
Computación y Sistemas. Vol. 1. No. 2, Octubre - Diciembre, 1997, pp. 91 - 100

A MOOEL Of THE OISTRIBUTEO CONSTRAINT SATISfACTlON PROBLEM ANO

AN ALGORITHM fOR CONflGURATlON OISIGN

Leonid B. Sheremetov

Centro de Investigacion en Computadon,

Instituto Potitecnico Nacional,

Unidad Profesional Adolfo L6pez Mateos,

México. D.F., C.P. 07738

e-mail: sher@pollux.cenac.ipn.mx

Alexander V. Smirnov

St.-Petersburg Institute for Informatics and

Automation of the Russían Academy of

Scíences. (SPIlRAS)

SPIlRAS, 39, 14th tine, St.-Petersburg, 199178,

Russia

e-mail: smir@mail.iias.spb.su

ABSTRACT

The objective of this research is to develop an approach to
representing and satisfying constraints during the
cooperative configuration design of complex objects with
hierarchical structure. Designers often collaborate in
product development, so our constraint satisfaction
mechanism is based upon multi-agent technology,
permitting communication among participating
applications coupled with localized solution methods. A
system to be configured is divided into fragments; each of
them based on local knowledge about template component
compatibility. In this case each fragment development task
is treated as an agent with embedded constraint
satisfaction facilities. An agent is considered as a
computational process with expertise about a Iimited
portion of a design problem, capable of achieving specific
goals and communicating with other agents. Configuration
design process is formulated as a distributed dynamic
constraint-satisfaction problem, accomplished by a number
of agents in parallel. The algorithm of distributed search
on the dynamic constraint network is discussed. The
developed algorithm is well suited to collaborative design
because it operates incrementally and without global
information about the constraint network. The architecture
of Concurrent Configuration Design Advisor - a
distributed agent-based expert system for configuration
design of complex objects with hierarchical structure - is
presented. The discussion is iIlustrated with the examples
from FMS configuration design application domain.
Current and future work on the expert system
implementation is considered.

Key words: agents, distributed dynamic constraint
satisfaction, configuration design, manufacturing system.

INTRODUCTION

Design of large-scale systems involves consideration of
hundreds or thousands of often competing concems such
as manufacturability, testibility, cost, etc. The
combinatorial complexity of this problem is enormous
and, as such, certain models of problem domain
knowledge representation and heuristic l')Jles are to be
employed to reach an acceptable configuration within a
reasonable time frame. It implies a need for new
algorithms and program structures able to perform
simultaneously configuring procedures. As so, distributed
knowledge processing and concurrency become a
fundamental requirement for CAD, providing cooperation
between engineering systems [3, 7, 8].

This paper discusses the configuration design problem.
Configuring is the construction of a technical system
according to the requirements of a specification by
selecting, parameterizing and positioning instan ces of
suitable component types from a given catalogue [lIJ. A
formulation and representation of configuration design as
a distributed dynamic constraint-satisfaction problem
(DCSP) and its implementation in the Concurrent
Configuration.

Design Advisor (CCDA) - distributed multi-agent expert
system (ES) - are considered. In the agent oriented
approach an ES is represented as a conection of loosely
coupled autonomous agents that organize synchronous and
asynchronous communications among themselves by

91

mailto:smir@mail.iias.spb.su
mailto:sher@pollux.cenac.ipn.mx

leonid B. Sheremetov and Alexander V. Smimov: A Model of Ihe Dislribuled ComlraintSaIIsfacfIon Problem and an AIgorI/hm for Canliguralfan Design

passing messages based on project model specifications [1,
13, 19, 20]. In this paper an agent is considered as a
computational process with expertise about a limited
portion of a design problem, capable of achieving specific
goals, and communicating with other agents. These agents
use a set of operations and heuristics to navigate through
the space ofpossible designs. CCDA agents are distributed
functionally and geographically.

