¢ = tf + p. The full completion time of job i
in the schedule S is ¢f + g; (notice that ¢; doesn’t take
any machine time). Each machine can handle at most
one job at a time, that is, if jobs ¢ and j are scheduled
on the same machine then either ¢f < tf or cf < .
The preemption of jobs is not allowed, that is, each job
is performed during the time interval [t7,tF + p] on a
machine. A feasible schedule is a schedule which satisfies
the above restrictions. The objective is to find an opti-
mal schedule, that is, a feasible schedule which minimizes
the mokespan (the maximum full job completion time).

An alternate formulation of the above problem is the
one with due dates (abbreviated as P2): instead of the
tail g; an integer due date d; is given for each job i (d; is
the desirable time for completion of job ¢). The lateness
L$ of job i in a schedule § is defined as:

LS = 0, if Cf < d;
¢ ¢ — d;, otherwise.

The objective is to find an optimal schedule, that is, a
feasible schedule which minimizes the maximum lateness
LS .. =max{L{|i =1,2,..n}. The equivalence between

the two problems PI and P2 is established by a simple
transformation [Bratley et al., 1973].

If we allow in P1 or in P2 different processing times
we get strongly N P-complete problem even in the single-
machine case [Baker & Zaw, 1974; Bratley et al., 1973;
Carlier, 1982; Garey & Johnson, 1979; McMahon & Flo-
rian, 1975].

If we replace in P2 due dates with deadlines and look
for a feasible schedule, we get the corresponding feasibil-
ity problem PF (by PF'1 we abbreviate the one-machine
version of PF’). In a feasible schedule 5 of PF no job can
be delayed, that is, ¢f < d;, for i = 1,2,...,n (in a fea-
sible schedule of P2 we allow the existence of such jobs
and we look for a schedule which minimizes the maxi-
mum delay). :

It has been proved that PF is solvable in polynomial
time. An O(n?logn) algorithm for PF1 presented in
[Carlier, 1981] is improved to an O(nlogn) algorithm in
[Garey et al|, 1981]. This algorithm applies a concept




Nodari Vakhania: A Fast Aigorithm for Scheduiing Equai-Lengh Jobs on indentical Machines

of the so called forbidden regions {that is a region in a
schedule in which it is forbidden to start a job). Ones
the algorithm declares the forbidden regions it applies
the earliest due date heuristic and constructs the final
feasible schedule. In [Simons, 1983] and [Simons & War-
muth, 1989] the concept of forbidden regions is general-
ized for a multiple-machine case and an O(n?loglogn)
and O{n®m) time algorithms, respectively, are presented
for PF.

The minimization problems P1 and P2 can be solved
by the repeated application of an algorithm for the cor-
responding feasibility problem. We iteratively increase
the due dates of all jobs by some constant until we find a
feasible schedule of the feasibility problem with modified
data. Since the maximum lateness will depend on the
number of jobs, we need to apply such algorithm O(n)
times.

The algorithm for the problem P1 which we present
here has the time complexity O(mnlogn) under the as-
sumption that the tails of all jobs are bounded by the
sufficiently large constant. We notice that for many ap-
plications this assumption is realistic and imposes no ad-
ditional restrictions. With each node of our search tree
the so called complementary schedule is associated. The
complementary schedules are complete schedules which
we generate iteratively by the application of the greatest
tail heuristic to the specially modified problem instances.
An overflow job is a job which realizes the value of the
maximal completion time in a schedule. We introduce
five behaviour alternatives in our algorithm which reflect
five different ways of alteration of an overflow job when
we generate a new complementary schedule. Qur search
for an optimal schedule is based on the analysis of a
behaviour alternative in the generated complementary

schedules.

In Section 2 we introduce the basic definitions and
notations. In Section 3 we investigate the properties of
the complementary schedules providing the basis for the
algorithm construction. .In Section 4 we describe the
algorithm and indicate its computational complexity. In
Section 5 we give the final remarks.

2 Basic Concepts

A

Our search for an optimal schedule can be conveniently
represented by a rooted tree T (we call it the solution
or the search tree). We iteratively generate new feasible
schedules which are represented by the nodes in T. Each
of the new generated schedule is obtained from the pre-
viously generated one by some specific rearrangement.
Each feasible schedule we construct using the modifica-

tion of the heuristic suggested by Luis Schrage for prob-
lem P2. According to this heuristic, the next scheduled
job is a one which has the smallest due date (or, equiva-

lently the greatest tail, for problem P1) among 4 %
able jobs: - A o

Procedure Extended Schrage.

begin{extended schrage}

(0) t:=min{asli € I}; A:=1T;
Rk):=0, k=1,2,....,m;

{ Ry is the release time of machine & }

(1) Among the unscheduled jobs | € A with a; < ¢
schedule next job j with the greatest tail on machine
k = ord(j) mod m {break ties arbitrarily};

