UTILIZACION DEL ALGA Sargassum spp. COMO COMPLEMENTO ALIMENTICIO DE GANADO OVINO

TESIS QUE PARA OBTENER EL GRADO DE:
MAESTRO EN CIENCIAS

CON ESPECIALIDAD EN:
MANEJO DE RECURSOS MARINOS.

PRESENTA:
ING. ALEJANDRO MARIN ALVAREZ

Contenido

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glosario de Terminos</td>
<td>i</td>
</tr>
<tr>
<td>Relación de Tablas</td>
<td>iii</td>
</tr>
<tr>
<td>Relación de Figuras</td>
<td>v</td>
</tr>
<tr>
<td>Resumen</td>
<td>vi</td>
</tr>
<tr>
<td>Abstract</td>
<td>viii</td>
</tr>
<tr>
<td>1. Introducción</td>
<td>1</td>
</tr>
<tr>
<td>2. Antecedentes</td>
<td>2</td>
</tr>
<tr>
<td>3. Justificación</td>
<td>6</td>
</tr>
<tr>
<td>4. Objetivo</td>
<td>7</td>
</tr>
<tr>
<td>5. Hipótesis</td>
<td>7</td>
</tr>
<tr>
<td>6. Materiales y Métodos</td>
<td>8</td>
</tr>
<tr>
<td>6.1. Colecta de Algas</td>
<td>8</td>
</tr>
<tr>
<td>6.2. Análisis Químico Aproximado de Sargassum spp.</td>
<td>8</td>
</tr>
<tr>
<td>- Humedad</td>
<td>8</td>
</tr>
<tr>
<td>- Cenizas</td>
<td>9</td>
</tr>
<tr>
<td>- Proteína Cruda</td>
<td>9</td>
</tr>
<tr>
<td>- Extracto etéreo</td>
<td>10</td>
</tr>
<tr>
<td>- Fibra cruda</td>
<td>10</td>
</tr>
<tr>
<td>6.3. Determinación de Fracciones de Fibra</td>
<td>11</td>
</tr>
<tr>
<td>6.4. Energía Bruta</td>
<td>13</td>
</tr>
<tr>
<td>6.5. Minerales</td>
<td>14</td>
</tr>
<tr>
<td>6.6. Determinación de Factores Antinutricios de las Algas</td>
<td>17</td>
</tr>
<tr>
<td>6.6.1. Factores que alteran la digestión</td>
<td>17</td>
</tr>
<tr>
<td>- Saponinas</td>
<td>17</td>
</tr>
<tr>
<td>- Taninos</td>
<td>17</td>
</tr>
<tr>
<td>6.6.2. Factores Toxicos</td>
<td>19</td>
</tr>
<tr>
<td>- Glucósidos cianogénicos</td>
<td>19</td>
</tr>
<tr>
<td>- Alcaloides</td>
<td>19</td>
</tr>
<tr>
<td>6.7. Formulación de dietas</td>
<td>20</td>
</tr>
<tr>
<td>6.7.1. Formulación de dietas para las pruebas de digestibilidad in vivo e in situ de la Materia Seca de Sargassum spp.</td>
<td>21</td>
</tr>
<tr>
<td>6.7.2. Formulación de dietas para la prueba de comportamiento</td>
<td>21</td>
</tr>
<tr>
<td>6.8. Pruebas de Digestibilidad in vivo e in situ</td>
<td>23</td>
</tr>
<tr>
<td>6.8.1. Digestibilidad in vivo de la Materia Seca</td>
<td>25</td>
</tr>
<tr>
<td>6.8.2. Digestibilidad in situ de la Materia Seca</td>
<td>25</td>
</tr>
<tr>
<td>6.9. Determinación de pH del Líquido Ruminal</td>
<td>27</td>
</tr>
</tbody>
</table>
6. DETERMINACION DE NITROGENO EN RUMEN
- Página 27

6.11. DETERMINACION DE ACIDOS GRASOS VOLATILES
- Página 28

6.12. PRUEBA DE COMPORTAMIENTO
- Página 29

6.13. ANALISIS ESTADISTICO
- Página 30

7. RESULTADOS

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. ANALISIS QUIMICO APROXIMADO DE Sargassum spp.</td>
<td>31</td>
</tr>
<tr>
<td>7.2. FRACCIONES DE FIBRA</td>
<td>32</td>
</tr>
<tr>
<td>7.3. MINERALES</td>
<td>32</td>
</tr>
<tr>
<td>7.4. METALES PESADOS</td>
<td>34</td>
</tr>
<tr>
<td>7.5. FACTORES ANTINUTRICIOS DE LAS ALGAS</td>
<td>34</td>
</tr>
<tr>
<td>7.6. DETERMINACION DE DIGESTIBILIDAD</td>
<td>35</td>
</tr>
<tr>
<td>7.6.1. DIGESTIBILIDAD in vivo DE LA MATERIA SECA</td>
<td>39</td>
</tr>
<tr>
<td>7.6.2. DIGESTIBILIDAD in situ DE LA MATERIA SECA</td>
<td>40</td>
</tr>
<tr>
<td>7.7. DETERMINACION DE pH DEL LIQUIDO RUMINAL</td>
<td>41</td>
</tr>
<tr>
<td>7.8. DETERMINACION DE NITROGENO EN RUMEN</td>
<td>43</td>
</tr>
<tr>
<td>7.9. DETERMINACION DE ACIDOS GRASOS VOLATILES</td>
<td>47</td>
</tr>
</tbody>
</table>

8. DISCUSSION

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1. ANALISIS QUIMICO APROXIMADO</td>
<td>50</td>
</tr>
<tr>
<td>8.2. FRACCIONES DE FIBRA</td>
<td>54</td>
</tr>
<tr>
<td>8.3. MINERALES</td>
<td>54</td>
</tr>
<tr>
<td>8.4. METALES PESADOS</td>
<td>55</td>
</tr>
<tr>
<td>8.5. FACTORES ANTINUTRICIOS DE LAS ALGAS</td>
<td>56</td>
</tr>
<tr>
<td>8.6. DETERMINACION DE DIGESTIBILIDAD</td>
<td>58</td>
</tr>
<tr>
<td>8.6.1. DIGESTIBILIDAD in vivo DE LA MATERIA SECA</td>
<td>59</td>
</tr>
<tr>
<td>8.6.2. DIGESTIBILIDAD in situ DE LA MATERIA SECA</td>
<td>61</td>
</tr>
<tr>
<td>8.7. DETERMINACION DE pH DEL LIQUIDO RUMINAL</td>
<td>63</td>
</tr>
<tr>
<td>8.8. DETERMINACION DE NITROGENO EN RUMEN</td>
<td>64</td>
</tr>
<tr>
<td>8.9. DETERMINACION DE ACIDOS GRASOS VOLATILES</td>
<td>66</td>
</tr>
<tr>
<td>8.10. PRUEBA DE COMPORTAMIENTO</td>
<td>69</td>
</tr>
</tbody>
</table>

9. CONCLUSIONES
- Página 71

10. SUGERENCIAS Y RECOMENDACIONES
- Página 73

11. BIBLIOGRAFIA CITADA
- Página 74

ANEXO 1
- Página 87
ACIDO GRASO: Compuesto químico asociado con la mayoría de los lípidos, es un ácido monocarboxílico que tiene cierto número de átomos de carbono en una cadena lineal.

