TEMPERATURA LETAL SUPERIOR Y TEMPERATURA OPTIMA EN UNA POBLACION DE ALMEJA CATARINA
(Argopecten ventricosus Sowerby II, 1842)

Tesis que para obtener el grado de

MAESTRO EN CIENCIAS
CON ESPECIALIDAD EN CIENCIAS MARINAS

PRESENTA

María Teresa Sicard González

La Paz, B.C.S., México
Junio de 1999
INDICE

ACTA DE REVISION DE TESIS ... i
DEDICATORIA ... ii
AGRADECIMIENTOS ... iii
GLOSARIO .. iv
LISTA DE FIGURAS ... 1
LISTA DE TABLAS ... 3
RESUMEN ... 5
ABSTRACT .. 7
INTRODUCCIÓN ... 9
ANTECEDENTES ... 15
JUSTIFICACION ... 18
OBJETIVOS ... 18
MATERIALES Y METodos
 2.1 Organismos experimentales 20
 2.2 Peso seco de tejidos ... 22
 2.3 Temperatura letal media superior en la almeja catarina 23
 2.4 Determinación de la temperatura óptima de crecimiento en la
 almeja catarina .. 24
 2.5 Crecimiento en juveniles de almeja catarina 25
 2.6 Efecto de la temperatura sobre la tasa de ingestión
 y de aclaramiento en juveniles de almeja catarina .. 28
 2.7 Efecto de la temperatura sobre la eficiencia de irrigación
 en la almeja catarina .. 34
RESULTADOS

3.1 Peso seco de tejidos ... 35
3.2 Temperatura letal media superior 35
3.3 Determinación de la temperatura óptima en la almeja catarina 38

3.3.1 Calibración del Microtitulador Winkler 38
3.3.2 Determinación del tiempo máximo de incubación 43
3.3.3 Determinación del tiempo para producir la tasa respiratoria estándar en juveniles de almeja catarina, en función de la temperatura 43
3.3.4 Marco de actividad ... 45

3.4 Efecto de la temperatura sobre el crecimiento de juveniles de almeja catarina ... 45
3.5 Efecto de la temperatura sobre la tasa de ingestión y de aclaramiento en juveniles de almeja catarina 50
3.6 Efecto de la temperatura sobre la eficiencia de irrigación en la almeja catarina ... 54

DISCUSION

4.1 Temperatura letal media superior 55
4.2 Determinación de la temperatura óptima en la almeja catarina 61

CONCLUSIONES ... 67
RECOMENDACIONES .. 69
BIBLIOGRAFIA ... 71
ACLIMATACIÓN. Adaptación inducida a los organismos directamente por factores ambientales bajo condiciones de laboratorio, la cual ocurre en un periodo de horas a días.

ACLIMATIZACIÓN. Adaptación inducida directamente por factores ambientales bajo condiciones naturales, la cual ocurre en un periodo de días a semanas.

EFICIENCIA DE IRRIGACIÓN. Índice fisiológico que muestra la capacidad con la que un molusco filtrador bombea agua a través de la cavidad del manto, por cada mililitro de oxígeno respirado.

MARCO DE ACTIVIDAD. Diferencia entre metabolismo activo y metabolismo estándar que representa la cantidad de energía potencialmente disponible para trabajo externo.

PUNTO CRÍTICO. Punto de inflexión en la relación entre el consumo de oxígeno y la concentración del oxígeno disuelto.

TASA DE INGESTION. Número de células retenidas de cierto volumen de agua por unidad de tiempo.

TASA DE ACLARAMIENTO. Volumen de agua completamente liberado de partículas por unidad de tiempo.

TASA METABOLICA ACTIVA. Nivel de consumo de oxígeno bajo condiciones de máxima actividad, inducido bajo condiciones de laboratorio.

TASA METABOLICA ESTANDAR. Consumo de oxígeno mínimo requerido por un organismo inactivo para mantener todas sus funciones vitales, inducido por ayuno prolongado hasta una condición de estado estable, antes de la muerte.
Fig. 1. Localización del sitio de colección de organismos experimentales, Estero Rancho Bueno, Bahía Magdalena, B.C.S. .. 21

Fig. 2. Versión miniaturizada del titulador de Bryan et al., 1976, para la determinación de oxígeno disuelto en agua marina (Maeda-Martínez, 1985) 27

Fig. 3. Versión computarizada del sistema empleado para la determinación de tasa de ingestión y aclaramiento, (Winter, 1973; Gallager y Mann, 1980) 30

Fig. 4. Diagrama general del programa de cómputo desarrollado para la versión computarizada del sistema empleado para la determinación de tasa de ingestión y aclaramiento .. 30

Fig. 5. Relación entre voltaje del fluorómetro y concentración de microalgas (Isochrysis galbana) .. 31

Fig. 6. Pantalla observada en el monitor de la computadora del sistema para la determinación de la tasa de ingestión y aclaramiento 33

Fig. 7. Relación del peso de tejido hico y la altura de la concha de la almeja catarina (Argopecten ventricosus) .. 36

Fig. 8. Supervivencia de adultos y juveniles de almeja catarina, expuestos a diferentes temperaturas, durante 96 horas de experimentación 37

Fig. 9. Temperatura letal media 96 horas en juveniles (18.14 ± 0.10 mm) de almeja catarina (A. ventricosus) .. 39

Fig. 10. Tasa respiratoria de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a distintos tiempos de incubación y temperaturas experimentales. Los números indican el porcentaje de saturación de O2 en la cámara de incubación .. 42

Fig. 11. Tasa respiratoria de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) alimentados y en inanición, expuestos a diferentes temperaturas experimentales 44
Fig.12a. Tasa respiratoria activa y estándar en juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas experimentales. 46

Fig.12b. Marco de actividad en juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas experimentales. 46

Fig.13. Crecimiento de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas, durante 54 días de experimentación. Los puntos son la media ± la desviación estándar de la media(n=50). 47

Fig.14. Tasa de ingestión en juveniles (11.8±0.63 mm) de almeja catarina (A. ventricosus) en función de la temperatura. Los puntos son la media ± su desviación estándar. 49

Fig.15. Tasa de aclaramiento en juveniles (11.8±0.63 mm) de almeja catarina (A. ventricosus) en función de la temperatura. Los puntos son la media ± su desviación estándar. 52

Fig.16. Eficiencia de irrigación en juveniles de almeja catarina (A. ventricosus) en función de la temperatura. 54
LISTA DE TABLAS

Tabla 1. Análisis de varianza practicado a los resultados de efecto de la temperatura a distintos tiempos de exposición, sobre la supervivencia de organismos adultos (42.54 ± 0.10 mm) y juveniles (18.14 ± 0.10 mm) de almeja catarina (Argopecten ventricosus) .. 40

Tabla 2. Prueba de comparaciones múltiples de Tukey, donde se comparan los resultados de TLMₚ en adultos (42.54 ± 0.10 mm) y juveniles (18.14 ± 0.10 mm) de almeja catarina (A. ventricosus) .. 40

Tabla 3. Verificación de la precisión del microtitulado Winkler, comparando el contenido de oxígeno disuelto medido experimentalmente, en muestras saturadas de oxígeno, de agua destilada y de agua de pozo, a 22°C, contra valores teóricos de saturación de oxígeno .. 41

Tabla 4. Tasa respiratoria activa y estándar en juveniles (10.09 ± 0.03 mm) de almeja catarina (A. ventricosus); a diferentes temperaturas .. 41

Tabla 5. Análisis de varianza practicado a los resultados del efecto de la temperatura sobre la tasa de ingesta, en juveniles (11.8 ± 0.63 mm) de almeja catarina (A. ventricosus) .. 48

Tabla 6. Prueba de comparaciones múltiples de Tukey, para definir las diferencias en la tasa de ingesta de juveniles (11.8 ± 0.63 mm) de almeja catarina (A. ventricosus), en función de la temperatura .. 48

Tabla 7. Análisis de covarianza practicado a los resultados del efecto de la temperatura sobre el crecimiento, en juveniles de almeja catarina (A. ventricosus) de talla inicial de 10.09 ± 0.03 mm, donde el tiempo ha sido considerado como factor covariante .. 51

Tabla 8. Prueba de comparaciones múltiples de Tukey, donde se comparan los resultados de crecimiento a diferentes temperaturas en juveniles de almeja catarina (A. ventricosus) de talla inicial de 10.09 ± 0.03 mm .. 51
Tabla 9. Análisis de variancia practicado a los resultados del efecto de la temperatura sobre la tasa de aceleramiento en juveniles de almeja catarina (11.8 ± 0.63 mm) (*A. ventricosus*) .. 53

Tabla 10. Prueba de comparaciones múltiples de Tukey para definir las diferencias entre las temperaturas sobre la tasa de aceleramiento en juveniles (11.8 ± 0.63 mm) de almeja catarina (*A. ventricosus*) .. 53
En el presente trabajo se determinó la temperatura letal media superior a 96 horas de exposición (TLM$_{96}$), en juveniles (19.14±0.10 mm de altura de la concha) y adultos (42.54±0.10 mm) de una población de almeja catarina (Argopecten ventricosus Sowerby II, 1842), de la población sur de Bahía Magdala-Almejas, en la Costa Occidental de Baja California Sur. Adicionalmente, se determinó el marco de actividad (tasa respiratoria activa - tasa respiratoria estándar), a diferentes temperaturas de 16 a 28°C, en juveniles (10.09±0.03 mm) de la misma población, a fin de encontrar la temperatura óptima. Finalmente se determinó el efecto de la temperatura sobre las tasas de ingestión (mg/g/h), aclaramiento (L/g/h) y la eficiencia de irrigación (L/mLO$_2$) en juveniles de la almeja de la misma población (11.6±0.63 mm). Los resultados de estos experimentos se contrastaron con el crecimiento de juveniles a las mismas temperaturas experimentales durante 54 días.

Los resultados indicaron que la TLM$_{96}$ fue de 29°C. Todas las almejas sobrevivieron entre los 16 y 28°C durante las 96 horas de experimentación. La TLM$_{96}$ obtenida es baja considerando la temperatura máxima en los cuerpos de agua donde se extrae la especie. Esto se atribuyó a la baja temperatura de aclimatación usada (19°C), al método empleado y al origen de la población estudiada. Los resultados de marco de actividad indicaron que la temperatura óptima fue entre los 19 a 22°C. La tasa de ingestión y aclaramiento fue mayor a 22°C (31.6 mg/g/h y 17.8 L/g/h), seguido por 19°C (29.61 mg/g/h y 17.10 L/g/h) y disminuyendo a las temperaturas de 16, 25 y 28°C. La eficiencia de irrigación varió de...
manera similar al marco de actividad, siendo el valor más alto (8.7 L/miO2) a 19°C y el más bajo (3.6 L/miO2) a 28°C. El experimento de crecimiento indicó un máximo a los 19°C, seguido por los tratamientos de 22, 16, 25 y 28°C, durante los 54 días de experimentación.