{ord(7) is the ordinal number of job j in the current
partial schedule}

tj = max{t, Re}; Ri:=t; +pj; A:=A\{j};

k' := (ord(j) + 1) mod m; { k¥’ is the next available
machine}

if A # @ then t := max{Ry,min{a;|i € A}}; go to
(1)

else Extended Schrage:= {t;} (j = 1,2,...,n);

return;

end.{extended schrage}

Thus the above algorithm repeatedly determines the
next scheduled job using the Extended Schrage heuris-
tic and assigns it to the next machine (next to machine
k, k=1,2,...,m— 1, is machine k + 1 and next to ma-
chine m is machine 1). The schedules, generated by the
application of this algorithm are called extended Schrage
schedules (abbreviated ESS). An example of an ESS §
is given in Figure 1. The ordinal number of job ¢ in
this schedule is denoted by ord(z, S) (i.e. 7 is ord(z, S)st
scheduled job in S); we say that job ¢ is occupying
ord(i, S)st slot in S. We denote by (s, S) the starting
time of sth slot in 8§, that is, the starting time of the
job scheduled in this slot in §. Later we frequently use
a short form ¢ > j for ord(¢, S) > ord(j, S), assuming for
the simplicity that jobs in S are numbered consequently
from 1 to n.

With the root of our selution tree T the feasible sched-
ule, obtained by the application of the Estended Schrage
algorithm to the initially given problem instance is as-
sociated (we call the schedule, thus obtained, the initial
extended Schrage schedule). Each subsequent schedule
we also obtain by the Extended Schrage algorithm, but

241


http:probJ.em

Nodar Vakhanic: A Fast Algorithm for Scheduling Equai-Length Jobs on identical Machines

we iteratively apply it to the specially modified problem
instances (different from the initially given one). We dis-
cuss this in details later in this section.

Proposition 1. For any eztended Schrage schedule S
and jobs i, j such that ord(j,S) > ord(s, S), 5 >¢7.

Proof. Immediately follows from the heuristic of the
ESS.0

With an extended Schrage schedule S we associate a
conjunctive graph Gg (see Figure 1). Each node in this
graph, except the (fictitious) source node 0, and the (fic-
titious) sink node %, represents a unique job with the
same number. We have in Gg the set of (initial) arcs
0,3), (3,%), i = 1,2,....,n. With an arc (0,7) ((¢, %), re-
spectively) the weight a; (p + ¢i, respectively) is associ-
ated. We complement the set of initial arcs as follows.
We add an arc (3,7) (1,7 € {0,*}) to Gs with the asso-
ciated weight p when job j is scheduled directly after job
1 on the common machine. The makespan of S is then
determined by the length of a critical path in Gs.

Figure 2: The Graph Gg.

Figure 2 shows that Gg contains m unconnected
“ochains”, each of them consisting of jobs scheduled suc-
cessively on one particular machine. First such a chain

—————

)

consists of jobs scheduled on machine 1, the second such
a chain consists of jobs scheduled on machine 2 and so on;
the last chain consists of jobs scheduled on the last ma-
chine m. Each of these chains may contain one or more
critical paths. Among all critical paths in Gg we distin-
guish the ones associated with the machine {or equiva-
lently, with the chain) with the greatest index and call
them the rightmost critical paths. Among critical paths
of one particular chain we distinguish critical paths with
the maximal number of jobs. The first such a path in a
chain we call the mazimal path. We will be further in-
terested mainly in rightmost maximal paths (notice that
for any schedule this path is defined uniquely).

A gap in a schedule is a time interval which is not oc-
cupied by any job. The greatest tail schedules consist of
the sequence of one or more blocks. Intuitively, a block
is an “solated” part of a schedule. Any block, differ-
ent from the last block (or equivalently, the first one, if
they are the same) in any schedule contains the number
of jobs which is multiple of m. Formally, a block is the
maximal sequence of successively scheduled jobs on ad-
jacent machines such that first m jobs in it are preceded
by gaps or are earliest scheduled jobs on their respec-
tive machines, and the last m scheduled jobs (k < m
jobs, correspondingly) are succeeded by -gaps (are latest
scheduled jobs on their respective machines, correspond-
ingly). For any two blocks B;, By € S either By > By
or By < Bj holds, that is, either B; precedes By in § or
vise versa. In a given schedule, the critical block is the
block containing the rightmost maximal path.

’

In Figure 3, the rightmost maximal path in Gg is rep-
resented. We call the last scheduled job of the rightmost
maximal path in § the overflow job and usually denote
it by r. Let B be the critical block in the ESS S. A job
l € B such that ord(l} < ord(r) is called an emerge job
in S if g < g-. We denote by Kg ,, the set of all emerge
jobs in S, where p stands for the respective rightmost
maximal path.

The sequence of jobs scheduled in § between [, the
emerge job with the maximal ordinal number and the
overflow job r (including this job) is called the emerge
sequence and is denoted by Cg,. Notice that jobs of
Cs,, are scheduled successively on adjacent machines
and hence may belong to different paths in Gs.

We denote by L(S) the length of the (rightmost max-
imal) critical path in Gg and by L(S, j) the length of a
longest path to node j ih Gg.

Let S be any Extended Schrage schedule and let
[ € Ks,,. The schedule obtained from § by rescheduling
job [ after all jobs of the emerge sequence Cg, we call




Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Lengh Jobs on indentical Machines

Figure 3: The fragment with the rightmost maximal path
in Gg.

the complementary schedule and denote it by S;. Com-
plementary schedule S; we. obtain by application of the

heuristic of ESS to the specially modified problem in- ~

stance. We increase the readiness time of job [ as well as
some other jobs scheduled in § after the sequence Cg,,
so that these jobs will be “forced” and scheduled after
all jobs of Cg ,, by the heuristic of the ESS. So, we leave
an additional free space in S) giving the possibility to
the urgent jobs from the emerge sequence to start their
processing earlier.