ALGAS: Vegetales acuáticos, generalmente la mayoría son fotoautótrofos aunque algunas formas son heterótrofas facultativas u obligadas. Los órganos sexuales son unicelulares o bien son multicelulares, cuando están presentes (es decir, algunas algas unicelulares pueden funcionar directamente como gametos). Actualmente también se consideran para su clasificación las características de presencia o ausencia de flagelos, composición de la pared celular y tipo del producto fotosintético almacenado. Los ciclos reproductivos de las algas se realizan de forma sexual y asexual. De forma sexual se pueden adaptar a tres patrones de reproducción: a) Meiosis cigótica; b) Meiosis gamética y c) Meiosis espórica. La reproducción asexual en general es a través de división celular simple, formándose dos o más células móviles (zoosporas) o no móviles (autosporas).

BROMATOLOGIA: Ciencia que estudia los alimentos y la nutrición.

CENIZAS: Componente mineral y de silicatos de los alimentos.

ENERGIA BRUTA O CONTENIDO ENERGETICO: Término que se emplea para calcular la energía química (calor de combustión) que aportan al organismo los alimentos, a través de sus moléculas biológicas, la combustión se lleva a cabo en una atmósfera rica en oxígeno y el calor producido se mide como la diferencia en la temperatura antes y después de realizar la combustión.

DIGESTIBILIDAD: Medición de la cantidad de nutrimento que después de pasar por el tubo digestivo no aparece en las heces.
FIBRA CRUDA: Es el término que se aplica al residuo orgánico insoluble de cualquier producto natural o elaborado después de una hidrólisis ácida y una alcalina, básicamente es una mezcla heterogénea de hidratos de carbono (celulosa y hemicelulosa) y otros materiales como lignina, esencialmente indigeribles por animales de estómago simple.

FIBRA NEUTRO DETERGENTE: Porción del alimento insoluble en una solución detergente de sulfato de lauril–sodio tamponada a pH 7 (solución neutro-detergente), tras ebullición suave durante una hora, este procedimiento permite determinar el porcentaje de la pared celular.

LIGNINA: Sustancia aromática polimerizada que compone una parte sustancial de las porciones leñosas de las plantas.

MANTO DE ALGAS: Conjunto de plantas marinas que crecen unas junto a otras sobre un sustrato cubriendo una gran área.

POLISACARIDO: Grupo de glúcidos constituido por la polimerización de numerosas moléculas de monosacáridos, o de sus derivados unidos con enlaces glucosídicos.

RUMIANTES: Mamíferos que realizan una doble masticación del alimento, regresando a la boca los alimentos que ya estuvieron en el rumen.

VITAMINAS: Compuestos orgánicos que se requieren en pequeñas cantidades en la dieta de los animales para asegurar un crecimiento y reproducción sanos.
RELACION DE TABLAS

Tabla 1. Ingredientes utilizados en la formulación de las dietas experimentales... 21

Tabla 2. Dietas empleadas para la digestibilidad in vivo e in situ 22

Tabla 3. Comparación de las dietas utilizadas en la prueba de comportamiento... 22

Tabla 4. Resultados del análisis químico aproximado (%) y energía bruta de Sargassum spp. comparados con los obtenidos con diferentes autores... 31

Tabla 5. Comparación del análisis químico aproximado y energía bruta de Sargassum spp. obtenidos en el presente trabajo, con otros forrajes de uso común... 31

Tabla 6. Comparación entre diferentes tipos de energía calculados (Mcal/g) para Sargassum spp., y forrajes de uso común en Baja California Sur... 32

Tabla 7. Comparación de fibras de ingredientes de uso común en la alimentación animal, con las contenidas en Sargassum spp... 32

Tabla 8. Comparación del contenido de minerales de Sargassum spp. obtenidos en este estudio con el informado por otros autores.. 33

Tabla 9. Comparación de contenido de minerales del alga del género Sargassum, respecto a algunos forrajes de uso común... 33

Tabla 10. Comparación de metales pesados obtenidos en este estudio y el reportado en otras algas cafés.. 34

Tabla 11. Comparación de los factores antinutricios de Sargassum spp. obtenidos en este estudio y el obtenido en Sargassum sinicola por otros autores... 35

Tabla 12. Consumo de alimento durante los cuatro períodos de muestreo para diferentes niveles de inclusión de Sargassum spp.. 35

Tabla 13. Consumo de agua durante cuatro períodos de muestreo para diferentes niveles de inclusión de Sargassum spp......................... 36
Tabla 14. Cantidad de heces eliminadas durante cuatro períodos de muestreo con diferentes niveles de inclusión de Sargassum spp.

Tabla 15. Cantidad de orina eliminada durante cuatro períodos de muestreo con diferentes niveles de inclusión de Sargassum spp.

Tabla 16. Variación del % de digestibilidad in situ con diferentes niveles de Sargassum spp. y a diferentes horas de muestreo.