Con estos resultados puede considerarse que la población estudiada es subtropical más que tropical. Los parámetros fisiológicos investigados en la almeja catarina son buenos indicadores del estado fisiológico del animal, lo cual se reflejó en el crecimiento de los organismos.
I determined the 96-h upper lethal temperature (LT$_{90}$) on juveniles (18.14±0.10 mm shell height) and adults (42.54±0.10 mm shell height) of a catarina scallop (Argopecten ventricosus Sowerby II, 1842) population from the southern portion of Bay Magdalena-Almejas on the Pacific Coast of the Baja California Peninsula. Additionally, the scope for activity (O$_2$ uptake, active rate-standard rate) at different temperatures from 16 to 28 °C was also investigated to find the optimum temperature for juveniles (10.09±0.03 mm) of the same population. Finally, the effect of temperature was investigated on the ingestion (mg/g/h), clearance (L/g/h), and irrigation (L/mL O$_2$) rates in juvenile scallops (11.6±0.63 mm) of the same population. The results from these experiments were contrasted with the actual growth of scallops cultured at the same experimental temperatures for 54 days.

Results indicate that the 96-h LT$_{90}$ was 29 °C. All scallops survived between 16 and 28 °C during the 96 h of experimentation. The 96-h LT$_{90}$ obtained was considered low if maximum temperatures at the fishing sites and the natural habitats are considered. This could probably be explained by the low aclimation temperature (19 °C) used in the experiment, the 96-h LT$_{90}$ method employed, and the origin of the scallops. The results for scope for activity indicate the optimum temperature was between 19-22 °C. Ingestion and clearance rates were higher at 22 °C (31.6 mg/g/h and 17.8 L/g/h) followed by those at 19 °C (29.61 mg/g/h and 17.10 L/g/h) and then decreasing further at 16, 25, and 28 °C. Irrigation efficiency fluctuated as the scope for activity, with the highest value (8.7 L/mL O$_2$) at 19 °C and the lowest (3.6 L/mL O$_2$) at 28 °C. Shell growth experiments indicated
maximum growth was at 19 °C, followed by treatment at 22, 26, 25 and 28 °C during the
54 days of the experiment.

With these results, we believe the scallop population studied is subtropical rather than
tropical. The physiological variables investigated in the cæsarea scallop are good
indicators of the physiological state of the animal, which was confirmed with the shell-
growth experiment.
INTRODUCCION

En el Pacífico de México, habitan más de 54 especies de moluscos que son regularmente explotados (Baqueiro, 1984). Los esfuerzos de investigación realizados a la fecha se han centrado en el callo de hacha, la almeja mano de león, las ostras perleras, el mejillón, etc. y de manera especial en la almeja catarina. Esta última especie ha recibido atención especial por su valor comercial y accesibilidad al mercado de vieiras más grande del mundo que es Estados Unidos. La tecnología de producción (Maeda-Martínez y Ormart-Castro, 1995; Maeda-Martínez et al., 1995) ha sido probada con éxito a nivel comercial en Bahía Magdalena en la costa del Pacífico de Baja California Sur, con una producción de más de 20 toneladas métricas de callo en 1995 (Maeda-Martínez com. Pers). Sin embargo, aún existe interés por conocer si esta tecnología puede ser aplicada en otros cuerpos de agua más cálidos como Bahía Concepción, Bahía de La Paz, el Alto Golfo de California, e incluso se pretende probar el cultivo de almejas en estanquería rústica en policultivo con el camarón desde Sonora hasta Ecuador. En la actualidad se desconocen los límites de tolerancia térmica de la especie.

La distribución geográfica de una especie depende de muchos factores interrelacionados, pero para la mayoría de los invertebrados marinos, la temperatura es el factor primario que limita la distribución geográfica general. La temperatura es considerada por lo tanto, como el factor ambiental más importante que determina el nivel de actividad en
organismos poiquilotermos (Bayne, 1976). Este factor puede afectar directa o indirectamente la supervivencia de las larvas y adultos, y es conocida su influencia en la reproducción con sus efectos en la maduración de los gametos, el desove, el desarrollo embrionario, la duración del período planctónico y el asentamiento (Knne, 1970). Existe una gran cantidad de literatura sobre los efectos de la temperatura sobre organismos marinos, pero se han hecho muy pocos estudios en la almeja catarina.

Para lograr con éxito el cultivó de una especie, es fundamental conocer los intervalos de tolerancia térmica y el nivel óptimo de temperatura donde ocurre el mayor crecimiento y la máxima supervivencia. La termotolerancia está definida genéticamente y se determina después de varias generaciones (Bayne, 1976). Sin embargo, la termotolerancia de una especie puede ser modificada por factores no genéticos como el sexo y la edad (Green et al., 1983), la condición nutricional (Newell y Pye, 1970a; Wallis, 1977), la condición reproductiva, la temperatura de aclimatación (Bodoy et al., 1976; Habbib, 1977; Ansell et al., 1980a y b; Ross, 1980; Ansell et al., 1981; Herrera et al., 1994; Quinn et al., 1994), la salinidad (Ansell et al., 1990; Poza y Rodríguez, 1987), las variaciones ambientales estacionales (Newell y Pye, 1970a; Bourget, 1983; Poza, 1987; Urban, 1994) y repentinas, entre otras.

El crecimiento es el resultado del estado fisiológico del organismo donde cuenta con mayor energía disponible para crecer, reproducirse, etc. El estado fisiológico de un organismo se puede conocer midiendo el metabolismo. El consumo de oxígeno puede ser utilizado como una medida del metabolismo energético, debido a que la energía que el organismo necesita para realizar sus funciones vitales, es obtenida generalmente a partir
de la oxidación del alimento (Shmidt-Nielsen, 1979). El consumo de oxígeno en relación al tiempo o tasa respiratoria, cambia según la especie y está sujeta a diversos factores tanto extrínsecos como intrínsecos. Dentro de los primeros se encuentra la temperatura, la tensión de oxígeno, la salinidad y la concentración de alimento, entre otras. Entre los factores intrínsecos podemos mencionar la edad del organismo, la talla, el estado reproductivo, el nivel de actividad, la condición fisiológica y la información genética (Silva-Loera, 1986; Shumway, 1991).

Thompson y Bayne, (1972); Bayne et al., (1973); Bayne, (1973) y Widdows, (1973), consideran al marco de actividad o "scope for activity", como una forma práctica de determinar la energía disponible para el crecimiento, la reproducción, etc. de un organismo. El marco de actividad se define como la diferencia aritmética entre el metabolismo activo menos el metabolismo estándar (Fry, 1957). El marco de actividad es un concepto útil para presentar una integración de los procesos fisiológicos y un índice de respuesta del organismo a los cambios del medio (Bayne, 1976). La introducción de este concepto a la acuicultura, puede ayudar a identificar índices óptimos de la condición fisiológica de una especie, ante ciertas combinaciones de factores ambientales. El metabolismo o tasa respiratoria activa, es el consumo de oxígeno por unidad de tiempo, de un animal que ha sido alimentado a saciedad por largos periodos de tiempo. En este estado, el animal se encuentra en máxima actividad siempre y cuando la disponibilidad de energía de fuentes externas no sea una limitante. En contraste, el metabolismo o tasa respiratoria estándar, es la que presenta un organismo sometido a inanición prolongada. Aquí la tasa respiratoria decrece gradualmente hasta un valor mínimo estable el cual,
puede extenderse por varios días antes de que ocurra la muerte.

La medición de la tasa respiratoria en organismos acuáticos se lleva a cabo de manera indirecta mediante la cuantificación del oxígeno disuelto en el agua en relación al tiempo. En moluscos bivalvos, el consumo de oxígeno se ha determinado calculando la diferencia entre la cantidad de oxígeno disuelto inicial en una cámara de incubación, menos el volumen final (van Dam, 1954; Read, 1962; Iglesias y Navarro, 1991; Navarro et al., 1991; Espiña y Bückle-Ramírez, 1994). Para la medición de oxígeno disuelto, se pueden emplear oxímetros con electrodos, los cuales resultan muy prácticos pero presentan baja resolución y precisión. Otra forma de medirlo, es empleando el método químico de Winkler (1888), el cual es de alta precisión. Bryan et al. (1976) desarrollaron un método que eleva sensiblemente la precisión del método de Winkler, donde el punto de extinción se determina fotométricamente en muestras de agua de 150 ml. Maeda (1965) desarrolló una versión miniaturizada del titulador de Bryan, que permite titular muestras de 3 a 7 ml sin reducir la precisión.

Para lograr una correcta medición de las tasas activa y estándar es necesario que el organismo se haya aclimatado a las condiciones ambientales experimentales. La aclimatación es la adaptación del organismo a una condición ambiental determinada, la cual ha prevalecido por tiempos prolongados (semanas). Por lo tanto, la magnitud de una respuesta aguda depende de la temperatura de aclimatación. Este patrón ha sido encontrado para distintas especies de bivalvos como Mytilus edulis (Bayne et al., 1973; Widows, 1973), Chlamys varia (Shofee, 1982), Argopecten irradians (Barber y Blake, 1985), Corbicula fluminea (Foe y Knight, 1986), Placopecten magellanicus (MacDonald

Otra forma de evaluar indirectamente la influencia de algunos factores ambientales en moluscos bivalvos, ha sido midiendo la tasa de ingestión (Widdows, 1973; González et al., 1990; Iglesias y Navarro, 1991; Albentosa et al., 1994; Espinosa y Bückle-Ramírez, 1994; Navarro e Iglesias, 1995, Urutia et al., 1996). La tasa de ingestión, equivale a la cantidad de partículas de alimento removidas de un volumen de agua, por unidad de tiempo. De manera complementaria, se ha definido también la tasa de aclaramiento, como el volumen de agua al cual se han removido totalmente de partículas de alimento en relación al tiempo. Ambas son afectadas por factores intrínsecos como la edad, talla, estado reproductivo, nivel de actividad, condición ríolójica e información genética y extrínsecos como son la concentración y la calidad del alimento, la temperatura, la tensión de oxígeno y la salinidad entre otros (Bayne, 1976; Shumway, 1991).