Let I’ be the set consisting of all jobs from Cg,,
and the jobs scheduled before Cg ,, in 5, excluding job
l € Ks,,; let S’ denotes the partial schedule obtained by
the application of the heuristic of the ESS to the set I’.
Let us redefine the readiness times of all jobs ¢ € I\ I, as
follows: a; := max{tS ,a;} (t5 is said to be the thresh-
old value for S;). Now the complementary schedule S is
an extension of S obtained by application of the heuris-
tic of the ESS to the remained jobs (with the modified
readiness times) from I\ I'.

5

The rightmost maximal path with the respective over-
flow job might alternate in different ways in newly gener-
ated complementary schedules, that is, the consequences
of rescheduling of an emerge job after the emerge se-
quence might be different. We distinguish five behaviour
alternatives in a complementary schedule S;. Let r(5)
denotes the overflow job in 5. Then the critical path in
S5 1s said to be:

(a) unmoved, if r(S;) = r(S),
(b) rested on !, if 7(S;) =1,
(c) shifted forward,

(d) shifted backward, if r(S;) and r(S) are in the
same block (r(S)) # r(S), r(S) # )
and ord(r(S;),S:) > ord(r(S),S5:) (respectively,
ord(r(8), S1) < ord(r(S), S1)),

(e) otherwise, the critical path is said to be relocated,
that is, (S;) and r(S) belong to different blocks.

All the alternatives except the last one are “local” for
the current block: in the case of the instances of the first
four alternatives we “stay” in the current block (mak-
ing further the necessary rearrangement) while with the
instance of the alternative five we “move” to another
block (and make necessary rearrangement. there). We-
again analyze the behaviour of the critical path in the
newly generated complementary schedule and repeat the
process. As it will be evident later, the impact of differ-
ent alternatives on the complexity of our algorithm dif-
fers (alternatives (a), (b) will cause less computational
efforts than instances of the other alternatives).

It can be easily seen that all five alternatives are at-
tainable (see the Appendix for the examples). Clearly,
the five alternatives are exhaustive {we can refer to one
of them in any S): the overflow job in S} may remain the
same as in S (the alternative (a)) or ‘change to ! (the al-
ternative (b)). Otherwise, either it can move to another
block (the alternative (e)) or stay in the current block.
For the latter case we have two possibilities: either 7(S;)
is scheduled after 7(S) in S; (the alternative (c}) or it
is scheduled before r(S) (the alternative (d)). Thus, we
have the following

Proposition 2. The alternatives (a) to (e) are attain-
able and erhaustive.

3 Study of the Complementary
Schedules

In this section we give the basic properties of the comple-
mentary schedules which we use later in our algorithm.

Lemma 1. There arises at least one gap in any comple-
mentary schedule S between the (ord(l,S) — 1)st sched-
uled job and the overflow job r.

Proof. Consider job j, a; = min{a;|l < i < r}. Assume
first that j is not an emerge job. Then ¢; > ¢. This

243



Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Length Jobs on Identical Machines

yields a; > t since otherwise job j would be scheduled
at the moment ¢ in S (by the heuristic of the ESS).
From the definition of the complementary schedule we
have that no job from those which were scheduled after
Cs, in S can occupy any interval before Cg, in Si.
Therefore we will have a gap [t7,a;) in S).

Now suppose j is an emerge job with g; < ¢ and
a; <t (if a; > t7 then we have a gap [t{,a;)). Again
by the heuristic of the extended Schrage schedule and
the definition of the complementary schedule, 7 will be
ord(l, S)st scheduled job in S; and (due to the equal
processing times) we will have a gap in S; strictly before
(ord(j, S) + 1)th scheduled job if j is the only remained
emerge job. If not, the next slot might be occupied by
next emerge job. It is easy to see that there will be a
gap in S strictly before the job scheduled after the last
such emerge job.o

By the following lemmas we give other properties of
the complementary schedules.

Lemma 2. An ESS cannot be improved by rescheduling
of any non-emerge job.

Proof. Obviously follows from the definition of a non-
emerge job and Proposition 1.¢

Lemma 3. An ESS S cannot be improved by the re-
ordering jobs of the éemerge sequence Cg, .

Proof. Suppose that in the emerge sequence Cg, job
m precedes job [ and that we have interchanged the order
of these two jobs in the schedule $’. Consider the two
following possibilities: a; < t5, and a; > t5.

Ifa; < t2, then ¢, > g (by the heuristic of the ESS). Job
m can be scheduled before or after the overflow job r in
S’. The first alternative is obvious (see Proposition 1).
For the second one we easily obtain L(S',m) > L{S,r)
since ¢m < gy

If a; > t5, then we have a gap in Cg,, in the schedule $’.
Again, job m can be scheduled before or after the over-
flow job r. In the first case we obviously have L{(§",r) >
L(S,r). In the second case, L(S’,m) > L(S,r) (since
Gm 2 ¢r)-0

Let S be an extended Schrage schedule and g = ¢ ~
a;j, where [ = max{ili € K.}, a; =min{a;|i € Cg,}.