Tabla 17. Proporciones de ácidos grasos en el líquido ruminal de bovinos alimentados con diferentes raciones.
<table>
<thead>
<tr>
<th>RELACION DE FIGURAS</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figura 1. Coeficiente global de digestibilidad de materia seca</td>
<td>37</td>
</tr>
<tr>
<td>Figura 2. Correlación de las diferentes concentraciones de Sargassum spp. en la dieta, entre el consumo de agua y la excreción de orina durante cuatro períodos de muestreo</td>
<td>38</td>
</tr>
<tr>
<td>Figura 3. Digestibilidad in situ, de la materia seca de las dietas en las que se incluyó Sargassum spp. a diferentes niveles</td>
<td>39</td>
</tr>
<tr>
<td>Figura 4. Variación del pH de líquido ruminal a diferentes horas de digestión con las dietas suplementadas con 10%, 20%, y 30% de algas de Sargassum spp. y la dieta testigo</td>
<td>41</td>
</tr>
<tr>
<td>Figura 5. Variación del nitrógeno amoniacal a diferentes horas de digestión con dietas suplementadas a diferentes niveles de Sargassum spp. en ppm de nitrógeno</td>
<td>42</td>
</tr>
<tr>
<td>Figura 6. Variación de ácido acético presente en el líquido ruminal a las horas 6, 12, 18 y 24 de la digestión con dietas suplementadas con Sargassum spp. al 10%, 20% y 30% y la dieta testigo</td>
<td>44</td>
</tr>
<tr>
<td>Figura 7. Variación de ácido propiónico presente en el líquido ruminal a las horas 6, 12, 18 y 24 de la digestión con dietas suplementadas con Sargassum spp. al 10%, 20% y 30% y la dieta</td>
<td>45</td>
</tr>
<tr>
<td>Figura 8. Variación de ácido butírico presente en el líquido ruminal a las horas 6, 12, 18 y 24 de la digestión con dietas suplementadas con Sargassum spp. al 10%, 20% y 30% y la dieta testigo</td>
<td>46</td>
</tr>
<tr>
<td>Figura 9. Incremento de peso con una dieta testigo y la suplementada con 25% de Sargassum spp.</td>
<td>47</td>
</tr>
<tr>
<td>Figura 10. Comparación de consumo de agua entre la dieta testigo y la dieta suplementada con 25% de Sargassum spp.</td>
<td>48</td>
</tr>
<tr>
<td>Figura 11. Comparación de alimento rechazado con la dieta testigo y la dieta suplementada con 25% de Sargassum spp.</td>
<td>49</td>
</tr>
</tbody>
</table>
RESUMEN

Se evaluó la composición química y nutricmental del alga marina Sargassum spp., colectada en la localidad de San Juan de la Costa, B.C.S. Los carbohidratos (45.8%) y las cenizas (33.3%) son los componentes químicos que predominaron en el alga, con un adecuado contenido de fibra detergente neutro (45% del contenido celular orgánico). Los minerales obtenidos en mayor cantidad fueron el calcio (6.41 m/g), el sodio (28.74 m/g) y el potasio (15.9 mg/g), con contenidos adecuados de magnesio, fósforo, hierro, zinc, cobre y selenio, además de concentraciones de mercurio y plomo que no rebasan la norma para consumo animal. Para las pruebas de digestibilidad in vivo e in situ conjuntamente con la determinación de los parámetros metabólicos de pH, nitrógeno amoniacal y ácidos grasos volátiles se utilizó un diseño de cuadrado latino en cuatro borregas pelibuey de un peso promedio de 24.5 Kg provistas de cánula ruminal, alimentadas con dietas isoproteicas e isocalóricas con tres tratamientos (10%, 20% y 30%) que incluyeron Sargassum spp. más el testigo. En la digestibilidad in vivo no hubo diferencia significativa en el consumo de alimento entre tratamientos, pero sí en el consumo de agua y excreción de orina generando mayores cantidades en los tratamientos que incluyeron 10%, 20% y 30% de Sargassum spp. respecto al testigo; asimismo, en la determinación del coeficiente de digestibilidad de materia seca no hubo diferencia significativa entre tratamientos. En la digestibilidad in situ no existió diferencia significativa de los tratamientos con Sargassum spp. con respecto al testigo. Los valores obtenidos de variación de los perfiles de pH, nitrógeno amoniacal y ácidos grasos están de acuerdo a las características de la dieta proporcionada en sus contenidos de fibra, sin afectar el metabolismo del animal. La prueba de comportamiento se realizó con dos grupos de diez borregas en crecimiento con una concentración de 25% de Sargassum spp., con el objetivo de observar el comportamiento en un grupo de animales los parámetros de crecimiento, consumo de alimento y consumo de agua. En dicha prueba no hubo diferencia significativa en el consumo de alimento, pero sí en el de consumo de agua, al ser mayor en el tratamiento con 25% de Sargassum spp. Se obtuvo mayor ganancia de peso en el grupo alimentado con dietas al 25% de Sargassum spp. en un 3.5% y con una mejor conversión alimenticia de 3.66 Kg de alimento consumido / Kg de incremento
de peso contra el testigo que fue de 3.79 Kg de alimento consumido / Kg de incremento de peso. Se recomienda la realización de estudios fisiológicos para determinar el efecto de los macro-minerales y metales pesados; elaborar un patrón de fermentación por el tipo de nutrimentos proporcionados por el Sargassum spp.; realización de pruebas de comportamiento con bovinos utilizando la concentración del 30% de algas y realizar estudios del efecto del Sargassum spp. en el desarrollo de la flora microbiana de rumiantes.
ABSTRACT

Was evaluated the chemical and nutritional composition of the brown seaweed Sargassum spp. collected in San Juan de la Costa, B.C.S. The results indicate that free nitrogen extract (45.8%) and ashes (33.3%) were the most abundant components. The principal minerals (mg/g) of the seaweeds were calcium (641.4), sodium (287.4) and potassium (159.0). The magnesium, phosphorus, iron, cinc, copper and selenium, were in suitable quantities. The concentrations of mercury and lead, didn’t exceed the levels for animal feeding. Were testing four diets that including 0%, 10%, 20% and 30% of meal of Sargassum spp., in order to determinate in vivo and in situ digestibility, pH, ammoniacal nitrogen and volatile fats acids. It was using a experimental desing of square latin management with four pelibuey sheeps of 24.5 Kg average. So itself the digestibility dry matter coefficient and feed consumption hadn’t significance difference between treatments. There were significative difference to water consumption and urine production for 0%, 10%, 20% and 30% treatments of Sargassum spp. In situ digestibility wasn’t significance difference between tratmens. The perfils variation of pH, ammoniacal nitrogen and AGV’s obtained were similar to rations with content fiber of common forages. Behavior test were used two groups of ten sheeps feeding with a diet of 25 % of Sargassum spp. No significience difference of feed consumption but afirmative difference in water consumption, with respect to the test group. The best profit weight was in the group feeding with diet at 25% of Sargassum spp., 3.5% plus. Feed conversion was better in the same group with 3.66 Kg of feed consumption / Kg of gain weight vs. witness group at 3.79 Kg of feed consumption / Kg of gain weight. Recommend to make physiology studies to determinate mineral and heavy-minerals efect; fermentation perfil per kind of nutriments of Sargassum spp.; behavior test with bovines at 30% of Sargassum spp. and effect in microbian ruminant.
1. INTRODUCCIÓN

Existe una gran gama de algas marinas a lo largo de los océanos con una incalculable biomasa vegetal (Dawes, 1986; Chapman, 1980), las cuales se caracterizan por un alto contenido mineral, además de ser aprovechadas principalmente para la obtención de alginatos, carragenina, agar, fertilizantes y otros derivados.