La medición de la tasa de ingestión y aclaramiento en organismos filtradores se ha realizado empleando diferentes metodologías. El método de Jørgensen (1949), registra la disminución de la concentración de partículas o la concentración celular de clorofila a en una cámara cerrada, en un periodo de tiempo. Waine (1965), mide la incorporación de fitoplancton marcado con P32 en los tejidos del animal en relación al tiempo. Y finalmente Winter (1973), Hildreth y Crisp (1975), Wilson (1979), miden estimando la disminución de la concentración de fitoplancton a la entrada y a la salida de un sistema de flujo abierto en relación al tiempo. Las ventajas y desventajas de estos sistemas son
discutidos por Gallager y Mann (1980).

La eficiencia de irrigación o requerimiento de convección es un índice fisiológico que muestra la capacidad con que un molusco bombea agua a través de la cavidad del manto, por cada mililitro de oxígeno inspirado. Este índice ha sido calculado para algunas especies (Jørgensen, 1960; Wahl, 1972; MacLusky, 1973; Beyne, 1976; Newell et al., 1977); pero a la fecha no ha sido empleado con la meta de definir temperaturas óptimas en las especies.

En el presente trabajo se pretende determinar la temperatura letal superior y la temperatura óptima de crecimiento en la almeja catarina. Además, se busca conocer la influencia de la temperatura sobre su tasa de ingestión, de aclaramiento y sobre la eficiencia de irrigación.

La biología de los pectíneos ha sido ampliamente estudiada por diversos autores. De estos organismos se han abordado temas tales como relaciones evolutivas, biología de larvas, aspectos anatómicos funcionales, fisiología, reproducción, enfermedades, biología de poblaciones, genética, pesquerías y acuicultura (Shumway, 1991).

desarrollo embrionario y morfología externa de la larva hasta la etapa de fijación (Coronel et al., 1987; Avilés-Quevedo, 1990), cultivo y fijación de larvas, así como el efecto de algunos factores fisicoquímicos (Avilés-Quevedo y Muciño-Díaz, 1990; Monsalvo, 1996); métodos de cultivo (Montaño y Pérez, 1988; Ramírez-Filipini, 1990; Tripp-Quezada, 1985; Maeda-Martínez et al., 1995; Maeda-Martínez y Ormart-Castro, 1995; Maeda-Martínez et al., 1997), aspectos biológicos en relación a su hábitat (Félix-Pico, 1993; Bojorquez-Verástica, 1997), estudios nutricionales (Avilés-Quevedo, 1990; Lora-Vilchis y Maeda-Martínez, 1997), depredadores en el cultivo (Lango-Reynoso, 1994; Maeda et al., 1992), evaluaciones genéticas de distintas poblaciones (Cruz-Hernández, 1997; Cruz e Ibarra, 1997; Ibarra et al., 1995; 1997).

Silva-Loera (1986), realizó el primer trabajo de ecofisiología en la almeja catarina. Sus estudios estuvieron encaminados a observar el efecto de tamaño corporal, la tensión de oxígeno y la temperatura, sobre la tasa de consumo de oxígeno. En sus resultados observa un incremento del consumo de oxígeno en relación al aumen en peso de los organismos (ml O2/h). Sin embargo la tasa respiratoria aumentó conforme disminuyó el peso (ml O2/g/h). Respecto al efecto de la tensión de oxígeno sobre la tasa respiratoria, observó una respuesta general de amplia dependencia (conformador), la cual se ve más acentuada en organismos de menor peso. Adicionalmente, reconoce una variación directa respecto al efecto de la temperatura sobre el consumo de oxígeno y la tasa respiratoria, y observó en los organismos más pequeños, aumentos metabólicos hasta en casi tres veces al incrementarse la temperatura de 20 a 30°C.
Sin embargo, a la fecha no se han determinado los rangos de temperatura tolerables por una población de almeja catarina, la temperatura óptima, la tasa de ingestión y de aclaramiento y la eficiencia de irrigación en relación a la temperatura.

JUSTIFICACION

La temperatura es el factor externo más importante que regula el crecimiento y la supervivencia en organismos poquistotermos. El efecto de la temperatura sobre la almeja catarina no ha sido aún estudiado, limitando en consecuencia la óptima reproducción controlada de la especie en el laboratorio y la selección de sitios para su preengorda y engorda. El desconocimiento de la temperatura letal superior han dado lugar a especulaciones, cuando se ha tratado de explicar mortalidades masivas en algunas poblaciones de esta especie.

OBJETIVOS

General
Estudiar la temperatura letal superior y determinar la temperatura óptima en una población de la almeja catarina Argospecten ventricosus, en base al marco de actividad, el crecimiento, las tasas de ingestión y de aclaramiento, y la eficiencia de irrigación.
Objetivos Particulares

1- Determinar el límite superior de tolerancia térmica para una población de almeja catarina, mediante un estudio de temperatura letal media a 96 horas de exposición.

2- Determinar la temperatura óptima de una población de almeja catarina, a través del marco de actividad.

3- Comprobar la temperatura óptima con un estudio de crecimiento en juveniles de almeja catarina.

4- Estudiar el efecto de la temperatura sobre las tasas de ingestión y aclaramiento en juveniles de almeja catarina.

5- Determinar la eficiencia de irrigación de la almeja catarina en función de la temperatura.
2.1 Organismos experimentales

Un total de 1,400 juveniles y 300 adultos de almeja catarina (Argopecten ventricosus), se emplearon para los experimentos de este trabajo, los cuales se obtuvieron del Estero Rancho Bueno, B.C.S. (24° 19' N; 111°24' W)(Figura 1), ubicado a 170 Km de la Ciudad de La Paz, en el extremo sur del Complejo Lagunar de Bahía Magdalena en la Costa del Océano Pacífico de Baja California Sur. Los juveniles fueron obtenidos por medio de colectores de costal cebollero, rellenos de malla plástica y supendidos de líneas largas, mientras que los adultos se colectaron por buceo en el mismo sitio. Estos, fueron transportados al laboratorio del Centro de Investigaciones Biológicas del Noroeste, en hileras con agua de mar y aireación constante. Los organismos fueron posteriormente mantenidos en el laboratorio durante al menos diez días antes de los experimentos, en recipientes de plástico de 40 litros, conteniendo agua de un pozo costero a 19 °C, 30 °/oo de salinidad y aireación constante. El agua fue previamente pasada a través de dos filtros de cartucho de 5 μm y fue esterilizada con luz ultravioleta. Los juveniles recibieron una dieta compuesta por 1.2 x 10⁸ células/ind/día de Isochrysis galbana, Monochrysis lutheri y Chaetoceros gracilis en proporción 6:3:1, mientras que los adultos se alimentaron con
Fig. 1. Localización del sitio de colecta de organismos experimentales, Estero Rancho Bueno, Bahía Magdalen, E.C.S.
6.0 x 10^6 células/ind/día suministradas en dos raciones diarias de la misma mezcla de microalgas.

Las microalgas se produjeron con un sistema de cultivo continuo, el cual se encuentra actualmente en evaluación (T. Reynoso-Granados com pers.). Este, está compuesto de 10 reductores de 210 litros que producen diariamente la quinta parte de su volumen de algas, en fase exponencial de crecimiento. Los reactores se encontraban en un cuarto termorregulado a 24 °C y cada uno de ellos recibía en forma continua 44.6 μE/m²/seg de iluminación, 50 litros/día de agua de pozo pasteurizada y enriquecida con medio t2 (Guitard y Ryther, 1962), y una mezcla de aire y CO₂ a razón de 0.5 l/min. El 50% del agua, fue reemplazada diariamente bajo las mismas condiciones.

2.2 Peso seco de tejidos

En el presente trabajo, se estimó el peso seco de los tejidos de almejas entre 6 y 57 mm de altura. Cuarenta y ocho individuos dentro del rango de tallas, fueron secados en una estufa a 65 °C durante 36 horas, tiempo en el cual se obtuvo peso constante. Posteriormente, los tejidos se extrajeron de las valvas con una aguja de disección, y las conchas fueron pesadas separadamente en una balanza analítica Ohaus modelo Galaxy 110 con 0.1 mg de resolución. A partir de los datos obtenidos, se realizó una análisis de regresión para encontrar la ecuación que mejor describiera la relación entre la altura de la concha y el peso seco de los tejidos.
La temperatura letal media superior en juveniles y adultos de almeja catarina, fue determinada bajo el método de temperatura letal media 96 horas (TLM_{96}) de Rand y Petrocelli (1985), que consiste en registrar la mortalidad de las almejas expuestas a diferentes temperaturas, durante las primeras 96 horas de exposición.

Diez juveniles de 18.14 ± 0.10 mm de altura y 10 adultos de 42.54 ± 0.10 mm de altura fueron colocados separadamente en cubetas de plástico de 19 litros, conteniendo agua de pozos a salinidad de 30 ‰, a cada temperatura experimental (16, 19, 25, 28, 30 y 33 °C) por triplicado. Para mantener la temperatura deseada, las cubetas se colocaron dentro de un tanque de fibra de vidrio de 1,100 litros de capacidad, conteniendo agua dulce recirculante a 16 °C. El agua del tanque fue enfriada con un enfriador de agua Acrytec de 1 H.P. A cada cubeta, se le introdujo un calentador de inmersión Ebo-Jagger con termóstato integrado y 250 watts de potencia, los cuales fueron calibrados con un termómetro de alta precisión marca Ever Ready Thermometer Co. Durante el período de experimentación, solamente se registraron variaciones de ± 0.5 °C. Los juveniles y los adultos fueron alimentados con una ración de 2.8 x 10⁶ y 5.7 x 10⁶ células/ind/día de Isochrysis galbana, Monochrysis lutheri y Chaetoceros gracilis en proporción 6:3:1 respectivamente. Diariamente se recambió el 50% del volumen de agua a las mismas condiciones, y se repuso el alimento consumido. La mortalidad se registró a la 1, 2, 18, 48 y 96 horas del inicio del experimento.
2.4 Determinación de la temperatura óptima de crecimiento en la almeja catarina

Para conocer la temperatura óptima de crecimiento de la almeja catarina, en este trabajo se determinó el marco de actividad o "scope for activity" (Fry, 1947) en juveniles de 10.09 ± 0.03 mm de altura, a 12, 16, 19, 22, 25 y 28 °C. El marco de actividad se obtuvo calculando la diferencia aritmética entre el metabolismo activo o tasa respiratoria activa, menos el metabolismo basal o tasa respiratoria estándar a cada temperatura (Bayne, 1976). Las tasas respiratoria activa y estándar se obtuvieron midiendo el consumo de oxígeno en organismos alimentados a saciedad y en ayuno prolongado, respectivamente.