In this paper we describe the model and the algorithm of
distributed search, discuss agent-based architecture of the
CCDA, review our initial experiments in distributed
configuration design and outline future directions.
Illustrations are made from the Flexible Manufacturing
System (FMS) configuration design domain.

PROBLEM FORMULATION BASED ON A

DCSPMODEL

Constraint satisfaction problems (CSPs) consist of: a set of
variables, the domajns for the variables, and the
constraints on the variables [18]. A static constraint
network (SCN) (V ,dom, C) involves a set of variables

= {i, j, ... ,}, each taking value' in its respective

domajn, dom(i),dom(j), ... , and a set of constrajnts C.

Each constraint c(it> ... , iq), constraining the subset

(il,"" iq) of V, is a set of tuples, subset ofthe Cartesian

product domU})x ... xdom(iq), that specifies which'

values of the variables are compatible with each other. A
dynamic constraint network (DCN) S is a sequence of

static CNs S(o)'''',(apS(a>,S(a+IP' ", each resulting
from a change in the preceding one imposed by "the
outside world". The solution for the CSP is a value
assignment for each variable such that aH the constraints
are satisfied.

The problem of consistency-based configuration design
was formulated in [15]. It maps directly into CSPs. The
variables and equations of the model become the variables
and constraints of the CSP, with the addition of variables
representing the state of the various components, and the
variables and values representing the observations. The
search problem then becomes one of finding an
assignment of normal/abnormal to the attributes of the
components that is consistent with the observations.

Let us formally 4iefme the configuration problem as CSP,
given: Aset ofpossible designs:

A set of preferably independent attributes that describe a
design:

Then a complete design is an n-tuple:

d¡ = (d¡ .apd¡ .a2., ... ,d¡ .a n),

where d ¡ • ak is a value of an attribute for this particular
designo A set of complete designs semanticaHy forms
possible worlds, where design constraints are believed by
an agent to be satisfied. So a set of possible designs can be
represented in the form of attribute intervals for each tuple
element in the following way:

A constraint is a relation over a subset of the attribute
space that defines feasible designs. A constraint is satisfied
when no design líes outside it's feasible region. Examining
the bounds of the attribute space we can easily detect
which designs He outside the region and are to be
removed. For each constraint C j defined over a subset Aj

of design attributes: Aj e A, a constraint-based

decomposition can be defined as the subset of the attribute
space specifying the feasible region for C j' An unary

constraint applies only to one node. A binary constraint
involves two nodes. This notion is extensible to an n-ary
constraint over n nodes. Multiple unary constraints on a
node can be equivalently represented by a single unary
constraint that is their conjunction. The same technique
can be applied to represent multiple binary constraints
between two nodes as a single binary constraint between
them. In the case, when a constraint precondition is not
always true (it can be a function of other component
attributes), we have DCN.

Complex design D is decomposed into fragments. A
fragment is a component type specification. It can specify
an atomic class (low-Ievel objects, such as machine tools,
automated guided vehicles -AGV, robots) or can be
decomposed further, specifying a high-Ievel class such as
FMS on the shop floor level, FMS cell, etc. Given that, the
model of a complex design D can be considered as a set of
DeN, each of them defining a model of a fragment but
also considered as a node of DCN of the upper leve!
(figl).

Fragment f 1 Fragment f 2

Variable
(attribute)

Range of
function

92

Leonid B. Sheremetov and Alexander V. Smirnov: A ModeI of Ihé Dlstrfbuted Comlralnf Safisfaclion f'roblem ond an AIgorfIhm for ConliguraHon Des'gn

Figure l. Multilevel constraint network: Cn'C p - unary,

Cj ,Ck - binary constraints.

Let F be a set of fragments:

The multi-valued attribute space domain ofli is defined

as foHows:

Then a solution of DCSP is an assignment

Ji = {ji' ap/i' a 2 , ···,Ii· a n }, E [ajk],

V[a jk] E [A j], li E F, that satisfies the set of

constraints C.

a k

The task of finding a solution in a DCN is NP-complete,
so a number of local consistency algorithms have been
proposed [2, 5, 9]. The most widely used are those
achieving arc-consistency, checking the consistency of
values for each pair ofvariables linked by a constraint. We
define sorne basic notions of consistency below [18].