Lemma 4. The lower bound on the value of an optimal
schedule is L(S) —

Proof. L = t5 + p+ g, is the makespan of S. We can-
not improve this value by reordering jobs of the emerge
sequence (Lemma 3). Therefore, the only possible way
to improve it, is to reschedule some other jobs in such

244

a way that jobs from Cg, could start their processing
earlier. Suppose we released some slots in S. Then none
of the job i € Cs,,. can start its processing earlier than at
time ¢7 — 85 (by the definition of §5 and the ESS). Thus
the value L{8) = L(S,r) can be decreased at most by &g
and therefore L{S) — §g is the resulting lower bound.c

Theorem 1. An optimel schedule is amongst the com-
plementary schedules.

Proof. Consider any ESS 5. We claim that if this sched-
ule is not optimal then we can improve it only by gener-
ating complementary schedules. Then, coming out from
the definition of a complementary schedule, we have to
show that S cannot be improved by:

1. Rescheduling of any non-emerge job. This we have
from Lemma 2;

2. Reordering the jobs of Cg,. We have this from

Lemma 3;

3. Rescheduling an emerge job inside the emerge se-
quence. If we reschedule an emerge job inside the
emerge sequence Cg,, then we can decrease L(S)
at most by ég (Lemma 4) while we increase it by p

(6s < p);

4. Reordering the jobs of a block different from the
critical block. This case is obvious.o

Let S be a complementary schedule with the rightmost
maximal path p. Consider the set of the complementary
schedules 5;, [ € Kg,, and the magnitude, by which
the length of p is reduced in each of these schedules. As
the following lemma shows, this magnitude may only de-
crease while we apply an emerge job which has an ordinal
number, less than that of already applied emerge job.

Lemma 5. L(S;,7) < L(Sk,r) if 1>k (ke Kg,).

Proof. Consider the complementary schedule S, and
the job, say j, which occupied ord(k, S}th slot in it. By
the heuristic of the ESS we have tS’ > t§. The similar
condition holds for all jobs which scheduled between job
k and an overflow job r in S (in other words, the starting
time of a job, scheduled in ith. (ord(k, S) < ! < ord(r, 5))
slot in Si is more than or equal to that of in §). Anal-
ogously, the first late slot in S; will be ord(l, S)th slot
and we have ord(l,S) > ord(k,S). This easily im-
plies inequality of the form t(s,S;) < #(s,8), s =
ord({, §),ord(l,8) + 1, ...,r Now we get the lemma since
in both .5; and Sy job r is scheduled in (ord(r, §) — 1)th
slot.o

Intuitively it should be clear that if a critical path in
some complementary schedule is rested on the resched-




Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Lengh Jobs on Indentical Machines

uled emerge job then it makes no sense to improve it.
A closed schedule is a schedule without successors which
cannot have successors, while an open schedule is a sched-
ule which is not closed and has no successors.

Lemma 6. Suppose in the complementary schedule
Si,1 € Kg ,u, a critical path is rested on I. Then:

1. 8y can be closed;

2. Any complementary schedule Sy such that k <
land g > q can be neglected.

Proof.

Part 1. Suppose !’ is any emerge job in S; (if there is
no emerge job in S; then it can be closed, Lemma 2).
This job is also emerge in S since ¢y < ¢. If ord{l’, 8) >
ord(l, S) then S; can be neglected (this lemma, part 2).
Let now ord(l’, S) < ord(l, S). Consider the nested com-
plementary schedule (S;)y. If L{(S)r, V) = L(S;,1) then
obviously (8;)r can be neglected. Assume L{(S;)y,1') <
L(S;,1). Then also L{Sy,l') < L(S;,1) since job ! in
S; will be scheduled in an earlier slot than in (S;); (see
Proposition 1), hence L(Sy) < L{S;) and again S; can
be closed.

Part 2. Obviously follows from Lemma 5.0

The following lemma enables us to reduce the number
of complementary schedules we generate:

Lemma 7. If I>kandq < qr (Lke€Kgy,), SeT -

then the complementary schedule Sy can be neglected if
the complementary schedule S) is generated.

Proof. Suppose that a critical path in S; is rested on
l. Then it is rested on k in Sk and L(S;,1) < L(Sk,k)
since g; < q. If a critical path in 5; is unmoved then
from Lemma 5 we have

L(S,r) < L{Sk,7) ")
and obviously the schedule S can be neglected.

Let a critical path in S; be shifted forward. If a critical
path in Sk is rested on k then this schedule cannot be
further improved (Lemma 6); also it cannot be better
than 8; since q; < g and I > m (Lemma 5).

Suppose in Sk a critical path is unmoved. Again from
Lemma 5 we have L(S;) < L(S;,7) < L(Sk,r) = L(Sk)
and obviously we, have to generate a complementary
schedule of the form (Sk)i, & € Kg,,, & > k to im-
prove the value L(Sk,r). We have (Sk) = (Sk/)k. If
job &’ is such that there is no k"’ € Kg,,, k" > k' with
gr» < gir then according the this theorem (Si )i will be
generated and {Sy)w can be neglected. Otherwise, we re-
cursively apply the similar reasoning to job k” until we
find a complementary schedule satisfying the conditions

of the theorem.