Los organismos experimentales fueron divididos en 12 grupos de 30 individuos cada uno y fueron colocados en las cubetas de 19 litros y el sistema de termorregulación del experimento anterior. Dos grupos fueron gradualmente llevados a cada una de las temperaturas experimentales, variando la temperatura 1 ± 0.5 °C cada 3 días a partir de los 19 °C en que se encontraban. De esta forma, la totalidad de los organismos quedaron expuestos a las temperaturas experimentales a los 27 días. Posteriormente se inició un periodo de aclimatación de 10 días a temperatura constante. Un grupo de cada temperatura se usó para determinar la tasa activa y el otro para la tasa estándar. Los seis grupos para tasa respiratoria activa, fueron alimentados con 2.85 x 10^6 células/ind/día en tres raciones diarias de Isochrysis galbana, Monochrysis lutheri y Chaetoceros gracilis en proporción 6:3:1, mientras que los seis restantes para tasa estándar, permanecieron en agua marina filtrada a 3 μm en inanición. El tiempo en que se alcanzó la tasa respiratoria estándar a las diferentes temperaturas, se determinó experimentalmente, midiendo
periódicamente la tasa respiratoria de las almejas mantenidas en inanición a temperatura estable. Bajo estas condiciones, la tasa respiratoria declinó gradualmente hasta llegar a un mínimo estable previo a la muerte, el cual reflejó el metabolismo basal de los organismos (Bayne et al., 1973; Widdows, 1973).

Al inicio del experimento, los treinta juveniles de cada grupo, fueron incubados en tres botellas BOD de 300 ml (10 juveniles por botella), durante una hora. El tiempo de incubación fue definido experimentalmente como se menciona más adelante. Las botellas contenían agua marina de pozo saturada de oxígeno, filtrada a través de una membrana GF/F (0.75 μm), a 30 °C de salinidad y a la temperatura experimental. Una botella sin organismos, se llenó con la misma agua y sirvió como blanco para cada temperatura. Las botellas se llenaron por sifón con una manguera de silicón introducida hasta el fondo de las mismas, evitando burbujeo y turbulencia. Durante este proceso, fue necesario hacer fluir el doble de su volumen para garantizar la homogeneidad en la concentración de oxígeno disuelto en el agua de la botella, y desplazar las burbujas que quedarán adheridas a las paredes de la botella. Después de sellarlas con su respectivo tapón, las botellas se colocaron en un baño termorreregular a la temperatura experimental durante el tiempo de incubación, para evitar variaciones en la temperatura.

La respiración de los organismos en una cámara cerrada como son las botellas BOD, produjo la caída de la tensión de oxígeno en el agua. Dentro de ciertos límites, la tasa respiratoria sería constante hasta un punto crítico de concentración de oxígeno, a partir del cual comenzaría a declinar (Prosser y Brown, 1961; Villarreal, 1989, 1990). En este
trabajo, fue importante determinar previamente a los experimentos de marco de actividad, el tiempo de incubación máximo, en donde la tasa respiratoria no fuese afectada por la caída en la tensión de oxígeno a las temperaturas experimentales. Grupos de 10 juveniles aclimatados, fueron incubados por triplicado a las temperaturas experimentales durante 0.5, 1, 2 y 3 horas en los tratamientos de 25 y 28 °C, mientras que en los tratamientos de 12, 16, 19 y 22 °C, los tiempos de incubación fueron de 1, 2 y 3 horas.

Una vez concluida la incubación, la concentración de oxígeno disuelto en las botellas fue determinada con una versión miniaturizada del titulador de Bryan et al., (1976), desarrollada por Maeda-Martínez (1985) (Figura 2). El titulador de Bryan et al., se basa en una modificación al método de Winkler (1888), en donde el punto de extinción se determina fotométricamente, en lugar de hacerse visualmente. La versión miniaturizada permite incrementar aún más la precisión del método de Bryan et al., ya que se pueden determinar concentraciones de oxígeno disuelto en submuestras de una misma botella. En este trabajo, las bottelas se submuestearon por triplicado al término de la incubación, en tubos de 7 ml aproximadamente, los cuales se llenaron por sifón bajo el mismo procedimiento anterior. Previamente a las determinaciones se verificó el correcto funcionamiento del microtitulador, comparando la concentración de muestras saturadas de oxígeno disuelto de agua destilada y agua de pozo a temperatura y salinidad conocidas, contra valores de saturación estándar (Green y Carril, 1967).
Fig. 2. Versión miniaturizada del titulador de Bryan et al., 1976, para la determinación de oxígeno disuelto en agua marina (Maeda-Martínez, 1985).
2.5 Crecimiento de juveniles de almeja catarina.

Con el fin de comprobar los resultados de marco de actividad en relación a la temperatura, en el presente trabajo se estimó la tasa de crecimiento de juveniles de almeja catarina de 10.09 ± 0.03 mm de altura durante 54 días, a diferentes temperaturas. Cinco grupos de 50 organismos, fueron colocados en tanques de plástico de 40 litros conteniendo agua de pozo a las temperaturas experimentales de 16, 19, 22, 25 y 28 °C y a 30 %rm de salinidad. Las almejas fueron alimentadas con una ración diaria de 2.4 x 10^8 células/inch de la mezcla de microalga Isochrysis galbana, Monochrysis lutheri y Chaetoceros gracilllis en proporción 6:3:1. Diariamente se realizó un recambio del 50% del agua y se ajustó la concentración de microalgas al valor mencionado. La altura de las conchas se midió periódicamente con unvernier. Con el fin de comparar estadísticamente el crecimiento a diferentes temperaturas, se realizó un análisis de covarianza, donde el tiempo fue el factor covariante. Posteriormente se practicó una prueba de comparación de rangos múltiples de Tukey.

2.6 Efecto de la temperatura sobre la tasa de ingestión y de aclaramiento en juveniles de almeja catarina

El efecto de la temperatura sobre la tasa de ingestión y de aclaramiento en juveniles de almeja catarina, se estudió bajo el método de Winter (1973), que consiste en mantener
constante la concentración de microalgas en una cámara de incubación, a través de la reposición y el registro continuo de las microalgas consumidas por los organismos experimentales.

Para aplicar el método de Winter, se construyó un sistema controlado por una computadora (Figura 3), basado en el método de Gallager y Mann (1980).

Diez juveniles de 11.8 ± 0.63 mm de altura, aclimatados durante 10 días a las temperaturas experimentales, fueron colocados por triplicado en un vaso de precipitados de 1 litro de capacidad, conteniendo agua de pozo filtrada a través de una membrana GF/F, a 16, 19, 22, 25 y 28 °C, 30 % salinidad, y conteniendo 1.5 x 10^5 células/ml de Isochrysis galbana. El agua del vaso de precipitados, fue bombeada continuamente con una bomba peristáltica, a razón de 87 ml/min, hacia un fluorómetro Turner 112, equipado con celda de flujo continuo y un filtro 47 B específico para clorofila "a" de 420-500 nm de longitud de onda. El efluente de la celda fue regresado nuevamente a la cámara de incubación a través de una manguera de silicon. Un convertidor analógico-digital Adalab IMI conectado al puerto del fluorómetro, digitalizó la señal analógica del fluorómetro. Un programa de cómputo (Figura 4) desarrollado específicamente para este equipo, comparaba esta señal contra el voltaje deseado guardado en la memoria. La correlación entre el voltaje (V) del fluorómetro y la concentración de microalgas (CM) (Isochrysis galbana), se obtuvo experimentalmente y se describe con la ecuación de regresión lineal ($r=0.997; n=10$) (Figura 5):

$$V = 0.0356 + 4.61 \times 10^4 \times CM$$
Fig. 3. Versión computarizada del sistema empleado para la determinación de tasa de ingestión y aclaramiento, (Winter, 1973; Gallagher y Mann, 1980).

Fig. 4. Diagrama general del programa de cómputo desarrollado para la versión computarizada del sistema empleado para la determinación de tasa de ingestión y aclaramiento.
Fig. 5. Relación entre voltaje del fluorómetro y concentración de microalgas (*Isochrysis galbana*).
Si el voltaje leído fue igual o mayor que el valor deseado, el sistema esperaba 2 segundos antes de volver a tomar la lectura. Sin embargo, si el valor fue menor, el sistema encendía automáticamente otra bomba peristáltica de flujo conocido (1.025 ml/min) que reponía las microalgas al vaso de precipitados. La concentración de las microalgas de reposición contenidas en un matraz Erlenmeyer de 250 ml, fue determinada previamente al experimento, con un contador de partículas Coulter Counter ZM. Para evitar la reproducción de las microalgas, la cámara de incubación, el matraz cónico y las mangueras de silicón, fueron aisladas de la luz con papel aluminio. Las microlagas de reposición se mantuvieron enagitación constante con un difusor de aire. El programa de cómputo registró los tiempos de encendido de la bomba de reposición, los cuales servirían mas tarde para calcular la tasa de ingestión y de aclareamiento. El funcionamiento del sistema de control, fue visualizado en un monitor monocromático (Figura 6), durante el curso del experimento, donde se graficó en tiempo real, el voltaje digitalizado proveniente del fluorómetro correspondiente a la concentración del alimento en la cámara de incubación y los tiempos de encendido de la bomba de reposición.

Antes de los experimentos, se probó el correcto funcionamiento del sistema. Esto se realizó observando la caída gradual de la fluorescencia cuando se colocaron almejas en la cámara de incubación y se mantuvo la bomba de reposición apagada (Figura 6). Además se verificó que la fluorescencia permaneciera estable y no encendiera la bomba de reposición, cuando no hubiesen almejas en la cámara de incubación.
Fig. 6. Pantalla observada en el monitor de la computadora del sistema para la determinación de la tasa de ingestión y aclaramiento.
La tasa de ingestión (TI) se obtuvo dividiendo el número de células consumidas o repuestas en la cámara de incubación en una hora, entre el peso seco de los tejidos de los organismos incubados (células/g/h). La TI también se calculó en unidades de biomasa ingerida, multiplicando el número de células consumidas por el peso seco de *Isochrysis galbana* (11.49 pg) reportado por Waine (1970). Posteriormente se calculó la tasa de aclaramiento (TA) en litros de agua liberada de partículas, por gramo de peso seco de los tejidos por hora (L/g/h), dividiendo la TI, entre la concentración celular en la cámara de incubación.