Node-Consisteney of a node: A node i is node-consistent
if and only if all labels in its domain satisfY al! unary
constraints on that node.

Are-Consisteney of an are: An arc (i; j) is arc-consistent
if and only if nodes i and j are node-consistent and for an~
labe! in the domain of node i, there exists a label in the
domain of node j such that al! binary constraints on the
two nodes are satisfied.

Consisteney of a SCN: A SCN is said to be node- or arc
consistent if and only if every node or arc respectively is
node- or arc-consistent.

Arc-consistency is very simple to implement and it has
good efficiency; it is described in [5]. Solutions that He

[outside the arc-consistent space are removed from
consideration. It is equivalent to removing designs that
violate the constraints, since removed fragments are those
that appear in possibly infeasible designo

RECURSIVE SEARCH ALGORITHM

FORMULATION

In CCDA configuring of a design is based on multi-level
decomposition 4and concurrent fragment designo Each
fragment is represented as a DCN, an agent is associated
with it to perform a configuring task. We shall call this
agent a 'design agent' or D-agent. Each D-agent is
oriented to solve a configuration problem on its level,
organizing the template solution search. This process is
applied recursively to produce a set of sub-fragments that
cannot be subdivided further. The procedure of solution

generation is depicted in Figure 2. The algorithm explores
a design tree looking for nodes that correspond to
"solutions". Each time, when called to expand a node, this
procedure checks the component data bases to see whether
the node in question has a solution. If not, the algorithm
searches the template knowledge base (KB) for the design
D. If no template is found, then it generates an agent of
another type - a 'project assistant' or A-agent - to generate
a new template. After that it makes recursive calls to the
same procedure to expand each of the offspring fragments.

Procedure search(P)
begin

if(solution(P)) then
score eval(P)

report solution and score
else

if(search_template(P)) = FALSE then
generate _template(P)

endif

foreach concept P¡ ofP

search (P¡)
endfor

endif
end

Figure 2. Recursive lormulation 01 a configuration solution
search algorithm.

A parallel algorithm for this problem can be structured as
follows. Initially, a single agent, responsible for the entire
project configuring, is created for the root of the tree. An
agent evaluates its node and then, if that node is not a
solution, creates a new agent for each fragment (sub-tree).
A channel created for each new task is used to retum to the
new task's parent aH the solutions located in its sub-tree.
Hence, new agents and channels are created in a wavefront
as the search progresses down the search tree.

Figure 3 depicts the process of top-down configuration
design, based on DCN. AIl the relations between
components are described in terms of constraints. Dashed
ellipses represent project fragments, for which a solution
can't be found in the component data base, and then the
process of logical fragment decomposition begins
(fragment In' sub-Ievels nI and n2). Each D-agent,

associated with In at the n level (serv«er), uses different
heuristics to create M fragments of the configuring task by
activating M agents (clients) at level n+ 1 to configure the
fragmento One of the main heuristics is based on minimum
fragmented structure. Each fragment has maximum close
coupled components, which structure is generated by a
constraint network. DCN on each level is created by sub
fragment constraints, generated by mean s of constraint
propagation and the rules of compatibility of components,

93

leonid B. Sheremetovond Alexonder V. Smimov: AModeI oIlhe DfsfI1buted Cons1raintSaffsfodion I'I'oblem and an A/goIithm for Configuralion Design

because concurrentIy created solutions can't be
independent. Each rule of compatibility is represented by
flfst order predicate language and has set of attributes,
which are considered by the algorithm of fragment
defmition. A D-agent utilizes inferencing techniques to
reason about feasible D-agent operations over a project

I

I I
I I

I

I

I

\
\

\

\

\
\

and so can be conceptually viewed as a virtual project
server. To have an opportunity to choose the best solution
from the possible solution set, a set of clients for the same
task can be generated, as shown in Figure 3 for the level
n+J.