Suppose a critical path in Sy is shifted backward. Again
from Lemma 5 and from the definition of [ and & (due to
the equal processing times) we easily get that L{Sy) >
L{S:) and that none of the complementary schedules, the
successors of Sk, can have makespan better than that of
the schedule §; (if we succeed in the schedule Sp we will
be brought to the schedule which cannot be better than
the schedule 5j).

Let now, in both S; and S, a critical path be
shifted forward. Consider the complementary sched-
ules (..(S)i.- )i, (-.(Sk)k--)k, obtained from the sched-
ules S;, Si by rescheduling repeatedly jobs I,k respec-
tively (as an emerge jobs). Observe that, if k is emerge
in (..(Sk)k.-)x, than [ is also emerge in (..(S;);..); since
gt < qi. Besides, the ordinal number of [ in (..(Si);...)s
is greater than or equal to the ordinal number of &k in
(-.(Sk)k-..)i (again, because q; < gi). This again implies
inequality of the form (*). The lengths of a c¢ritical paths
in the considered schedules are decreasing step-by-step
and the number of such schedules is bounded by the max-
imal tail (for details we refer to our proof of Theorem 2).
As a result, we are brought either to the situation when
the job k, or both ! and k£ become non—emerge (these jobs
cannot be further used for a schedule improvement), or
to one of the situations considered above while for all in-
termediate complementary schedules inequalities of the
form Eq. (*) are satisfied.

Suppose now that a critical path in S; is shifted back-
ward. A new arisen gap forces an ‘order change of a
couple of jobs in S;; let j;, 7, be the corresponding cou-
ple of jobs in S;. If the processing order of jobs j and
j' in Sk is the same as in S; (i.e. job 7/ precedes job
J) then obviously the starting time of job j in Sy can-
not be less than that in §;, that is, S, cannot be better
than S;. If job j precedes job 7’ in Sk then the starting
time of ord(j’, S;)th slot is greater than that in S; (by
the heuristic of the ESS). Therefore the starting time of
all consequent slots in Sy is greater than that in 5; (see
Proposition 1) and again L(Sk) > L(S;). For any suc-
cessor schedule of Si we apply the reasoning which we
already used for the different behaviour alternatives.

The alternative (e) obviously reduces to one of the alter-
natives (a) to (c). The lemma is proved.o

We use Lemma 7 to reduce the set of emerge jobs. The
subset of the emerge jobs Krg, we will call a reduced
set of emerge jobs, if for any pair [,k € Krg, such that
I < k, we have ¢; < gy.

From Lemma 7 we obviously get the following:

Lemma 8. Let L(S,,r) = L{S,,r) =

I}

245



Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Length Jobs on Idenfical Machines

L(S,,7), lila, ...l € Kgy, and q, = min{g;,|j =
1,2,...,p}. Then complementary schedules Sj;,j =
1,2,...,p and j # k, can be neglected if the comple-
mentary schedule Sy, is generated.

Lemma 9. The number of complémentary schedules, the
direct successors of a particular complementary schedule
S is bounded by 3.

Proof. There are no more than §g possibilities to reduce
the length of a critical path in S (by 1,2,...,6s, see
Lemma 4). From all the complementary schedules, for
which the critical path is reduced by a certain quantity
8,1 < 8§ < bg, we generate only one (Lemma 8). Thus,
we generate no more than §g complementary schedules.o

4 The Algorithm

In this section we finally give our algorithm. But before,
we need some additional definitions and lemmas.

Let by be any branch in T and let S be the first com-
plementary schedule in bt such that r € I is the overflow
jobin it. A complementary schedule S’ € T, a successor
of 5, we call Ith level nested complementary schedule of
job S if:

1. A critical path in S’ is unmoved with job r being an
overflow job in it (the instance of alternative (a)) or
it is relocated to job r (the instance of alternative

(e));

2. 5" has exactly | —1 predecessors in bt satisfying the
condition 1.

Thus the main characteristic feature of a nested com-
plementary schedule of S is that r is the overflow job in
it.

Let 7 = min{|Cg,|,m} . We say that the nested
complementary schedule of §, § is well-defined, if any
of the first 7 jobs of Cg,, is preceded by a gap in it.

Lemma 10. Any well-defined nested complementary
schedule 8’ € T might be closed.

Proof. From the definition of S’ we have that first 7
jobs of Cg,, in this schedule are starting at their earliest
starting times. Therefore the value L(5',r) cannot be
further improved (if # < m, this claim is obvious; if
m > m, we apply Lemma 3). Thus we can close the
schedule §’.0

Lemma 11. A nested complementary schedule of a level

246

at most m 1is well-defined. Conseguently, it might be
closed.