2.7 Efecto de la temperatura sobre la eficiencia de irrigación en la almeja catarina

La eficiencia de irrigación, también conocida como el cociente L/ml O₂ (litros de agua filtrados por el organismo por cada ml de oxígeno respirado), fue calculada en juveniles de almeja catarina a diferentes temperaturas, dividiendo la tasa de aclaramiento por gramo de peso seco de tejidos por hora, entre la tasa respiratoria activa de los experimentos anteriores.
RESULTADOS

3.1 Peso seco de tejidos

La relación del peso seco de los tejidos (PST) contra la altura de la concha (A) de la almeja catarina de 6 a 57 mm de altura (Figura 7), se describe por la siguiente ecuación de regresión multiplicativa:

\[\text{PST} = 8.698 \times 10^{-6} \times A^{3.50219} \]

3.2 Temperatura letal media superior.

Los resultados de supervivencia (Figura 8), muestran que los juveniles y adultos de almeja catarina, sobrevivieron entre los 16 y 28 °C durante las 96 horas de experimentación. Sin embargo, a temperaturas más elevadas se registró mortalidad, siendo los juveniles ligeramente más termotolerantes. A 30 °C y 72 horas de exposición, la mortalidad fue de 33.3 % y 23.3 % para adultos y juveniles respectivamente, mientras que a las 48 horas, la mortalidad fue total en los adultos y de 83.4 % en los juveniles. A las 96 horas, no hubo sobrevivientes ni en adultos ni en juveniles a esta temperatura. A las 33 °C, los resultados

35
Fig. 7. Relación del peso de tejido seco y la altura de la concha de la almeja catarina (*Argopecten ventriculus*).
Fig 8. Supervivencia de adultos y juveniles de almeja catalina, expuestos a diferentes temperaturas, durante 96 horas de experimentación.
fueron similares en adultos y juveniles, obteniéndose una mortalidad total a partir de las 18 horas de exposición. Sin embargo, el análisis de variancia (Tabla 1) y la prueba de rangos múltiples de Tukey (Tabla 2), indican que no existieron diferencias significativas ($P > 0.05$) entre la termotolerancia de adultos y juveniles.

Con estos datos, la TLM$_{50}$ fue determinada gráficamente la supervivencia contra las temperaturas experimentales (Figura 9). Los resultados muestran que la TLM$_{50}$ de la población estudiada de *Argopecten ventricosus* fue de 29 °C. La termotolerancia de la población a temperaturas inferiores a 16 °C, requiere aún ser determinada.

3.3 Determinación de la temperatura óptima en la almeja catarina

3.3.1 Calibración del Microtitulador Winkler

Las determinaciones de oxígeno disuelto en muestras saturadas de oxígeno (Tabla 3), indican que los valores experimentales de 6.15 ± 0.01 y 5.43 ± 0.01 ($n=6$) en agua destilada y en agua de pozo a 29 °C de salinidad respectivamente, fueron similares a los valores de saturación de oxígeno teóricos (Green y Carr, 1967). El coeficiente de variación (McCormick y Roach, 1987) entre determinaciones fue de 0.55 y 0.51, respectivamente.
Fig. 9. Temperatura letal media 96 horas en juveniles (18.14 ± 0.10 mn) de almeja catarina (A. ventricosus).
Tabla 1. Análisis de variancia practicado a los resultados de efecto de temperatura a distintos tiempos de exposición, sobre la supervivencia de organismos adultos y juveniles de almeja catarina (Argopecten ventricosus).

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados medio</th>
<th>G.L.</th>
<th>Cuadrado</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura</td>
<td>32111.296</td>
<td>5</td>
<td>6422.2593</td>
<td>16.020</td>
<td>0.0000</td>
</tr>
<tr>
<td>Tiempo de exposición</td>
<td>17064.074</td>
<td>4</td>
<td>4266.0185</td>
<td>10.642</td>
<td>0.0000</td>
</tr>
<tr>
<td>Estadio de desarrollo</td>
<td>2.469</td>
<td>1</td>
<td>2.4691</td>
<td>.006</td>
<td>0.9384</td>
</tr>
<tr>
<td>Residual</td>
<td>60533.457</td>
<td>151</td>
<td>400.88382</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>108444.44</td>
<td>161</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2. Prueba de comparaciones múltiples de Tukey, donde se comparan los resultados de LT_{50} en adultos y juveniles de almeja catarina (Argopecten ventricosus).

<table>
<thead>
<tr>
<th>Etape</th>
<th>n</th>
<th>Medias</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juvenil</td>
<td>81</td>
<td>88.635802</td>
<td>X</td>
</tr>
<tr>
<td>Adulta</td>
<td>81</td>
<td>88.882716</td>
<td>X</td>
</tr>
</tbody>
</table>

40
Tabla 3. Verificación de la precisión del microtitulador Winkler, comparando el contenido de oxígeno disuelto medido experimentalmente, en muestras saturadas de oxígeno, de agua destilada y de agua de pozo, a 22°C, contra valores teóricos de saturación de oxígeno (Green y Carril, 1967).

<table>
<thead>
<tr>
<th>Muestra</th>
<th>Salinidad (‰)</th>
<th>Teórico</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(\bar{x})</td>
<td>(\bar{d.e.})</td>
</tr>
<tr>
<td>Agua destilada</td>
<td>0</td>
<td>6.1</td>
<td>6.15</td>
</tr>
<tr>
<td>Agua de pozo</td>
<td>29</td>
<td>5.4</td>
<td>5.43</td>
</tr>
</tbody>
</table>

* Coeficiente de variación (McCormick y Roach, 1987)

Tabla 4. Tasa respiratoria activa y estándar en juveniles de almeja catarina (Argopecten ventricosus), a diferentes temperaturas.

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>Tasa respiratoria activa (mlC/g/h)</th>
<th>Tasa respiratoria estándar (mlC/g/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\bar{x}) (\bar{d.e.})</td>
<td>(\bar{x}) (\bar{d.e.})</td>
</tr>
<tr>
<td>12</td>
<td>1.0523</td>
<td>0.0202</td>
</tr>
<tr>
<td>16</td>
<td>1.4500</td>
<td>0.0205</td>
</tr>
<tr>
<td>19</td>
<td>1.9548</td>
<td>0.0174</td>
</tr>
<tr>
<td>22</td>
<td>2.4540</td>
<td>0.0154</td>
</tr>
<tr>
<td>25</td>
<td>2.6546</td>
<td>0.0253</td>
</tr>
<tr>
<td>28</td>
<td>3.0526</td>
<td>0.0308</td>
</tr>
</tbody>
</table>

41
Fig. 10. Tasa respiratoria de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a distintos tiempos de incubación y temperaturas experimentales. Los números indican el porcentaje de saturación de O₂ en la cámara de incubación.
3.3.2 Determinación del tiempo máximo de incubación

La tasa respiratoria de juveniles de almeja catarina a los distintos tiempos de incubación y temperaturas experimentales, se muestra en la Figura 10. Los resultados indican que a menor temperatura, la tasa respiratoria permanece estable al nivel máximo por más tiempo, que a mayores temperaturas. Por ejemplo, a 12 °C, la tasa respiratoria permaneció estable durante las primeras 3 horas, mientras que a 25 y 28 °C, la tasa respiratoria fue estable durante solamente la primera hora de incubación. En base a estos resultados, en este trabajo se eligió una hora como tiempo de incubación máximo para todos los tratamientos de temperatura.

3.3.3 Determinación del tiempo para producir la tasa respiratoria estándar en juveniles de almeja catarina, en función de la temperatura

En la Figura 11, se muestra la tasa respiratoria de juveniles de almeja catarina alimentados y en inanición, expuestos a diferentes temperaturas. Después de varios días, los organismos alimentados mantuvieron su tasa respiratoria estable, a excepción de los 12 °C, donde se observó una caída de 1 a 0.7 mlO2/g/h. Sin embargo, en las almejas bajo inanición, la tasa respiratoria declinó hasta ciertos valores mínimos que indicaron el momento en que dio inicio el metabolismo basal o tasa respiratoria estándar. La tasa estándar se alcanzó a los 23, 32, 40, 35, 15 y 5 días posteriores al inicio del tratamiento de ayuno, a las temperaturas de 12, 16, 19, 22, 25 y 28 °C, respectivamente.
Fig.11. Tasa respiratoria de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) alimentados (-----) y en inanición (---), expuestos a diferentes temperaturas experimentales.
3.3.4 Marco de actividad

Las tasas respiratoria activa y estándar en juveniles de almeja catarrina de 10.09 ± 0.03 mm de altura a las temperaturas experimentales, se muestran en la Tabla 4 y en la Figura 12a. La representación gráfica del marco de actividad o sea, la diferencia aritmética entre la tasa activa y la estándar (Figura 12b), muestra que el intervalo de temperatura óptima de la población estudiada es de 19 a 22 °C.

3.4 Efecto de la temperatura sobre el crecimiento de juveniles de almeja catarrina.

El crecimiento de juveniles de almeja catarrina de 10.09 ± 0.38 mm de altura inicial, a diferentes temperaturas y durante 54 días, se muestra en la Figura 13. Aquí se puede observar que el crecimiento fue máximo a 19 °C, seguido por los tratamientos 22, 16, 25 y 28 °C. El análisis de covariancia practicado a los resultados de crecimiento (Tabla 5), indicó que existen diferencias significativas entre tratamientos. Sin embargo, la prueba de rangos múltiples de Tukey (Tabla 6), muestra que el crecimiento fue similar en los tratamientos 19 y 22 °C y en los de 16, 25 y 28 °C.
Fig. 12 a. Tasa respiratoria activa y estándar en juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas experimentales. b. Marco de actividad en juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas experimentales.
Fig. 13. Crecimiento de juveniles (10.09±0.03 mm) de almeja catarina (A. ventricosus) a diferentes temperaturas, durante 54 días de experimentación. Los puntos son la media ± la desviación estándar de la media (n=50).
Tabla 5. Análisis de varianza practicado a los resultados del efecto de la temperatura sobre la tasa de ingestión, en juveniles de almeja catarina *Argopecten ventricosus*.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados</th>
<th>G.L.</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre los grupos</td>
<td>5867.721</td>
<td>4</td>
<td>1466.9302</td>
<td>9.729</td>
<td>0.0000</td>
</tr>
<tr>
<td>Entre las réplicas</td>
<td>23822.721</td>
<td>158</td>
<td>150.7767</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29690.442</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 6 Prueba de comparaciones múltiples de Tukey, para definir las diferencias en la tasa de ingestión de juveniles de almeja catarina *Argopecten ventricosus*, en función de la temperatura.