Sublevel n
1

Fragment level n

Sublevel n
2

Fragment level n

Figure 3. HierarchicaJ dynamic constraint network

A template is a model of a fragmento It can be of an
elementary level or can contain other concepts with
interrelations between them. It also can be considered as a
structured model of a problem domain. Being object
oriented, it contains also a set of defined operations on the
corresponding data type. A component is an instance of a
template. It has valued attributes and can be considered as
a solution. Template generation can be viewed as a
knowledge acquisition procedure, performed by domain
experts and supported by an A-agent. A project server (an
arbitrary decomposable D-agent) receives an expert
assignation query from one of its c1ients (from n+ J level)
and organizes the remote access to the A-agent in the
distributed environment. ES contains the data base with
the expert's experience, professional level and problem
domain. The expert assignation task is solved by a D-agent
(server), while generating an A-agent.

The developed algorithm is well-suited to collaborative
design because it operates incrementally and without
global information about the constraint network. The
solution process starts with known values or fully

94

constrained fragments. These fragments, represented by
nodes in the constraint network that have no remaining
degrees of freedom, notifY any adjacent constraints to
consider them as inputs. The constraints then determine if
sufficient inputs are available to propagate information to
additional fragments. This process continues in a depth
frrst manner. If the model is well constrained and no
cycles exist in the constraint network, local propagation
will generate a complete solution. If the system is over
constrained, there will be redundant or conflicting
constraints. In the latter case, the conflicts must be
resolved by retracting or temporarily relaxing constraints.
Under-constrained problems wiJI be characterized by
propagation beíng completed before all parts of the
network have been visited.

D-AGENT FUNCTION,AL STRUCTURE AND

INTERNAL KNOWLEDGE REPRESENTATION

MODEL

D-agent is a self-contained process, consisting of a single
agent programo It's functional specification involves

fra!
pro
pro

The
vie'
(pa
the
tun
pro
Gel
spe
ratl
CA
reh
alsl
intl
Ffv
wil
ley
wil
su!

Al
COl

knl
kn,

spc
fOI

de:

rl

A

A

(

(

1

Leonid B. Sheremetov and Alexander V. Smimov: A Model of!he D/slributed Conslraint Safis1bcfion Problem and an A/goIfIhm for Conflguralfon Oes/gn

fragment decomposition, constraint satisfaction
procedures, choice and ordering heuristics for constraint
propagation.

The network of constraints in a product model can be
viewed as a bipartite graph in which each component
(part, equipment, geometric element, etc.) contains links to
the constraints in which it is involved. The constraints, in
tum, contain links to the components they relate. A
product model may include several types of constraints.
Geometric constraints, for example, allow the designer to
specify how the geometry should be built declaratively,
rather than constructing it interactively as is done in many
CAD systems. Similarly, algebraic constraints maintain
relationships between product variables. Constraints may
also involve features, which we defme as regions of
interest within a particular contexto Fragments such as
FMS on the shop floor level, FMS cell, etc. are supplied
with procedures for satisfying constraints on the lower
level fragments they contain. Local constraint networks
within fragments define relatíonships among their
subsidiary components.

A component catalog is usually associated with a fragment
containing all its possible instances. The catalogue
knowledge is the main knowledge base. It contains
knowledge about fragments, the types of components
available for configurations, and component attribute
specifications. An example of requirements specífication
for the 'payload capacity' unary constrained attribute is
defmed by the following structure: '

Name (a pointer to the Machineyayload_

requirement) : capacity

Attribute (project feature): payload capacity

An object type: Machine

Operator (comparison): = (is equal to)

Goal (required interval [JO.OOO 14.000]

value):

Precision (acceptable 5 (D"h)

deviation):

The task in a CSP is to assign labels to nodes such that all
the constraints on the nodes are satisfied simultaneously.
The typical FMS design consists of a number of machine
tools of different types, robots for parts supply, a
clamping/resetting station, and sorne auxiliary equipment.
Figure 4 shows an excerpt from the example DCN
network for FMS cell configuratíon problem, defming a
set ofmultiple unary and binary constraints.