Los registros de utilización de las algas para consumo humano datan de los años 300-600 A.C., se consumían principalmente Porphyra, Undaria, Hizikia y Laminaria en China, Japón y Corea, posteriormente se diversificaron sus usos a la alimentación animal (McHugh, 1987).

Los trabajos más recientes de aprovechamiento de macroalgas han demostrado su alto potencial en cuanto a los nutrimentos que aportan: minerales, vitaminas, aminoácidos esenciales y carbohidratos y en ellos se señala. También se señala la importancia que pueden tener para el desarrollo de una explotación sistemática en México, y a su vez contribuyan para la alimentación humana y animal, adicional al uso que tradicionalmente se les ha dado en la industria de los ficocoloides (Casas, 1982; Cuzmán del Proo et al., 1986; McHugh, 1987; Manzano y Rosales, 1989; Carrillo et al., 1992; Rodríguez, 1995; Llamo, 1997; Pérez, 1997; Meza, 1998; Aguilera, 1999).

La cosecha mundial aproximada de algas marinas en el año de 1996 fue de 7,731,666 toneladas métricas en peso húmedo, distribuidas en algas pardas, algas rojas, algas verdes y diversas plantas acuáticas, en porcentajes de 59.3 %, 21.7%, 0.62% y 18.4 respectivamente (FAO, 1998); de estas se obtienen diversos productos como: agar, alginatos, carragenanos, furcelarános, fertilizantes y alimento para consumo humano y animal (Robledo, 1990). En México, la cantidad cosechada (peso desembarcado) de algas marinas alcanzó la cantidad de 34,443 toneladas en 1997 (SEMARNAP, 1998).

El grupo taxonómico más abundante y de mayor importancia económica de las algas, es el de las feofitas (algas pardas). México cuenta con importantes

La biomasa estimada disponible de este género, para cosecha en diferentes lugares de la Península de Baja California asciende a un total de 231,000 t aproximadamente, distribuídas en la costa oeste de Bahía Concepción con 7,200 t (Casas et al., 1993), en la Bahía de la Paz con 19,800 t (Hernández et al., 1990) y en la costa oeste del Golfo de California con 204,000 t (Pacheco et al., 1996), además de una disponibilidad de biomasa de 9 Kg peso húmedo/m² en Bahía Magdalena (Isla Magdalena) y 6.8 Kg/m² en Isla Margarita (Sánchez et al., 1989).

Se ha estudiado *Sargassum sinicola*, recomendándose su uso en la alimentación humana y animal debido a que es una buena fuente de minerales, y carbohidratos, además de contener algunos aminoácidos esenciales (arginina, triptófano y fenilalanina) (Manzano y Rosales, 1989; Carrillo et al., 1992; Rodríguez, 1995).

Aún cuando las algas del género *Sargassum* se encuentran en forma abundante en las costas de México, no se les ha dado utilidad alguna en la alimentación del ganado; sin embargo, gracias a su valor nutrimental pueden constituir una alternativa interesante como complemento alimenticio para el ganado, sobre todo en aquellas regiones donde el abastecimiento de alimento para los animales es un problema durante la época de sequía.
2. ANTECEDENTES

Las primeras investigaciones sobre el género Sargassum en el Golfo de California fueron realizadas por Setchell y Gardner (1924) y Dawson (1944) quienes mencionan la gran variedad de especies de éste género dentro del Golfo. Asimismo, Huerta (1978) realizó un estudio florístico en la misma área, señalando que, las algas cafés más abundantes, corresponden al género Sargassum.

Dentro de la composición química de Sargassum destacan las cantidades de alginatos (Pérez, 1997), así como la presencia de carotenoides y polisacáridos de fucosa (Dawes, 1986).

Manzano y Rosales (1989) destacan la riqueza de Sargassum sinicola en minerales, carbohidratos y algunos aminoácidos esenciales y recomiendan su uso para alimentación animal sin lavar (para no eliminar minerales). No detectaron factores antinutricios en esta especie y obtuvieron excelentes resultados al medir la relación de eficiencia proteínica (PER), la utilización neta de la proteína (NPU) y la digestibilidad aparente (DA) cuando proporcionaron a ratas, dietas con diferentes porcentajes de S. sinicola (5%, 15% y 25%), en relación a una dieta patrón (harina de garbanzo); también realizaron la determinación de la digestibilidad in vitro e in situ, obteniendo 24.7% para la primera y 27.5% para la segunda.

Carrillo et al. (1992) determinaron la composición química de harina de Sargassum sinicola, encontrando que los carbohidratos y minerales son muy abundantes. Rodríguez (1995) y Rodríguez et al. (1995) midieron los efectos que sobre la calidad del huevo y cascarón tuvo la suplementación de las dietas de gallinas ponedoras con Sargassum spp., y observaron un mejor contenido de proteína y un efecto positivo en la calidad del huevo y cascarón con la inclusión del 6% de dicha alga. Meza et al. (1996) determinaron el efecto sobre la calidad de albúmina en huevos de gallinas alimentadas con raciones en las cuáles incluyeron 10% de S. sinicola en 10%, obteniendo una mejor calidad de albúmina sin afectar los parámetros productivos (consumo de alimento, peso del huevo, porcentaje de postura y la conversión alimenticia).
Carrillo et al. (1997) concluyen que S. sinicola y Ulva lactuca son buena fuente de minerales para gallinas ponedoras ya que no se encontraron diferencias significativas entre tratamientos en el contenido de Ca, Na, K, Mg, Fe y Zn del huevo, pero sí en P donde el grupo testigo y los grupos con S. sinicola al 3% y 9% mostraron concentraciones superiores (32.0, 33.3, y 32.3 mg/100g), respecto al tratamiento con 6% de S. Sinicola (32.7 mg/100g).

Llamo (1997) concluye que S. sinicola es rica en beta-carotenos y vitamina C y pueden constituir una excelente fuente de vitaminas para consumo humano y animal.

Carrillo et al. (1998) encontraron que dietas para gallinas ponedoras con un contenido de 6% de S. sinicola generan menor contenido de colesterol (8.95 mg/g) en huevos que el grupo testigo (13.7 mg/g) y que otros grupos (12.0-14.8 mg/g).

Para alimentación de rumiantes, se han utilizado las algas mediante el pastoreo del ganado en la zona intermareal y submareal, principalmente en Europa (Chapman, 1980) con ramoneo en pozas de marea (Dawson, 1966; Jensen, 1972; Chapman, 1980; Bold y Wynne, 1985).

Pérez (1997) recomienda la utilización de Sargassum spp. en dietas de algunos animales domésticos de importancia económica (rumiantes) por su alto contenido de carbohidratos y minerales presentes, bajo contenido en fibra con respecto a forrajes de uso común además de energía bruta y digestibilidad alta en este tipo de forrajes.