<table>
<thead>
<tr>
<th>Temperaturas</th>
<th>n</th>
<th>Medias</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>40</td>
<td>15.1710</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>39</td>
<td>29.6141</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>31.6336</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>21.3799</td>
<td>X</td>
</tr>
<tr>
<td>28</td>
<td>39</td>
<td>19.3885</td>
<td>X</td>
</tr>
</tbody>
</table>
Fig. 14. Tasa de ingestión en juveniles (11.8±0.63 mm) de almeja catrina (A. ventricosus) en función de la temperatura. Los puntos son la media ± su desviación estándar.
3.5 Efecto de la temperatura sobre la tasa de ingestión y de aclareamiento en juveniles de almeja catarina

Las variaciones de la tasa de ingestión y de aclareamiento en juveniles de almeja catarina en función de la temperatura, se presentan en las Figuras 14 y 15, respectivamente. En la Figura 14 se muestra que la ingestión de *L. galbana* fue mayor a 22 °C, consumiendo 2.8 x 10^6 células/g/h, seguido por 2.6 x 10^5 células/g/h a 19 °C. A 28 °C declinó a 1.3, 1.9 y 1.7 x 10^6 células/g/h respectivamente. Sin embargo, la prueba de rangos múltiples de Tukey (Tabla 8) mostró que la tasa de ingestión fue similar a 16, 25 y 28 °C y a 19, 22 y 25°C.

La tasa de ingestión, en términos de la biomasa ingerida por gramo de peso seco de tejido por hora (Figura 14), fluctuó entre 15 y 32 mg/g/h.

Por otra parte, la tasa de aclareamiento calculada (Figura 15), varió de la misma forma que la tasa de ingestión, con valores extremos entre 8.7 y 17.8 litros/g/h a 16 y 22 °C respectivamente. El análisis de varianza (Tabla 9), indicó que existen diferencias significativas entre tratamientos a 95% de probabilidad. Sin embargo, la prueba de rangos múltiples de Tukey (Tabla 10), mostró que la tasa de aclareamiento fue similar a 16, 25 y 28 °C, 22 y 25 °C y a 19 y 22 °C.
Tabla 7. Análisis de covariancia practicado a los resultados del efecto de la temperatura sobre el crecimiento, en juveniles de almeja catarina Argopopen ventricosus, donde el tiempo ha sido considerado como factor covariante.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados</th>
<th>G.L.</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo</td>
<td>592.184</td>
<td>1</td>
<td>592.1844</td>
<td>281.330</td>
<td>0.0000</td>
</tr>
<tr>
<td>Temperatura</td>
<td>332.664</td>
<td>4</td>
<td>83.0660</td>
<td>39.462</td>
<td>0.0000</td>
</tr>
<tr>
<td>Residual</td>
<td>2109.155</td>
<td>1002</td>
<td>2.1049</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3069.895</td>
<td>1007</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 8. Prueba de comparaciones múltiples de Tukey, donde se comparan los resultados de crecimiento a diferentes temperaturas en juveniles de almeja catarina (Argopopen ventricosus).

<table>
<thead>
<tr>
<th>Temperatura</th>
<th>n</th>
<th>Medias</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>166</td>
<td>10.5074</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>193</td>
<td>11.6575</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>235</td>
<td>11.5289</td>
<td>X</td>
</tr>
<tr>
<td>25</td>
<td>223</td>
<td>10.2313</td>
<td>X</td>
</tr>
<tr>
<td>28</td>
<td>191</td>
<td>10.4445</td>
<td>X</td>
</tr>
</tbody>
</table>

51
Fig. 15. Tasa de aclaramiento en juveniles (11.8±0.63mm) de almeja catarina (A. ventricosus) en función de la temperatura. Los puntos son la media ± su desviación estándar.
Tabla 9. Análisis de variación practicado a los resultados del efecto de la temperatura sobre la tasa de aclaramiento en juveniles de almeja catarina *Argopecten ventricosus*.

<table>
<thead>
<tr>
<th>Fuente de variación</th>
<th>Suma de cuadrados</th>
<th>G.L</th>
<th>Cuadrado medio</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entre los grupos</td>
<td>1.9167E0009</td>
<td>4</td>
<td>4.7917E0008</td>
<td>9.733</td>
<td>0.0000</td>
</tr>
<tr>
<td>Entre las réplicas</td>
<td>7.7768E0009</td>
<td>158</td>
<td>4.9231E0007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.6952E0009</td>
<td>162</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 10. Prueba de rangos múltiples de Tukey para definir las diferencias entre las temperaturas sobre la tasa de aclaramiento en juveniles de almeja catarina *Argopecten ventricosus*.

<table>
<thead>
<tr>
<th>Temperaturas</th>
<th>n</th>
<th>Medias</th>
<th>Grupos homogéneos</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>40</td>
<td>8.71</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>39</td>
<td>17.05</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>25</td>
<td>17.84</td>
<td>X X</td>
</tr>
<tr>
<td>25</td>
<td>29</td>
<td>12.14</td>
<td>X X</td>
</tr>
<tr>
<td>28</td>
<td>39</td>
<td>11.14</td>
<td>X</td>
</tr>
</tbody>
</table>
El cociente de litros aclarados entre mililitros de oxígeno consumidos (L/mlO₂) (Figura 16) en juveniles de almeja catarina, varió de manera similar al marco de actividad, siendo más alto a 19 °C. La eficiencia de irrigación se elevó de 6 L/mlO₂ a 16 °C hasta 8.75 L/mlO₂ a 19 °C. Luego declinó gradualmente hasta llegar a un mínimo de 3.65 L/mlO₂ a los 28 °C.

Fig.16. Eficiencia de irrigación en juveniles de almeja catarina (A. ventricosus) en función de la temperatura.
4.1 Temperatura letal media superior TLM_{50}

En el presente trabajo, la TLM_{50} superior en juveniles de aimeja catarina, fue de 29 °C. El método convencional de temperatura letal media (TLM_{50}) empleado (Rand y Petrocelli, 1985), tiene una utilidad ecológica, que ayuda a correlacionar la temperatura con los límites de distribución de la especie (Wells y Gray, 1960; Read y Cumming, 1967; Ansell et al., 1981; Quinn et al., 1994; Urban, 1994). Sin embargo el valor de TLM_{50} obtenido en este estudio, es aparentemente bajo ya que no corresponde con las temperaturas que ocasionalmente se registran en cuerpos de agua cálidos donde se ha extraído esta especie como en Bahía Concepción (Bojorquez-Verástica, 1997), Bahía de La Paz (Hernández-Llamas y Gómez-Muñoz, 1996), Guaymas, (Reyes-Sosa, 1988) y Bahía de Panamá (Morales y Muñiz, 1992). Experimentalmente, la TLM_{50} se obtuvo exponiendo a un grupo de organismos aclimatados a 19 °C, a diferentes temperaturas, incluyendo aquellas que presumiblemente se encuentran fuera de las toleradas por la especie. A tiempos predeterminados posteriores al cambio térmico, los sobrevivientes se cuantificaron y finalmente se calculó la TLM_{50} graficando la temperatura experimental en el eje de las ordenadas, y la supervivencia en la de las abscisas. Con este método sin embargo, se corre el riesgo de obtener valores erróneos por el efecto que pudiesen tener
Para determinar la temperatura letal superior de la almeja catarina se pudieron haber empleado otros dos métodos. Fry (1947) usó un procedimiento simple el cual consiste en calentar o enfriar al organismo a una tasa constante hasta que muera. Sin embargo, como él mismo lo menciona, éste tampoco permite distinguir entre los factores tiempo y temperatura. A pesar de esto, la mayoría de los estudios sobre límites térmicos se han hecho de esta manera. Por ejemplo, Read y Cumming (1967) determinaron la temperatura letal para *Mytilus edulis* en 27 °C elevando la temperatura un grado centígrado cada 3.5 días. Este último dato parece dar un estimado ecológicamente correcto, ya que Wells y Gray (1960) encontraron que la distribución más al sur de *M. edulis* ocurre donde la temperatura máxima en el verano es de 26.7 °C.

Otro método más elaborado y confiable para determinar temperaturas letales es el descrito por Fry (1947) y Speakman y Krunkel (1972). Este permite la definición no solamente de la zona de tolerancia térmica enmarcada por los niveles letales, sino que también permite detectar una zona de resistencia temporal más allá de la zona de tolerancia en la que el animal finalmente sucumbirá a los efectos del calor. Speakman y Krunkel (1972) incorporan la tasa de cambio térmico en el análisis, resultado en una
superficie tridimensional con los ejes representando la temperatura de aclimatación, la temperatura letal y el tiempo tomado para completar el cambio térmico. Sería conveniente realizar un estudio comparativo de estos tres métodos, para recomendar el más adecuado en la determinación de temperaturas letales en el futuro.

El supuesto bajo valor de TLMₘₚ en la almeja catarina de este trabajo puede deberse también a la baja temperatura de aclimatación empleada (19 °C). El efecto de la temperatura de aclimatación sobre la temperatura letal superior en moluscos está bien documentada. _Placopecten magellanicus_ es una especie de aguas frías con una temperatura óptima de 10 °C (Prosgay, 1953). Dickie (1958) encontró que la temperatura letal superior para esta especie varía entre 20 y 24 °C dependiendo de la temperatura de aclimatación. La temperatura letal superior en _Placopecten magellanicus_ fue aumentada muy rápidamente (1.7 °C por día), aclimatando a los animales a temperaturas cada vez más altas. Un estudio experimental similar de tempotolerancia superior fue realizado por Paul (1980) en _Chlamys opercularis_. El también encontró que la temperatura letal media superior a 48 h, se incrementó de manera considerable de 19 a 25 °C, dependiendo de la temperatura de aclimatación.

No obstante, la temperatura de aclimatación tiene un menor efecto sobre la temperatura letal superior en organismos jóvenes que en adultos. La temperatura letal superior en juveniles de _C. opercularis_, solamente se incrementó un grado centígrado aproximadamente, habiendo variado la temperatura de aclimatación de 5 a 20 °C (Paul, 1980). Esto mismo podría haber ocurrido en la almeja catarina, ya que en el presente...
trabajo se emplearon almejas pequeñas de 18 mm de altura.