Proof. Consider S’, a 7nth level nested complemen-
tary schedule of §. We claim that this schedule is well-
defined. We get this claim from the definition of the ex-
tended Schrage and complementary schedules. Indeed,
let j denotes a job from Cg, with the minimal readi-
ness time. In a nested complementary schedule of S of
the first level job j will occupy the slot ord(j, S) — 1 and
this job will be preceded by a gap (by the definition of
a complementary schedule and Lemma 1). Analogously,
in the next, nested complementary schedule of S of the
level two, job j will occupy the slot ord(j,S) — 2 while
the next job from Cg,, will occupy the slot ord(7,S) —1
and both jobs will be preceded by a gap. Now, in §’, a °
mth level nested complementary schedule of S, the first 7 -
jobs of Cg . will be preceded by gaps. Thus, S’ is a well-
defined nested complementary schedule. Consequently, !
it can be closed (Lemma 10).0

Suppose S*, S’ are the complementary schedules with
the common parent schedule S, S* is the schedule with
non-empty set of successors and S’ is an open schedule.
Let, further S” be a successor of S* and let A(S) denotes
the active job of the complementary schedule S. We have
the following:

Lemma 12. The complementary schedule S’ might be
closed if the complementary schedule S” with ga(sy <
(IA(S') 15 genemted.

Proof. Consider schedules §* and (S’). The sched-
ule §* should be generated before the schedule S’ on
the level le(S*) (le(S) denotes the level of S in T)
since otherwise the schedule (S') would have successors
(remind that in T we continue search from the near-
est leftmost open schedule). From this we get that
ord(A(S*), S) >ord(A(S"),S") and therefore L(S*,r) <
L(§',r) (Lemma 5). Since S” is a successor of S* we
should have L(S”,r) = L(S*,r) unless job r is shifted

_right in one of the schedules, generated between S™* and

S5”. Obviously, this might happen only if a critical path
first is relocated to some block B’ < B and then shifted
forward (here B € S’ is the block containing the over-
flow job r of S). If in S’ we decrease “enough” the length
of a critical path then a critical path will be relocated
to the same block B’ and similarly in some successor
§¢ of S’ job r would be delayed as much as in §”. So
we apply one of the inequalities L(S”,r) < L(S',r) or
L(S”,7) < L(S¢r) with the inequality in the condition
and use a reasoning analogous to that from the proof of
Lemma 7 and complete this proof.c

Now we are ready to give the description of our al-
gorithm. It constructs the solution tree T containing



http:min{ql.il

Nodari Vakhania: A Fast Algorithm for Scheduling Equoi-Lengh Jobs on Indentical Machines

an optimal solution S,,;. With the root node of T
the extended Schrage schedule S, constructed for the
initial data is associated. The successor nodes on the
first level of T represent the complementary schedules
S;, 1 € Krg,,. The successor nodes on the second level
of T represent the complementary schedules (S;); where
S; is a complementary schedule of the first level and
k € Krg, .., and so on. We test each generated sched-
ule for the optimality (by Lemma 2} and close it if the
conditions of one of the lemmas 6, 8 10 are satisfied.
Then we continue search from the leftmost open node, if
an optimal schedule is not obtained, applying Lemma 12
(the Procedure Backtrack in the description below) and
finally we stop when there is no more open node left in

T.

Procedure Main;

Procedure Backtrack,
begin{ backtrack}

Find the nearest open schedule S” € T (if there is
some};

if qasy > q° then (close S'; Backtrack) {Lemma 12}
else (S := §’; return)

if there is no open schedule in T then stop

{Sopt 1s an optimal schedule}

end{backtrack}

begin{ main}

(0) S :=Extended Schrage { Section 2}
Sopt 1= 8; §° = +o00;

(1) Find the emerge sequence Cg,, and the reduced set
of emerge jobs Krg ,; K = Krg,;

if K = @ then {close the schedule S; Backtrack);
{Lemma 2}

(2) S¢:=0;

while K # § do

begin{while}

= max{sly € K} K o= K\ {1}

Construct the complementary schedule Sj;

iFSC£0 & L(S),7) =
8}

if L(S1) < L(Sopt) then Sopt := Si;

L{S¢,r) then close ¢ { Lemma

if q < q° then ¢° :== q;

if S; is a well-defined nested complementary schedule
or a critical path in it is rested on [

then close S;;  {Lemmas 10, 6}

5¢:=5;
end {while}
Backtrack,

end {main}.

Theorem 2. The time complexity of the algorithm is
O(mnlogn) (under the assumption that the mazimal job
tail is bounded by the sufficiently large constant C).

Proof. Suppose that B ¢ B is a critical block in the
initial extended Schrage schedule S and r is the overflow
job in it. First we estimate the number of nodes in the
solution tree T under the assumption that in all gener-
ated complementary schedules a critical path is shifted
forward (the alternative (c)).

Consider the complementary schedule Sy, le(S;) =1 and
suppose that a critical path is shifted forward to the job
J (4 € Bs,r) in it. We claim that ¢; < ¢, — 1. Indeed,
there can be gcheduled no more than m — 1 (m is the
number of machines) jobs in S, (different from job r)
which are started at time ¢ and have the tail equal to
¢r- There can exist no job started in S; at time t;?‘ or
later and having the tail greater than g, since otherwise
a critical path in S would pass through this job. All of
the jobs with the fail equal to g, are scheduled before
job 7 in 8 since r belongs to the rightmost critical path.
Thus a critical path cannot be shifted forward to any of
these jobs and we get that ¢; < ¢, — L.

For the next complementary schedule S = (S))r (I' €
Krg, .., le(S") = 2) in which a critical path is again
shifted forward to job j’ (5 > j) we use the analogous
reasoning and get that g < ¢, — 2, for the next one we
get gj# < gr — 3 and so on. Thus the number of levels in
T will not exceed g,..