The exception knowledge in the form ofbinary constraints
is attributed to the component types or classes it applies to,
with different possible levels of expressiveness.
Knowledge about simple incompatibility between
components may be attached to a component as (i) a list of
incompatible components checked against when a new
component is selected or (íi) predicate logic expressions
about unacceptable partíal configurations, which form a
checking procedure.

D-agent supports indefmite template description, Le. one
in a conceptual way when only component types are
given, without defining values of attributes. D-agent
selects a definite pattem decision proceeded from the
template context.

A-AGENT: TEMPLATE DESIGN ASSISTANT

Project assistant is an agent that supports expert
knowledge acquisition for the template designo A D-agent
tries to find a template in the KB, corresponding to its
level of abstraction. If this decision does not exist, an A
agent is generated. It has to be associated with an expert to
perform the functional fragment representation mapping
into the agent's structural model, Le. new template
generation. To perform the expert assignation task, the
expert's KB is revised and the appropriate expert is
selected.

95

Leonid B. Sheremetov and Alexander V. Smirnov: A ModeI of /he Distributed Conslroint Saf/sfac:tlon I'roblem ond an AIgorilhm for Conflguralion Oesign

al: payload capacity

a : type ofmachine
2

a : size of working area
3

b5: maintenance const ...

Figure 4. An excerptIrom the constraint model 01 the FMS problem domain

area(aU+)<1000.00
cosl(all)<2000.00 (5)
$quare(all)<20000
pavload(roboll }10 I pavloadlrobol) <20
.(robot) =300 (5]

An agent appears at the expert's desktop, reflecting the
real hardware system architecture. In order to supply an
expert with the facilities of knowledge representation,
master tools are implemented. A project expert tool is a
compiler that processes the rules defining integrated
constraints (Figure 5). AH constraints in a column are
processed as a conjunction. Disjunctive function is also
supported for the constraints, written in a row (payload).
Each constraint can be associated with the precision value
(see values in square brackets).

96

b
1

: payload capacity

b : degrees ofmotion
2

b : structural-kinematic configuration
3

b4: size of working area

Figure 5. Project Expert window

Tht
sup

•

•

•

Fígl
this
rese
tool

C<l

The
COII

reql
gen
COII

the.

D-a
ine
are
rela

Leonid B. Sheremetov and Alexander V. Smirnov: A Model oflhe OIslrlbuted ComIraint Salisfoclfon Prob/em ond en AIgodIhm Ior Conliguralion Design

The following types of integrated constraints are
supported:

• 	 global constraint, applied to aH the components (see
cost for example),

• 	 global additive constraint, processed as an addition of
al! attribute values belonging to the selected type
(area),

• 	 group constraint, applied only to the components of
the selected type (payload).

Figure 6 depicts the Master Function tool. As shown in
this figure, the taxonomic structure of the component and
resource type catalogues is exploited with the familiar GUI
tools aHowing the defmition of rules of of

COMMUNICATION OF AGENTS

The ceDA architecture is depicted in Figure 7. It provides
complex behavior by D-agent servers in response to a
request from D-agent clients. D- and A-agents also
generate SQL quedes for the P-agent, responsible for
component DB maintenance, in order to be supplied with
the relevant information about components.

D-agent's coordination, synchronization and coHaboration
in conflicts of proposed solutions of a distributed design
are supported by means of retracting and constraint
relaxation. Each D-agent client tries to fmd template

lfI tp k-125b

• mro

Figure 6. Expert Assistant interface

components. Functional constraints are organized as a
DLL library for functions, defmed for object classes. The
Master Function mode is used to defme specific functional
constraints for selected objects by associating object
attributes with function arguments, as shown in Figure 6.