Gojón (1997) midió la degradabilidad in situ y digestibilidad ruminal de Macrocystis pyrifera y Sargassum spp. obteniendo una digestibilidad de materia seca de 85.4% para M. pyrifera y de 54.8% para Sargassum spp. También realizó una caracterización química de Sargassum spp., siendo sus componentes principales los carbohidratos (42.0%) y minerales (38.5%) y encontró que la proteína de dicha alga se degrada in vitro (con tripsina) en un 95%. Para su aprovechamiento sugiere
realizar la cosecha de algas y secarlas al sol para una mayor conservación y suministrarlas como complemento alimenticio.
3. JUSTIFICACION

Las características climáticas del estado de Baja California Sur tienen incidencia en el mantenimiento del ganado, generando una necesidad de alimento que se debe enfocar a un suministro de éste a bajo costo (SAGAR, 1995).

El factor alimento dentro del subsector pecuario tiene gran importancia, ya que las sequías cíclicas que se presentan en el Estado ocasionan una disminución significativa en la disponibilidad de forrajes en el agostadero, lo que hace necesarias las suplementaciones con forrajes cultivados, concentrados y esquilmos (SAGAR, 1996). Lo anterior aunado a que de 1995 a 1998, ha ocurrido una disminución de producción de forrajes de 86,170 toneladas a 63,929 toneladas (SAGAR, 1999) repercutiendo directamente en el abastecimiento de alimento para el subsector.

Otros aspectos que justifican la búsqueda de fuentes alternas de forrajes para ganado son, el alto costo de mantenimiento de ganado debido a la compra de forrajes y concentrado y la pérdida de valor del ganado por enflaquecimiento.

Por otra parte los volúmenes estimados a la fecha de la biomasa cosechable de Sargassum spp. hace que esta se pueda considerar un recurso potencial.

Los estudios sobre composición química del género Sargassum señalan que es una buena fuente de carbohidratos y minerales (fósforo, sodio, magnesio, potasio y calcio) así como de algunos aminoácidos esenciales (lisina, fenilalanina, tirosina, treonina y triptófano), por lo que representa un buena opción para alimentación humana y animal (Carrillo et al., 1992).

El presente estudio pretende contribuir a la solución de la problemática generada en el subsector pecuario en cuanto a la utilización de fuentes alternas de alimento locales y de bajo costo durante los períodos de sequía, debido a las graves repercusiones en el desarrollo de los hatos. Se propone la utilización de un recurso natural no aprovechado actualmente como lo es el alga marina Sargassum spp. en la alimentación de ganado ovino.
4. OBJETIVO

OBJETIVO GENERAL

Utilizar el alga *Sargassum spp.* como complemento alimenticio en ganado ovino.

OBJETIVOS PARTICULARES

a) Determinar la composición química aproximada de *Sargassum spp.*

b) Cuantificar los minerales de *Sargassum spp.*

c) Determinar los factores antinutricios de *Sargassum spp.*

d) Elaboración y análisis aproximado de dietas experimentales.

e) Realizar una prueba metabólica para la determinación de la digestibilidad in vivo e in situ de dietas con diferentes niveles de inclusión de *Sargassum spp.* (10%, 20% y 30%), y las variaciones de pH, nitrógeno amoniacal y ácidos grasos en el líquido ruminal de borregos alimentados con dichas dietas.

f) Llevar a cabo una prueba de comportamiento con inclusión del mejor porcentaje de *Sargassum* obtenido en la prueba anterior.

5.- HIPOTESIS

La inclusión de *Sargassum spp.* hasta en un 25 % en raciones para ovinos afecta en forma negativa las funciones metabólicas para la incorporación de nutrimentos para el desarrollo de los animales.

Conforme se incremente el nivel de inclusión del alga en la ración de los ovinos se reducirá la digestibilidad in vivo e in situ de la materia seca.

Conforme se incremente el nivel de inclusión de *Sargassum spp.* en la ración de los ovinos, habrá un incremento en el pH, nitrógeno amoniacal y contenido de ácidos grasos volátiles en el rumen.
6. MATERIALES Y METODOS

6.1. COLECTA DE ALGAS

La colecta de Sargassum spp., se realizó manualmente extrayéndola de la zona intermareal a una profundidad entre 60 cm y 1.20 m, colocándolo en canastas de plástico con capacidad aproximada de 15 kilogramos. El total colectado fue de aproximadamente 4 toneladas. Posteriormente se esparció sobre una plancha de cemento para efecto de su secado al sol durante tres días; recogiéndose en costales de 30 kilogramos de capacidad y almacenados a resguardo de calentamientos por rayos solares. Dicha colecta se realizó en el mes de junio de 1997 en la playa de San Juan de la Costa, ubicada en el km 36 de la carretera a San Juan de la Costa, B.C.S. dentro de la Bahía de la Paz; es el cuerpo de agua más grande dentro del litoral este de la Península de Baja California, con una superficie aproximada de 1,200 km2 (Muñetón, 1987) y localizada entre los 24°27' y 24°06' N y los 110° 18' y 110° 40' W, limitada por las localidades de: punta Cabeza de Mechudo al norte, La Ensenada de la Paz, al sur, la Isla Espíritu Santo, el Canal de San Lorenzo y punta Pichilingue al este; al oeste la cercan abanicos aluviales costeros al pie de la sierra de la Giganta (Pérez, 1997).

6.2. ANALISIS QUIMICO APROXIMADO DE Sargassum spp.

El análisis químico aproximado se realizó de acuerdo a las normas establecidas por la Association of Analytical Chemistry (AOAC, 1990). En dicho análisis se consideran las siguientes determinaciones: humedad, cenizas, proteína cruda, extracto etéreo, fibra cruda y el extracto libre de nitrógeno (carbohidratos), este último se calcula por diferencia, sumando las determinaciones anteriores y restando el total a 100. Los resultados se expresan en porcentaje con base al peso seco del alga.