La temperatura letal superior también depende de la edad del molusco. En la literatura (Lent, 1968; Kennedy y Milhurksy, 1971), es casi aceptado por consenso que a mayor talla, menor termotolerancia. En el estudio de Paul (1980) sobre C. opercularis, también demostró que las almejas pequeñas (5-10 mm de altura), fueron más resistentes a altas temperaturas que las almejas de talla intermedia (30-40 mm) y mayor (> 60mm). La mayor termotolerancia superior de juveniles sobre adultos, concuerda con hallazgos previos en otros grupos (Huntsman y Sparks 1924; Brett, 1956). Los resultados del presente estudio indican que la TLM50 fue estadísticamente similar en juveniles y adultos de almeja catarina. Sin embargo, al observar los resultados graficados de supervivencia contra temperatura y tiempo de exposición (Figura 8), los juveniles mostraron una mayor termotolerancia que los adultos, en periodos de tiempo cortos.

Si la TLM50 de este estudio fuese correcta, la presencia de la especie en las Bahías mencionadas se podría explicar por las fluctuaciones térmicas de largo plazo, por las variaciones de temperatura día-nocturnas que ocurren en los sitios y/o por la combinación de ellas. En el Pacífico Oriental, se han registrado periodos fríos y cálidos que duran varios años (Lluch-Belda et al., 1991, 1992; Lluch-Cota et al., 1996). Es posible que las condiciones térmicas durante un período frío, permitan el establecimiento de bancos de almeja catarina, en sitios donde no existe una pesquería establecida.
permanentemente. En Bahía Concepción por ejemplo, en ciertos años se desarrolla una abundante población que mantiene una pesquería por varios años continuos, para luego desaparecer por un periodo prolongado. Antes de 1985, no se extraía almeja catarina de esta Bahía (Maeda-Martínez et al., 1993). Luego se inició una pesquería que duró 10 años, con volúmenes de extracción de hasta 600 toneladas métricas (Bojórquez-Verástica, 1997) y en 1994 se registró una mortalidad masiva. A partir de ese año, la pesquería permanece inexistente. La misma situación ocurrió en la Bahía de Panamá donde, a pesar de su alto valor comercial, la almeja catarina es una especie secundaria por los amplios y repetidos periodos de escasez que sufre. Sólo en los años de abundancia se convierte en la captura principal, produciéndoles un evidente incremento en ingresos. El comportamiento errático en los desembarques de este molusco en Panamá, queda reflejado en los datos estadísticos de los años 80, tras una década anterior menos irregular donde llegaron a alcanzar valores anuales de desacarga de 20,000 toneladas. Así, que a comienzos de los 80 se produce una caída vertiginosa de la pesquería, ésta se recupera en los años 1986 y 1987, para volver a caer en 1988 y 1989, donde ya no se alcanza ni un 10% de los valores promedio de captura de los años anteriores, (Morales y Muñiz, 1992).

Como se mencionó anteriormente, las adaptaciones genéticas ocurren durante muchas generaciones y determinan los límites de termotolerancia superiores e inferiores de las especies. En este trabajo, se estudiaron ejemplares provenientes de Bahía Magdalena (BM), donde la temperatura anual promedio (22 °C) es más baja que en Bahía Concepción (BC) (24.9 °C) (Cruz-Hernández, 1997), por la influencia de la Corriente de
California, ya que se encuentra conectada en su parte central con el Océano Pacífico abierto, a través de una boca ancha de 38 m de profundidad (Alvárez-Borrego et al., 1975). La temperatura superficial máxima registrada en BM durante el periodo de 1980 a 1989 fue de 32°C en septiembre de 1984 (Hernández et al., 1993). En contraste, BC es un cuerpo de agua influenciado por las condiciones que se presentan en el Golfo de California, donde existen pronunciadas diferencias estacionales en las temperaturas de aguas superficiales (Dawson, 1994; Pacheco-Ruiz et al., 1992). Sólo para el año de 1990, Mateo-Cid et al. (1993), reportan que la temperatura media superficial del agua en BC, osciló entre 17.5°C en invierno, y 34.8°C en el verano, coincidiendo esta última con la temperatura superficial máxima registrada por varios autores, durante el período de 1988 a 1994 (Bojórquez-Verástica, 1997; Lechuga-Devéze et al., en revisión). En un estudio comparativo de crecimiento y supervivencia de almeja catarina producida en el laboratorio a partir de progenitores de BM, BC y de sus cruzas recíprocas, Cruz-Hernández (1997) demostró que las almejas de progenitores de BC y de las cruzas recíprocas, tuvieron el mismo crecimiento y supervivencia que las de progenitores de BM cuando se cultivaron en BM. Sin embargo, el crecimiento y la supervivencia de almejas cultivadas en BC de progenitores de BM y las cruzas recíprocas, fueron significativamente menores a los registrados en almejas de progenitores de BC. Este autor explica este fenómeno por las diferencias en la termotolerancia heredada de ambas poblaciones.
4.2 Determinación de la temperatura óptima en la almeja catarina

El estudio de marco de actividad realizado indica que la temperatura óptima de juveniles de almeja catarina, se encuentra entre 19 y 22 °C. El concepto de marco de actividad o "scope for activity" introducido por Fry (1947), permite determinar con precisión la temperatura a la cual, el organismo cuenta con mayor energía disponible para el crecimiento, la reproducción, el movimiento, etc., independientemente de la energía para el mantenimiento de sus funciones vitales. A pesar de la valiosa información que brinda la aplicación de este concepto en organismos acuáticos, son pocos los estudios donde se reportan temperaturas óptimas en moluscos. Esta información es muy útil para la operación del laboratorio de producción de juveniles, donde se busca acortar lo más posible la maduración de reproductores y acelerar el crecimiento de larvas y juveniles. Adicionalmente, esta información junto con las temperaturas letales, es muy útil para la selección del siervo de preengorda y engorda de las almejas.

Para obtener resultados confiables del marco de actividad, se requiere un método que mida la tasa respiratoria de los organismos, con alta precisión. En el presente trabajo se empleó una versión miniaturizada del titulador de Bryan et al., (1976) (Maeda-Martínez, 1985), que permitió titular submuestras de 7 ml de agua de la cámara de incubación, con una resolución de 2 x 10^-4 mI O₂/L y un coeficiente de variación de 0.51 (Datos no publicados). La cámara de incubación de tipo cerrada (Van Dam, 1954; Read, 1962; Iglesias y Navarro, 1991; Navarro et al., 1991; Espina y Buckle-Ramírez, 1994) como la ampliada en este trabajo, brinda resultados rápidos y confiables. Sin embargo las
cámaras cerradas tienen algunas desventajas dentro de las cuales se encuentra la caída en la tensión de oxígeno \((\text{PO}_2)\) producida por el consumo de oxígeno \((\text{VO}_2)\) de los organismos incubados en la cámara cerrada (Bayne, 1971; 1973; Silva-Loera, 1986). Para corregir este problema, se requeriría conocer la relación \(\text{VO}_2-\text{PO}_2\) en esta especie a cada temperatura. Tang (1933), Mangum y Van Winkle (1973) y Sassangan y Mangum (1972), han propuesto ecuaciones hiperbólicas, cuadráticas y semilogarítmicas respectivamente para describir de manera universal la relación \(\text{VO}_2-\text{PO}_2\) en organismos acuáticos. Prosser y Brown (1961), definen como tensión crítica al punto de inflexión de la tasa de consumo de oxígeno en relación a la tensión de oxígeno, indicando el punto donde un organismo pierden la capacidad de regular su consumo de oxígeno para mantenerse relativamente independiente de la tensión de oxígeno (oxíregulador) y pasa a modificar su tasa respiratoria dependiente de la tensión de oxígeno disuelto que disminuye conforme baja la disponibilidad de oxígeno (oxiconformador). Algunos autores han reportado este fenómeno para distintas especies de bivalvos (Van Dam, 1938; Garder y Eliassen, 1954; Van Dam, 1954; Rotthauwe, 1958; Brand and Roberts, 1973; Shumway, 1983; Shumway y Scott, 1983). Mangum y van Winkle (1973), señalan que la distinción cuantitativa entre oxirregulador y oxiconformador, representan solamente los extremos de un continuo. En el presente trabajo no fue necesario hacer correcciones, ya que el \(\text{VO}_2\) se midió en el intervalo previo a los niveles críticos de \(\text{PO}_2\) donde el \(\text{VO}_2\) se mantuvo independiente de \(\text{PO}_2\), gracias a la capacidad reguladora de los organismos. La almeja catarina es capaz de regular su \(\text{VO}_2\) hasta un límite cercano al 76 % de saturación de oxígeno, independientemente de la temperatura (Figura 10). Coincidentemente, la capacidad
reguladora en en *Mytilus edulis* (Bayne, 1976) se pierde al 75% de saturación de oxígeno.

Antes de elegir el método para determinar el marco de actividad en la almeja catarina, se realizaron ensayos de respirometría empleando oxímetros. Los resultados indicaron que los electrodos convencionales de membrana, consumen oxígeno a una tasa variable y/o son de baja resolución, ya que para registrar una caída en la tensión de oxígeno en la cámara de incubación, se requerían grandes cantidades de biomasa y/o largos periodos de incubación.