Inheritance is supported, Le. a new template can be
generated by inheriting the parent' s properties, redefming
them in a late-binding manner. AIso a new template can be
added to the catalogue without reference to parent
template descriptions. Any description can be removed
together with aH the knowledge pertaining to it without
consequence for the rest of the template knowledge base.

solutions based on its own criteria and send it to the D
agent server in the form of a proposal. The server
evaluates these concurrent proposals. If these proposals
satisfy integrated fragment constraints then it sends the
confirmation message and writes these proposals in the
design solution K.B. If agreement can not be reached, the
server sends messages to relax sorne constrains to the

D-agents, participated in each conflict. These steps are
repeated until a satisfactory decision is achieved or it is
recognized that conflict can not be sol ved due to the over
constraintness.

97

I

Leonid B. Sheremetov and Alexander V. Smirnov: A Model ofthe D1slnbuled Cons!raim Satlsfactfon I'roblem and an AIgorifhm for COn/lglJralion Design

Communication among agents is performed through a enhance its expressiveness. KIF defines a set of objects, frag!
message exchange infrastructure according to the pre functions and relations whose meaning is fixed, but the inter
established set of protocols [12]. It is represented as a set users are free to defme the meaning of any other symbols incr~

of message schemata with the following structure. that are not predefined. A message is a Knowledge Query
Vocabulary is a domain-specific part where each word has and Manipulation Language (KQML) expression in which enviJ
a formal annotation written in Knowledge Interchange the arguments are terms or sentences of the vocabulary in (DEl
Format (KIF) [6]. A KIF is a prefix version of the first KIF [10]. knov
order predicate calculus with various extensions to coml

Dístributed project DB & KB

(template solutions, search heuristics, design solutions, experts)

I Fragment configuring task (levels n, n+1) I i Fragment configuring task (Ievels n, n+ l)
I ~_____ __ ~L

KQML messages

Component DB

and'
was
infer
andi
the€
can
kno~

struc
interl
cons1
to re
prunj
kno\'\
and 1
needj
anUIl

The
objec
impl~
data
more

Figure 7. The CCDA system architecture

The D-agent actions are the KQML messages that inelude
constraints, property of object, etc. and other user defined
primitives. A message is a KQML expression in which the
arguments are terms or KIF-sentences. KQML message is
a list of components enclosed in matching parentheses.
The syntax of the message is that of a performative
followed by an unordered list of keyword-value pairs. A
performative indicates the type of communication. There
are two types of KQML messages: requests and
announcements. For example, a message representing a
query about the working area size of the particular
machine tool might be encoded as:

(ask-one :receiver MachineDBManager
:senderla 15513
:content w~rking_area(Machine, Min, Max)
: language prolog
:reply-with tpk-125b)

and may elicit the response:

(reply :receíver laj5513
:sender MachineDBManager
:content working_area(Machine, 5.25, 9.86)

98

:/anguage prolog
:in-reply-to tpk-125b)

In this message, the KQML performative is ask-one, the
content is working_area(Machine, X) and the assumed
ontology is identified by the token MachineDBManager.

The prototypes of agents are implemented using Borland
C++ programming language with constraint satisfaction
inference capabilities and mns on a PC. The use of a
restricted version of the KQML library and the message
representation API to support communications hides al!
details associated with network communication from the
user.

CONCLllSION AND FUTURE WORK

We have considered the QCSP model and the algorithm of
distributed search for the configuration design problem.
They are implemented in the multi-agent based computer
environment - CCDA. Design decomposition into
fragments takes advantage of distribution of design
process among agents, each of them working with a single

¡nves
negat
ands

ACI

The
inida!
N236
witbo
progr
systel
Autol

REF

[1] Al

[2] R
Cons1
Consl
West,

[3]
Manu

Leonid B. Sheremelov and Alexander V. Smirnov: A Model of fhe Dlsfributed Conslralnt Salislacllon ProbIem 000 on AIgoriIhm for Conf/guralion Deslgn

le

:d

Id
In

a

le

)f
11.

er
to

:ti
le

fragment, and supports cooperative centered mode of
interaction among agents, which can reduce the time and
increase the quality of configuration design process.