Furthermore, the reduced set of emerge jobs Krg, can
contain no more than g, jobs (by the definition). This
implies that the number of complementary schedules of
the first level of T cannot be more than ¢, (see Lemma
7). Since an emerge job of any schedule of the first level
cannot have tail greater than ¢, — 1, analogously, we get
that none of the schedules of the first level can have more
than ¢, — 1 successors, none of the schedules of the sec-
ond level can have more than ¢, — 2 successors and so
on. Now we claim that the total number of schedules on

247



Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Length Jobs on Identical Machines

the level { will not be greater than ¢, — (I — 1). Sup-
pose it exceeds g, — (! — 1). Then at least one schedule
on the level [ — 1, different from the leftmost schedule
should have successors. Consider such a schedule, say S.
Since S was not closed, there is no schedule among those
already generated, which active job has the tail equal
to or less than that of the active job of the schedule S
(Lemma. 12). Consequently, there cannot exist a succes-
sor of the schedule § such that its active job has the tail
equal to or more than that of the active job of any of the
generated schedules (we remind that tails of active jobs
are decreasing level by level). Thus, on level | we will
have no schedules such that their active jobs have equal
tails. Therefore, the number of schedules of level [ will
not exceed g, — (I - 1).

So, for the total number of schedules in T we get the
bound

Gmex

b=1+ Z(Qmax - 7') = O(Q?naa:)3
i=0

max = max{g;|i =1,2,...,n}.

Now suppose that a critical path in a complementary
schedule S is unmoved. From Lemma 11 we have that
there can exist no more than m—1 nested complementary
schedules of r, the successors of S. For the number of
complementary schedules on each level of T we have the
bound of the same order as for the alternative (c). Thus,
an instances of the alternative (a) cause an additional
factor of m in b.

Let now in the complementary schedule S € T a critical
path be shifted backward. It is easy to see that a critical
path cannot be shifted backward again in any of the di-
rect successors of §. The number of the direct successors
of § is bounded by &5 (Lemma 9). So, the instances of
the alternative (d) will cause an additional factor of p in
b.

Suppose that a critical path is relocated from the block
B’ € S’ to the block B” € §', 8§’ € T (the alterna-
tive (e)). Consider two different possibilities: B” > B’
and B” < B’. Case 1 (B” > B’). We apply a reason-
ing quite analogous to that which we used above in the
case of the alternative (c) and get the bound O(gmax)
on the number of relocations from one block to another
successive block. Notice that this bound provides the
instances of both alternatives (c) and (e, case 1) since
these instances ‘alternate. Case 2 (B” < B’). Again we
can use a reasoning, similar to that which we used for
the alternative (c) and obtain that the number of reloca-
tions from a block to its preceding block cannot be more
than § = gmax — Iminy Gmin = min{gsli = 1,2,...,n} (if
a critical path is moving from job j to job §, 7' < j
we should have g; > ¢; + 1; from this inequality we can

easily get the above bound).

The number of repeated relocations of a critical path to
any job r cannot exceed m and these instances of the al-
ternative (e) are covered by the bound of the alternative
(a) (Lemma 11).

Thus, the alternative (¢) may cause the creation of
O(q2.ax) nodes in T. Instances of the alternatives (a),(d)
cause an additional factors of the order O(m) and O(p),
respectively. With each instance of the alternative (b)
we close the corresponding schedule (Lemma 6). Each
instznce of the alternative (e, case 1) is covered by the
bound of the alternative (¢). The instances of the al-
ternative (e, case 2) cause the additional factor of order

0(q)-

30, the resulting bound on the total number of nodes in
T is:
O(m).0(@%az)-O(p)-0(@)

(the constant factor O(p) can be excluded since, by divid-
ing the readiness times, tails and durations of all jobs by
p we obtain the equivalent problem with rational readi-
ness times and tails and unit-length jobs).

For each node of T we construct an extended Schrage
schedule {the time complexity is O{nlogn)) and spend
time O{n) to find an overflow job. We spend the same
amount of time to find the sets Krg,. Altogether, we
have the time complexity:

’

O(m).0(¢5ax)-O(@).(O(n log n)
+O(n) 4+ O(n)) = O(mnlogn)

(from our assumption about the maximal job tail). The
Theorem is proved.o

5 Concluding Remarks

The algorithm proposed improves the running time of
the previously known best algorithms for the feasibility
problem PF [Simons, 1983; Simons & Warmuth, 1989]
under the made assumption about the maximal job tail,
and solves an extended minimization problem P1. Algo-
rithms from [Simons, 1983; Simons & Warmuth, 1989],
as well as the one from [Garey et al., 1981], are based on
the concept of forbidden regions. In fact, we showed that
an approach without the preliminary construction of the
forbidden regions, what takes time O(n?), can be more
efficient. In the solution tree T, the number of nodes is
bounded by the polynomial on the maximum tail and the




Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Lengh Jobs on indentical Machines

number of machines and does not depend on the num-
ber of jobs, although we apply the greatest tail heuristic
with the time complexity O(nlogn) each time we gener-
ate a new ESS. Is it possible to generalize the presented
algorithm to an algorithm with the same time complex-
ity but without the restriction on the maximal job tail?
This question is left open.