Los resultados de marco de actividad, se comprueban con los del estudio de crecimiento de juveniles de este trabajo. El crecimiento fue máximo a 19 y 22 °C y menor a temperaturas interiores (16 °C) y superiores (25-28°C). Estos resultados concuerdan con los de Monsalvo-Spencer (1993) quien reportó una tasa de crecimiento de 70 μm/día a 20°C y de 44 μm/día a 28 °C en juveniles de 2.23 mm de altura de la misma especie. Una correlación similar entre el máximo valor de marco de actividad y el máximo crecimiento ha sido reportada en adultos de *Corbula fluminea* (Fou e Knight, 1986), *Crassostrea gigas* (Le Gall y Rallard, 1988), *Concholepas concholepas* (González et al., 1990), y en juveniles de *Venerupis pullastra* (Albertosa et al., 1994) y de *Ostrea edulis* (Beiras et al., 1994).
El efecto de la temperatura sobre la tasa de ingestión (T1) y de aclaramiento (TA) en juveniles de almeja catarina aclimatados durante 10 días a las temperaturas experimentales, varió de manera similar al marco de actividad, aumentando de 16 a 19-22°C y disminuyendo a 25 y 28°C. Esto pudiera indicar que en la almeja catarina, tanto la T1 como la TA servirían como indicadores fisiológicos de temperatura óptima. En *A. irradians* la TA no sigue un patrón tan claro como en *A. ventricosus* ya que la TA permanece independiente de la temperatura entre 10 y 26 °C pero se reduce considerablemente a los 5 °C (Kirby-Smith, 1970). El cálculo de T1 en este trabajo se realizó asumiendo una eficiencia de retención del 100%. La cantidad de alimento disponible en organismos fitoalimentadores, está en función del volumen de agua transportado a través de las branquias y de la eficiencia con que las partículas son retenidas en la branquia (Bricelj y Shumway, 1991). La mayoría de los bivalvos fitoalimentadores, son capaces de retener partículas mayores de 3-4 μm con 100% de eficiencia, y la eficiencia de retención disminuye con la reducción en el tamaño de la partícula (entre 35 y 90% para partículas de 2 μm). Estudios realizados en cinco miembros de la familia Pectinidae, solamente se ha obtenido el 100% de eficiencia de retención cuando se suministran partículas mayores que 5-7 μm (Mohlenberg y Rüigard, 1976; Rüigard, 1988). Sin embargo, estos resultados no pueden ser concluyentes debido a que las investigaciones realizadas de la influencia de la concentración de partículas sobre la eficiencia de retención no son consistentes. Palmer y Williams (1980) encontraron en *Argopecten irradians concentricus* una mayor eficiencia de retención de partículas pequeñas (< 3.4 μm) a altas concentraciones (6.1 mg peso seco / L) que a bajas
concentraciones (0.9 mg de peso seco / L). Sin embargo, este efecto fue contrario en *Crassostrea virginica*. Gallager *et al.* (1988) demostraron que *Marcenaria mercenaria* captura partículas entre 0.5 y 8 μm con igual eficiencia, por lo que probablemente la eficiencia de retención de partículas en función del tamaño y la concentración de las mismas, este asociada a la especie. En el presente trabajo la TI se estudió suministrando *Isochrysis galbana* de 3-4 μm de diámetro promedio (Enright *et al.*, 1986), pero no se estudió la eficiencia de retención. De todas formas, aunque exista una reducción en la eficiencia de retención en la almeja catarina debido al tamaño de partículas y la concentración empleada, se conservaría la relación observada entre la TA, TI y la Eficiencia de Irrigación (EI).

El sistema automatizado para la determinación de las TI y TA desarrollado, dio resultados satisfactorios al haberse logrado mantener la concentración de células en la cámara de incubación de manera constante durante tiempos prolongados. Este sistema se basó en el método de Winter (1973), quien diseñó un aparato que mantenía la concentración de microalgas constante. Al paso del tiempo, se han hecho modificaciones al método de Winter (Risgard y Möhlenberg, 1979; Gallager y Mann, 1980) hasta llegar al aparato de Gallager y Mann (1980) y al presentado en este trabajo que hace las determinaciones de manera automática. En este momento, el sistema del presente trabajo, no cuenta con la capacidad de hacer mediciones de tasa de ingestión en larvas. Sin embargo es susceptible de miniaturizarse, reduciendo la celda de flujo continuo del fluorómetro y la cámara de incubación.
Otro indicador estudiado en la almeja catarina para encontrar la temperatura óptima, fue la eficiencia de irrigación (EI) o requerimiento de convección (L/mi O₂), que integra los resultados de TA con los de VO₂. La EI fue máxima a 19 °C y varió entre 3.65 y 8.76 L/mi O₂ en el rango de temperaturas estudiado. Los organismos filtradores marinos que habitan en aguas costeras, normalmente filtran 15 litros o más de agua por ml equivalente de O₂ consumido (Jørgensen, 1949). Una EI promedio de 17 (8-25) fue reportada para Pecten latiauratus (Jørgensen, 1960) y valores entre 15 (a 5 °C) y 39 (a 20 °C) fueron encontrados en ejemplares de 0.1 gramos de peso seco del tejido en Chlamys opercularis (MacLusky, 1973). Los bajos valores de eficiencia encontrados en la almeja catarina posiblemente se deben al pequeño tamaño de juveniles empleados (0.0087g de peso seco) ya que la EI varía inversamente al peso del organismo, según se observa en el trabajo de MacLusky (1973). De las figuras que presenta, un ejemplar de de 1.0 g de peso seco del tejido tuvo una EI de aproximadamente 11.5 L/mi O₂ a 20°C, mientras que la EI de uno de 0.1 g, fue de 7.5 a la misma temperatura. La relevancia de una EI elevada a 19 °C en la almeja catarina, indica una máxima eficiencia fisiológica de este organismo a la temperatura mencionada.
1. La temperatura letal media a 96 horas de exposición (TLM96), tanto de juveniles como adultos de la población estudiada de almeja catarina (Argopecten ventricosus) fue de 29°C. La cual es considerada baja si se toma en cuenta la temperatura máxima de los cuerpos de agua donde se extrae la especie. Este resultado es atribuido a la temperatura de aclimatación usada, al método empleado y al origen de la población estudiada, por lo que es susceptible de modificarse.

2. El marco de actividad en juveniles de almeja catarina, indicó que la temperatura óptima para la población estudiada, se encuentra entre los 19 y 22°C.

3. La tasa de ingestión y aclaramiento en juveniles de almeja catarina en función de la temperatura, fueron mayores a 22°C, seguido por 19°C y declinando a temperaturas de 16, 25 y 28°C.

4. La eficiencia de irrigación en juveniles de almeja catarina, varió de manera similar al marco de actividad, siendo más alta a 19°C y declinando gradualmente hasta llegar a un mínimo a los 28°C.

5. Por los resultados obtenidos, en el presente trabajo se concluye que, la población estudiada es subtropical, por presentar un límite de tolerancia térmico bajo (29°C) y una
temperatura óptima relativamente templadas (19-22°C).

6. El crecimiento de juveniles de almeja catarina en relación a la temperatura, fue máximo y similar a los 19-22°C, seguidos por los tratamientos de 16, 25 y 28°C.

7. El presente estudio reflejó que el marco de actividad, las tasas de ingestión y aciervamiento, y la eficiencia de irrigación, son indicadores fisiológicos que reflejaron sus niveles óptimos en el crecimiento de los organismos a las diferentes temperaturas.
Para la producción de juveniles de almeja catarina (A. ventricosus) en el laboratorio, incluyendo los procesos de acondicionamiento gonádico, desove, y cultivo de larvas y juveniles, se recomienda se lleven a cabo entre los 19 y 22°C donde se registró el mayor crecimiento y se obtuvieron los valores más altos de los indicadores fisiológicos estudiados, cuando se empleen reproductores provenientes de Bahía Magdalena u otra zona subtropical.

Se recomienda realizar un estudio comparativo similar al presente, entre poblaciones tropicales y subtropicales de almeja catarina.

Se recomienda que los programas de fomento de acuicultura de esta especie se impulse tomando en cuenta la compatibilidad fisiológica de la población con las variaciones ambientales (principalmente temperatura), de los sitios propuestos. Que se realice el monitoreo continuo de la temperatura en los sitios, potenciales de cultivo, ya que como se demostró en el presente trabajo, no solamente son relevantes los valores extremos de temperatura, sino también los tiempos de exposición.

Con respecto al método de determinación de temperaturas extremas y óptimas, se recomienda:

a) Realizar un estudio similar al presente, donde se comparen los resultados del método de TLM con los métodos que determinan temperatura letal incipiente, ya que el método aquí empleado, pudo haber inducido mortalidad en las almejas por los cambios repentininos
de temperatura a que fueron sometidos.

b) Estudiar las respuestas letales y óptimas a diferentes temperaturas de aclimatación, a fin de obtener la superficie de respuesta de la población.

c) Evaluar las respuestas letales y los indicadores fisiológicos empleados en el presente trabajo, bajo regímenes térmicos fluctuantes similares a los que ocurren en los sitios potenciales de cultivo, y contrastarlos con las respuestas a condiciones estables.
BIBLIOGRAFÍA

82

MORALES, V.V. Y J.L. MUÑIZ. 1992. Diagnóstico de la acuicultura de...
moluscos bivalvos en Panamá. Ministerio de Desarrollo Agropecuario, Dir. Nac. de Acuicultura de Panamá y Agencia de Cooperación Española, Panamá, 150 pp

RUIZ-VERDUGO, C.A y C. CACERES-MARTINEZ, 1991. Experimental spat collection of scallops Argopecten circularis (Sowerby,1835) and Pecten

SHEE, M.S., 1982. Seasonal variations in oxygen consumption rates of the black scallop
Clamys vari (L.) from Lanvec (Bay of Brest). Oceanol. Acta. 5(2), 189-197.

SHUMWAY, S.E., 1983. Factors affecting oxygen consumption in the coot
clam Mulinia lateralis (Say). Ophelia 22(2), 143-171.

SHUMWAY, S.E. y T.M. SGDT, 1983. The effects of anoxia and hydrogen
sulphide on survival, activity and metabolic rate in the coot clam, Mulinia

SHUMWAY, S.E., BARBER, J. y J. STAHLNECKER, 1988. Seasonal changes
in oxygen consumption of the giant scallop, Placopecten magallanicus (Gmein).
J. Shellfish Res. 7, 77-82.

SIEWERS, A.K., 1983. Commercial mariculture of a bay scallop Argopecten
circularis (Sowerby) in the Ensenada of La Paz, Baja California Sur, Mexico.
J. Shellfish Res. 3, 114.

y temperatura sobre la tasa de consumo de oxígeno en la escalopa
Argopecten circularis (Sowerby)(Mollusca: Lamellibranchia). Tesis de
Maestría, ITESM, Méx. 93 pp.

SINGH-CABANILLAS, J., 1986. Cultivo en parques rústicos de la almeja
catarina en el Estero El Dátil, B.C.S., en: Memorias del Primer Simposio
Nacional de Acuicultura, Méx.

arrecifes. Acuavision 2(7), 4-6.

SINGHORET-BRAILOVSKY, G., MAEDA-MARTINEZ, A.N., REYNOSO-
GRANADOS, T., SOTO-GALERA, E., MONSALVO-SPENCER, P. y G.
VALLE-MEZA, 1996. Salinity tolerance of the catarina scallop Argopecten

TANG, P.S. 1933. On the rate of oxygen consumption by tissues and lower organisms as a function of oxygen tension. Quarterly Review of Biology 8, 260-274.

VAN DAM, K., 1938. On the utilisation of oxygen and regulation of breathing in some aquatic animals. Dissertation: Drukkerij Volharding, Groningen.

92

WELLS, H.W. y M.J. WELLS, 1964. The calico scallop community in North