The first experiments were provided with the
environment for the DEsign of Structured Objects
(DESO). At that stage, constraint-based internal
knowledge representation model and different
communication models, based on reduced set of KQML
and TCPIIP protocol stack, were investigated. The system
was composed basically of A-agents, which had limited
inferencing capabilities of D-agents (consistency control
and indefmite template search procedures). On the basis of
the experience obtained through DESO development, it
can be posted that the universality of the described
knowledge representation scheme for all kinds of
structured systems makes it feasible to provide a powerful
interactive tool for knowledge base maintenance. The
constraint-based approach has given us al so an opportunity
to realize "test-generate" programming methodology to
prune a problem search space. Agents communicating on a
knowledge level can encapsulate their internal knowledge
and then be invoked remotely as network services when
needed. The results of these experiments were presented at
a number of conferences [14-17].

The current prototype version attempts to use a DCOM
object-based model of agent interactions [4]. A P-agent
implementation and performance analysis with different
data models is under investigation. In our future work
more complicated agent negotiation algorithms are to be •
investigated, including those based on cognitive maps and
negative-positive-neutral logic. Heterogeneous hardware
and software environment is also to be explored.

ACKNOWLEDGMENTS

The Ministry of Science and Technology of Russia
initially supported the work described under the grant
N236/132. The experiments never would have succeeded
without the contribution of the group of researchers and
programmers of the laboratory of computer integrated
systems of Sto Petersburg Institute of Informatics and
Automation of the Russian Academy of Science.

REFERENCES

[1] Artificial Intelligence (special issue). 94(1), 1997.

[2] R. Chopra, R. Srihari, and A Ralston. Expensive
Constraints and HyperArc-Consistency. In Workshop on
Constraint-Based Reasoning (CONSTRAINT-96), Key
West, Florida, 1996.

[3] H.R. Frost and M.R. Cutkosky. Design for
Manufacturability via Agent Interaction. In 1996 ASME

Design lor Manulacturing Conj, pp. 18-22, Irvine, CA,
Aug.,1996.

[4] Distributed Component Object Model protocol
DCOM/l.0. Network Working Group, Internet-Draft,
1996.

[5] Y. Deville and P. Van Hentenryck. An efficient Arc
Consistency AIgorithm for a Class of CSP Problems. In
12th Int. Conj On Al (IJCAI-91), pp. 325-330, Sydney,
Australia, Morgan Kaufmann Publishers, CA, 1991.

[6] M.R. Genesereth, et al., Knowledge Interchange
Format, Version 3.0 Reference Manual, Technical Report
Logic-92-1, Computer Science Departrnent, Stanford
University, 1992.

[7] AP. Gupta, W.P. Birrningham, and D.P. Siewiorek.
Automating the Design of Computer Systems. IEEE
Trans. On Computer-Aided Design olIntegrated Circuits
andSystems, 12(4): 473-487,1993.

[8] M. Klein. Supporting conflict resolution in cooperative
design systems. IEEE Transactions on System, Man,
Cybernetics, 21(5):1379-1390, 1991.

[9] AK. Mackworth. Consistency in networks of relations.
Artificial Intel/igence, 8: 99-118, 1977.

[10] J. Mayfield, Y. Labrou, and T. Finin. Evaluation of
KQML as an Agent Communication Language. Intelligent
Agents. Lecture Notes in Artificial Intelligence, Volume
1037, Springer-Verlag, 1996.

[11] D. Serrano. Constraint-Based Concurrent Design.
Systems Automation: Research&App/ications, 3(1) :217
230,1991.

[12] L.B. Sheremetov. Estructuras de comunicación para
la resolución de problemas de manera distribuida en la
ingeniería concurrente. Temas en ciencia y tecnología.
1(1):3-29,1997.