Humedad

2 g de alga seca se colocaron en charolas de aluminio previamente puestas a peso constante a una temperatura de 110 ºC durante una hora, se enfriaron
posteriormente de 20 a 25 minutos en un desecador. Esta acción se repite cada hora hasta obtener un peso constante con una variación de +/- 2 mg en las dos últimas pesadas. Para el cálculo se realiza la siguiente operación (De León, 1961; Pearson, 1975):

\[
\% \text{ Humedad} = \left(\frac{\text{Peso inicial de la muestra} - \text{Peso final de la muestra}}{\text{Peso final de la muestra}} \right) \times 100
\]

Cenizas

Se utilizó una mufla marca Termolyne NEY2-525, en la cual se calzció toda la materia orgánica presente en la muestra proveniente de la determinación de humedad. El procedimiento consistió en poner a peso constante los crisoles utilizando una temperatura de 550 °C durante una hora, se enfrián en una estufa y posteriormente en un desecador durante 25 minutos. Con el peso conocido del crisol se agrega la muestra de alga seca, obteniendo el nuevo peso. Es necesario carbonizar primero la muestra en un mechero lentamente, para evitar pérdidas por arrastre de humo. Al estar la muestra carbonizada se traslada a la mufla donde se mantiene a una temperatura de 500 °C durante 3 a 4 horas, posteriormente se enfria en un desecador durante 15 minutos, registrándose el nuevo peso de la muestra, el % de cenizas se calcula (De León, 1961) de la siguiente manera:

\[
\% \text{ de Cenizas} = \left(\frac{\text{Peso final de muestra calcinada}}{\text{Peso inicial de la muestra seca}} \right) \times 100
\]

Proteína cruda

En esta determinación se utilizó el método micro-Kjeldhal, colocando 30 mg de muestra en un matraz kjeldhal más un catalizador compuesto por 1.5 g de sulfato de potasio y 30 mg de óxido de mercurio, se agregan 3 ml de ácido sulfúrico concentrado, para realizar el primer paso que es la digestión de la muestra. Posteriormente se destila el producto obtenido, agregando 10 ml de una solución 10 molar de hidróxido de sodio, recibiendo el gas amonio producido en una solución de
ácido bromhídrico el cuál tiene unas gotas del indicador fenofítaleína. En seguida se hace una titulación del nitrógeno total presente con una solución de ácido clorhídrico de normalidad conocida. Los cálculos del Nitrógeno total presente se realizan con la siguiente fórmula (AOAC, 1990):

\[
\text{PC} = \frac{\text{Vol. gastado de } \text{HCl} \times \text{Normalidad de Solución de HCl} \times \text{Peso molecular de } N_2}{\text{Peso de la muestra}} \times 100
\]

Donde:
PC = Proteína cruda.

Extracto etéreo

Se determinó por el método Soxhlet, el cual consiste en la extracción de los compuestos lipídicos y liposolubles a través de reflujos con un solvente no polar (hexano o éter) en una cantidad de muestra conocida. Se colocaron 2 g de muestra seca de *Sargassum* spp. sobre papel filtro No.42, este se puso dentro de un cartucho de celulosa Whatman (puestos previamente a peso constante), el cuál se coloca dentro de un tubo de reflujo a sifón con 80 ml de éter etílico sometiéndolo a extracción durante 6 horas aproximadamente, se procede a enfriarlo y se extrae el cartucho del sifón, se coloca en una estufa a 100 ºC durante 24 horas, se deja enfriar durante 15 minutos en un desecador, se obtiene la diferencia de peso y se calcula el porcentaje de lápidos y sustancias liposolubles en la muestra (AOAC, 1990):

\[
\% \text{ de Extracto} = \frac{(\text{Peso del cartucho + papel filtro con muestra}) - (\text{Peso del cartucho + papel filtro})}{\text{Peso inicial de la muestra seca}} \times 100
\]

Fibra cruda

Se determinó la cantidad de fibra que no es afectada por una digestión ácida (ácido sulfúrico hirviendo 0.255 N) y una digestión alcalina (hidróxido de sodio al 1.25 %), que disuelve parte de la hemicelulosa y lignina respectivamente.
Para la realización de la técnica, se pesan 2 g de muestra de alga seca y desgrasada (obtenida de la extracción etérea). Se agregan 0.5 gramos de asbesto previamente tratado y se transfiere a un vaso de Berzelius; se añaden 200 ml de ácido sulfúrico a ebullición (0.255 N) y 1 ml de antiespumante (octanol) y perlas de ebullición. El vaso se coloca en un condensador, agitando periódicamente, para que los sólidos no se peguen. Se deja hervir durante 30 minutos y después se filtra y la muestra se lava con agua destilada caliente (aproximadamente con 800 ml de agua), hasta obtener un pH neutro (7), observando que el filtrado no sea turbio; el residuo se seca y se vierte nuevamente en el vaso de extracción, posteriormente se añaden 200 ml de álcali a ebullición (hidróxido de sodio al 1.25%) se coloca nuevamente el vaso en el aparato condensador hasta que la solución hierva durante 30 minutos, se vuelve a filtrar y se lava con agua destilada caliente hasta que se obtenga un pH neutro. El filtrado se levanta con una espátula, procurando que salga de una sola pieza y se coloca en un crisol puesto a peso constante previamente para secar a 110 ºC durante dos horas, posteriormente se pasa a un desecador para enfriar y finalmente se pesa la materia seca. La muestra se calcina en la mufla a 600 ºC durante 30 minutos, enfriando posteriormente durante 20 minutos, se pasa al desecador durante 20 minutos para enfriar y se registra el peso. La pérdida de masa es considerada la fibra cruda (Larsen et al., 1975; Pearson, 1975).

6.3. DETERMINACION DE FRACCIONES DE FIBRA. (AOAC, 1990)

Por medio de esta técnica se determina la fibra neutro detergente (FND), la fibra ácido detergente (FAD), hemicelulosa, lignina, celulosa y sílice. Se adicionan 0.5 g del alga seca en 100 ml de soluciones detergentes de pH neutro y ácido, que por medio de calor separan el contenido y la pared celular (Fibra Neutro Detergente), destruyendo la hemicelulosa de ésta última para obtener la Fibra Ácido Detergente.

El % de hemicelulosa se obtiene por diferencia entre el % de FND y el % de FAD. La lignina se determina colocando en un cristalizador 1 cm (de espesor) de agua destilada a 25 ºC en los crisoles con los residuos de FAD; a cada crisol se le
agregan 25 ml de una solución combinada 2:1 (v/v) de solución de 50 g permanganato de potasio en un litro de agua destilada con una solución amortiguadora que contiene en 100 ml de agua destilada 6 g de nitrato férrico y 0.15 g de nitrato de plata, homogenizada con una solución de 5 g de acetato de potasio en 500 ml de ácido acético glacial; el nivel de los crisoles Gooch se ajusta conforme disminuye el líquido. Se remueve el contenido con una varilla de vidrio para que las partículas de la muestra reaccionen con la solución. Se deja reposar durante hora y media a 20-25°C y se filtra lentamente al vacío en el mismo crisol. Sin lavar la muestra, los crisoles se colocan nuevamente en un cristalizador limpio y se adiciona solución desmineralizadora hasta la mitad y se deja reaccionar 30 minutos. Se filtra al vacío y se repite la acción hasta que la muestra quede blanca. Una vez que la muestra está blanca, se lava dos veces con etanol al 80% y dos veces con acetona químicamente pura, filtrando lentamente al vacío. Las muestras se secan a 100 - 105 °C durante 5 horas, se enfrían en un desecador y se pesan. El porcentaje de lignina se calcula por diferencia de peso. El residuo está constituído por celulosa y sílice.