6 Appendix

We give five simple examples illustrating the behaviour
alternatives (a) to (e).

The alternative (a):

job | readiness | duration | tail
1 0 3 1
2 1 3 6

The alternative (d):

job | readiness | duration | tail
1 0 3 0
2 2 3 6
3 3 3 9
4 7 3 4

The initial schedule: § = (1,3,2,4); L(S) = L(S,4) =
0+343+3+3+4=16; job1is the only emerging job;
S1=1(2,3,4,1); L(S1) = L(S1,3) =2+3+3+9=1T.
Job 3 is scheduled before job 2 in 5 since at the time
t = 3 of completion of job 1, both, jobs 2 and 3 are
ready and ¢3 > qg. After rescheduling job 1, we get the
gap [0,2) in Sy, job 2 is scheduled at the moment ¢t = 2
since job 3 is not ready at this moment; so, the critical
path is shifted backward to job 3.

The alternative (e):

The initial extended Schrage schedule S = (1,2). Fur-
ther, L(S) = L(S,2) =0+ 3+ 3 +6 = 12; job 1 is the
(only) emerging job; S1 = (2,1); L(S1) = L(51,2) =
1+ 3+ 6 = 10 and the critical path is unmoved since
(S} =r(51).

The alternative (b):

job | readiness | duration | tail
1 0 3 1
2 1 3 8
3 8 3 2

| job | readiness | duration | tail
1 0 3 4
2 1 3 6

The initial schedule S = (1,2), L(S) = L(S,2) = 0+3+
346 = 12; job 1 is the emerging job; S1 = (2,1); L(S;) =
L(5,,1) = 1+3+3+4 = 11 an the critical path is rested
on job 1 since r(S5;) = 1.

The alternative (c):

job | readiness | duration | tail
1 0 3 1
2 1 3 8
3 6 3 3

The initial schedule § = (1,2,3), L(S) = L(5,2) =
0+3+3+8 = 14; job 1 is the emerging job; §; =
(2,1,3); L(S1) = L(5,3) =1+3+3+3+3=13 and
the critical path is shifted forward to job 3.

The initial schedule S = (1,2,3); L(S) = L(S,2) =
0+ 3+ 3+ 8 =14; job 1 is the only emerging job; 51 =
(2,1,3); L(S1) = L(5,3) = 8+ 3+ 2 = 13 and the
critical path is relocated from the first block containing
jobs 1 and 2, to the second block, containing job 3.

References

K.R. Baker and Zaw-Sing Su 1974.” Sequencing with due
dates and early start times to minimize maximum tardi-
ness”. Naval Res. logist. Quart 21, 171-177.

P. Bratley, M. Florian and P. Robillard 1973. -”On se-
quencing with earliest start times and due-dates with ap-
plication to computing bounds for (n/m/G/Fpas) prob-
lem” Naval Res. logist. Quart20, 57-67.

J. Carlier (1981). "Problémes

d’ordonnancement & durées égales”. Technical report,
Institut de Programmadation, Université Paris, IV-75012
Paris, France.

J. Carlier 1982. "The one—-machine sequencing problem”
European J. of Operational Research. 11, 42-47.

M.R. Garey, D.S. Johnson 1979. "Computers and

T————

249



Nodari Vakhania: A Fast Algorithm for Scheduling Equal-Length Jobs on Identical Machines

Intractability”: A Guide to the Theory of NP-
completeness, Freeman, San Francisco.

M.R. Garey, D.S., B.B. Johnson and R.E. Tarjan 1981.
”Scheduling unit—time tasks with arbitrary release times
and deadlines”. SIAM J. Comput. 10, 256-269.

G. McMahon and M. Florian 1975. ” On scheduling with
ready times and due dates to minimize maximum late-
ness”. Operations Research. 23, 475-482.

250

B. Simons 1983. "Multiprocessor scheduling of unit-time
jobs with arbitrary release times and deadlines”. STAM
J. Comput. 12, 204-299.

B. Simons, M. Warmuth 1989. ”A fast algorithm for
multiprocessor scheduling of unit-length jobs”. STAM J.
Comput. 18, 690-710.

N. Vakhania 1997. ”Sequencing with readiness times and
tails on parallel machines”. Proc. of the Twelfth ACM
Conference on Applied Computing, 438-446.

Nodari Vakhania was born in Thilisi, Republic of Georgia en 1961, He obtained his
Jirst scientific degree in Applied Mathematics at the Tbilisi State University in 1983.
Later recived his Ph.D. degree in Mathematical Cybernetics in 1991 from the Russian
Academy of Sciences. He has worked as an assitent researcher at the department of
Artificial Intelligence of the Computing Center of the Russian Academy of Sciences.
Moscow. Since 1995 to 1996 he was an associate reseacher at IIMAS, UNAM. From
1996 he is an associate researcher at the Universidad Auténoma del Estado de Morelos,
Cuernavaca. His main interest in research are discrete optimization problems, the
design and analysis of aigorthms, scheduling algorithms.




	239_ART. 1
	240_ART. 1
	241_ART. 1
	242_ART. 1
	243_ART. 1
	244_ART. 1
	245_ART. 1
	246_ART. 1
	247_ART. 1
	248_ART. 1
	249_ART. 1
	250_ART. 1