[13] M.P. Singh. Multiagent Systems, A Theoretical
Framework for Intentions, Know-How, and
Communications. Lecture Notes in Computer Science,
Volume 799, (subseries: Lecture Notes in Artificial
Inte/ligence), Springer-Verlag, 1994.

[14] A.V. Smirnov, L.B. Sheremetov, G.V. Romanov, and
P.A Turbin. Multi-Paradigm Approach to Cooperative
Decision Making. In Proc.· 01 the JI International
Conlerence on Concurrent Engineering: .Research and
App/ications. pp. 215 - 222, Washington, DC, August 23
25, Concurrent Technology Corporation, 1995. .
[15] AV. Smimov, L.B. Sheremetov, and P.A. Turbin.
Constraint-Based Expert System for the Design of
Structured Objects. In Proc. 01 the International AMSE
Conference on System Analysis, Control & Design,
Methodologies & Examples SYS'95. V.2, pp. 64-71, Bmo,
Czech Republic, July 3-5, 1995.

99

l

leorid B. Sheremetov and Alexander V. Smirnov: A Model of /he OIslributed Cons/roint Safisfaclion Problem and an AIgori#hm ter Contiguralion Design

[16] A.V. Smimov, A.S. Kulinitch, L.B. Sheremetov, G.V.
Romanov, and P.A. Turbin. DESO: A Constraint-Based
Environment Prototype for Cooperative Design of FMS.
In Proc. of the III IASTED Internatíonal Conference. pp.
384-387, Cancun, Mexico, June 14-16. IASTED/ACTA
Press. Anaheim-Calgary-Zurich, 1995.

[17] A.V. Smimov, L.B. Sheremetov, and P.A. Turbin.
Information Support of FMS Configuration Design. In 2nd
IEEE/ECLA/lFIP International Conference on
Architectures and Design Methods for Balanced
Automatíon Systems - BASYS'96. Costa da Caparica,
Portugal, 17-]9 June, 1996.

[18] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, 1993.

[19] M. Wooldridge and N.R. Jennings (Eds.). lntelligent
Agents - Theories, Architectures, and Languages. Volume
890 of Lecture Notes in Artificial Inte//igence, Springer
Verlag, January, 1995.

[20] M. Wooldridge, IP. Mueller, and M. Tambe (Eds.).
Intelligent Agents n. Volume 1037 of Lecture Notes in
Artificial Intel/igence, Springer-Verlag, January, 1996.

Leonid Borisovich Sheremetov, received his Ph.D from St. Petesburg lnstitute for
lnformatics and Automation of the Russian Academy of Sciences (SPIlRAS). His research
interests inc/ude Multi-Agent Systems, Decision Support Systems, Espert Systems and
Distance Learning. Dr. Leonid Shereme¡ov is a profossor of the Agent Laboratory inn ClC
lPN, México.

Alexander Victorovitch Smirnov, received is Ph.D from Sto Petesburg University ofElectric
Engineering and D.Se. from SPIlRAS. His research interest inc/ude knowledge Engineering,
System Analysis, Multi-Agent Systems, Decision Support Systems, Design Theory, concurrent
Engineering and Virtual Enterprises. Pro! Smirnov is a Deputy-Director and head of
Computer lntegrated Systems Laboratory ofSPIlRAS, Russia.

La
el de
reco]
de l~

ser t
fom
trabl
obte
un
Con
defll
prot
habr
mod
un e
tipo!
u otJ

1.]

o
esPf
Actl
pare
info
forn
AL1
met
desl
[15]

U
esp

lOO

	91_VOL 1 NO. 2
	92_VOL 1 NO. 2
	93_VOL 1 NO. 2
	94_VOL 1 NO. 2
	95_VOL 1 NO. 2
	96_VOL 1 NO. 2
	97_VOL 1 NO. 2
	98_VOL 1 NO. 2
	99_VOL 1 NO. 2
	100_VOL 1 NO. 2