\[
\text{% de lignina} = \frac{\text{g de lignina}}{\text{g de muestra}} \times 100
\]

Para la determinación de celulosa y sílice, el residuo del tratamiento con permanganato se calcina a 550°C durante 3 horas. Se pasa a una estufa para que se enfrién y posteriormente a un desecador durante 15 minutos. Los gramos de celulosa se obtienen restando el peso de la fibra después del tratamiento con permanganato y el peso tomado después de la incineración.

\[
\text{% de celulosa} = \frac{\text{g de celulosa}}{\text{g de muestra}} \times 100
\]

Para la determinación de sílice se adicionan unas gotas de ácido bromhídrico al 48% a las cenizas obtenidas de la incineración, de tal manera que se humedezcan todas las partículas. Se deja reposar dos horas y el exceso de ácido
bromhídrico se filtra al vacío y se lava con acetona una sola vez. Se seca en una estufa a 100 °C durante una hora y se incinera a 550 °C, se enfriúa en desecador y se pesa.

Los gramos de sílice son la diferencia entre este último peso registrado y el peso constante del crisol al vacío.

\[
\text{% de sílice} = \frac{\text{g de sílice}}{\text{g de muestra}} \times 100
\]

6.4. ENERGIA BRUTA. (Bomba Calorimétrica de Parr)

La muestra correspondiente a las algas Sargassum spp, se compacta en pastillas de 1.5 g aproximadamente y se colocan en un cilindro de acero lleno de oxígeno, el cuál se sumerge en agua destilada, donde se lleva a cabo un balance termodinámico. La muestra dentro del cilindro de acero se incinera mediante una corriente eléctrica que pasa a través de un alambre de platino. El aparato proporciona las calorías gastadas por gramo de muestra incinerada y en función de la cantidad de alambre de platino no gastado, éste hace una corrección automática, proporcionando la cantidad de energía presente en la muestra.

Los tipos de energía aportados por el Sargassum spp., fueron calculados mediante las fórmulas para ganado de carne (N.R.C., 1984). Los valores obtenidos fueron los siguientes:

Determinación de energía digestible (ED) (Mcal/kg) es básicamente la diferencia entre la energía total (bruta) y la energía total en las heces.

\[
\text{ED} = 0.0504 \times \text{(PC)} + 0.077 \times \text{(EE)} + 0.0200 \times \text{(FC)} + 0.000377 \times \text{(ELN)}^2 + 0.0110 \times \text{(ELN)} - 0.152
\]

Donde:
- PC = Proteína cruda
- EE = Extracto etéreo
- FC = Fibra cruda
- ELN = Extracto libre de nitrógeno
Determinación de energía metabolizable (Em) (Mcal/kg) es la cantidad de energía digestible a la que se le restó la energía eliminada en la orina y de los gases resultantes de la digestión (básicamente metano).

\[Em = 0.82 \times (ED) \]

Determinación de energía neta de mantenimiento (ENm) (Mcal / kg) es la energía necesaria para el mantenimiento de los animales, tomando en cuenta el metabolismo basal, la actividad voluntaria y el calor para mantener al cuerpo caliente o frío.

\[ENm = 1.37 \times (Em) - 0.138 \times (Em)^2 + 0.0105 \times (Em)^3 - 1.12 \]

Determinación de energía neta de ganancia (ENg) (Mcal / kg) definida en términos de crecimiento, ganancia en peso vivo, trabajo, producción de leche, lana, depósito energético reproductor y trabajo.

\[ENg = 1.42 \times (Em) - 0.174 \times (Em)^2 + 0.0122 \times (Em)^3 - 1.65 \]

6.5. MINERALES (AOAC, 1990)

Se determinaron los minerales: Ca, Mg, Na, K, Fe, Cu, y Zn y los metales pesados Pb, Hg y Se por absorción atómica y en tanto que la del P se realizó por medio de colorimetría. La preparación de la muestra para la determinación de minerales y metales pesados (excepto mercurio y fósforo), se conoce como digestión húmeda y consistió en los siguientes pasos:

a).- Se purgó todo el material a utilizar, remojándolo en una solución de ácido nítrico mas agua desionizada en una proporción 1:4 durante dos días.

b).- Se colocaron 0.5 g de muestra en un matraz de 100 ml, al cual se le agregaron 6 ml de ácido nítrico concentrado más tres perlas de ebullición, procediendo a ponerlo a digerir hasta sequedad (hasta que queda aproximadamente 1 ml).

c).- Se dejó enfriar y nuevamente se agregó ácido nítrico concentrado, repitiendo la digestión hasta sequedad.
d).- Ya fría la muestra, se agregaron 3 ml de ácido perclórico concentrado, poniéndolo a digerir en una parrilla a sequedad.

e).- Una vez fría la muestra, se agregaron 2 ml de ácido clorhídrico concentrado, digiriendo a sequedad y enfriando.

f).- La muestra ya digerida se pasó a un matraz aforado de 25 ml y se aforó con agua desionizada.

g).- La muestra se guardó en frascos de plástico, almacenados a temperatura ambiente.

Para la realización de las lecturas de los minerales de las muestras, se prepararon curvas patrón a partir de soluciones estándar de los minerales a determinar, colocadas en frascos previamente purgados e identificados. Se tomó una alícuota de la solución estándar y se aforó a 100 ml con agua desionizada, obteniéndose una concentración de 10 mg/l en la solución resultante. Posteriormente se realizaron diluciones de las soluciones estándar para hacer las determinaciones de acuerdo al nivel de minerales contenido en la muestra problema. Para no tener interferencias en las determinaciones se agregó cloruro de lantano al 1% a los tubos que contenían calcio, potasio y magnesio. Al tubo que contenía hierro se le agregó ácido fosfórico. Al tubo conteniendo sodio se le agregó una solución de clorururo de potasio al 1% y a los tubos conteniendo cobre y zinc, no se les agregó ninguna sustancia. Todos los tubos se aforaron con agua desionizada. Ya hechas las soluciones se obtuvieron los valores para cada concentración de minerales. Se realizó la lectura de las absorbancias de la curva patrón en el espectrofotómetro de absorción atómica y se obtienen los valores de cada dilución.

Igualmente se realizaron las lecturas al espectrofotómetro de absorción atómica de las muestras problema y se determinó la concentración del mineral en estudio mediante la siguiente ecuación:

\[
\text{Concentración del mineral} = \frac{(\text{Absorbancia de la muestra} - \text{ordenada al origen})}{\text{Pendiente de la curva patrón}}
\]
Finalmente se determinó la concentración (mg) del mineral de acuerdo a la siguiente fórmula:

\[
\text{mg del mineral /100 g de muestra} = \frac{\text{Concentración del mineral} \times \text{1er. aforo} \times \text{2do. aforo} \times 100}{\text{Peso de la muestra} \times \text{alícuota para el 2do. aforo} \times 100}
\]

Para realizar la espectroscopía de absorción atómica la cual utiliza la absorción de luz visible o ultravioleta por átomos en estado gaseoso, se rocío la muestra en solución (preparada previamente bajo una digestión húmeda) a la llama y se logró una conversión parcial a vapor atómico. Se utilizó una lámpara de cátodo hueco que contenía el elemento que se iba a determinar. Los átomos presentes en el vapor absorben a la misma longitud de onda que emite la fuente luminosa.

En la determinación de fósforo por espectrofotometría (A.O.A.C., 1990), se hizo una medida de la intensidad de color formado cuando reacciona la muestra digerida con reactivos preparados con hidroquinona, molibdato de amonio y sulfato de sodio.

En una curva patrón preparada previamente en el espectrofotómetro se interpoló la lectura obtenida con la muestra problema. La curva patrón se preparó con una solución de 0.1 mg de fósforo /ml, poniendo alícuotas por separado de 0.3, 0.5, 0.8 y 1.5 ml a los cuáles se agregaron 20 ml de reactivo de molibdovanadato, aforando hasta 100 ml en matraces volumétricos con reposo de 10 minutos y mezclando enérgicamente. El blanco se preparó con agua destilada con una lectura en el espectrofotómetro a 400 nm.

El extracto de la muestra se preparó pesando 2 g de muestra en crisol tarado y purgado con HCl y agua en una proporción 1:10 y luego se calció en una mufla a 600 °C durante 3 horas. Al enfriar se transfirió a un vaso de precipitado de 250 ml y se disolvió con 1 ml de una solución HCl y agua (1:1). Se añadió 1 ml de ácido nítrico, se evaporó a secedad y se disolvió el residuo con 5 ml de HCl y agua (1:10) diluyendo a 100 ml con agua destilada digiriendo en una parrilla durante una hora. Al enfriar la muestra se transfirió a un matráz volumétrico de 200 ml, se enjuagó con agua destilada para después filtrar. Finalmente se pusieron 5 ml de
filtrado a un matrás volumétrico de 100 ml, se añadieron 20 ml de reactivo de molibdovanadato, se diluyó a volumen con agua destilada con mezclado enérgico y dejando reposar durante 10 minutos. Se leyó en espectrofotómetro a 400 nm y se procedió al siguiente cálculo:

\[
\% P = \frac{\text{mg de fósforo en la alicuota}}{\text{mg de la muestra en la alicuota}} \times 100
\]

6.6. DETERMINACIÓN DE FACTORES ANTINUTRICIOS DE LAS ALGAS

6.6.1. FACTORES QUE ALTERAN LA DIGESTION

Saponinas (Método cualitativo de Monroe, modificado por Waal y Roland, 1952)

Con esta técnica se aprecia la capacidad de la muestra para la formación de espuma (jabones). Se colocaron 0.1 g de muestra desengrasada en un tubo de ensayo junto con 1 ml de una solución de fosfato de potasio, se adicionaron 4 ml de agua destilada y se agitó a la máxima velocidad durante un minuto exacto con agitador de tubos Vortex, se dejó reposar durante 15 minutos. Bajo el mismo procedimiento se hizo un blanco con saponina pura (0.1 g de saponina mas 5 ml de agua destilada). Después de los 15 minutos se observó la altura de la espuma generada en la muestra problema y se comparó con el blanco. La presencia de espuma abundante dio como positiva la prueba, registrándose de la siguiente forma:

+++ Abundante; ++ Moderada; + Escasa; - Negativa

Taninos (Método cuantitativo de Pearson, 1975; A.O.A.C., 1984)

Los taninos son sustancias reductoras que producen color azul en presencia de una mezcla de reactivos compuesta por: ácido fosfórico, carbonato sódico, ácido fosfomolíbdico y tungstato de sodio. La intensidad del color se midió en un
espectrofotómetro regulando el pH con carbonato de sodio. La lectura se interpoló en una curva patrón preparada con ácido tánico. Se pesó 1 g de la muestra problema, se adicionaron 40 ml de hidróxido de sodio 0.05 normal, se agitó durante 24 horas y pasado este tiempo de filtró.

La curva de calibración de ácido tánico se preparó con concentraciones de 0,1,2,3,4,5,6,7,8 y 9 ml de ácido tánico, con 5 ml de solución de Folin-Denis, 10 ml de solución de carbonato de sodio, aforando a 50 ml. La solución Folin-Denis se preparó calentando a reflujo por dos horas 750 ml de agua destilada, 100 g de tungstato de sodio, 20 g de ácido fosfomolíbdico y 50 ml de ácido fosfórico al 80 %, se enfrió y se aforó a 100 ml.

La solución saturada de carbonato de sodio se preparó disolviendo poco a poco con agitación 175 g de carbonato de sodio en 500 ml de agua destilada.

Para hacer la solución de ácido tánico, se disolvieron 25 mg de ácido tánico (previamente secado en desecador) en agua destilada y se aforó a 500 ml (esta solución se guardó en cuarto frío no más de tres días).

Para determinar el ácido tánico de la muestra problema se pusieron 5 ml del filtrado más 5 ml de la solución Folin-Denis más 10 ml de solución de carbonato de sodio aforados a 50 ml. La curva de calibración y la muestra problema se leyeron en el espectrofotómetro a 760 nm. Las muestras debían caer dentro de la curva de calibración, ya que de no ser así, se debe hacer una dilución antes del desarrollo de color. Se realizó una regresión lineal de la curva para obtener la concentración de las muestras.

Cálculos:

La concentración de ácido tánico se obtuvo a partir de la curva de regresión con las absorbancias obtenidas.

Acido tánico: 0.025 g ────→ 500 ml
1 mL ────→ 50 ml

Esta concentración equivale a: (0.025 g / 500 / 50 = 0.000001 g / ml)
Por tanto, la concentración que se tiene en la solución de ácido tánico es de 1 microgramo por mililitro (µ g / ml). El resultado se reportó en gramos por 100 gramos de muestra.

6.6.2. FACTORES TOXICOS

Glucósidos cianogénicos (Método cualitativo, A.O.A.C., 1984)

Este método se basa en la estimación visual del cambio de color en tiras de papel tratadas con ácido pícrico, esta variación de tonalidad va del naranja al rojo ladrillo, esto es producido por el desprendimiento de ácido cianhídrico que presentan algunas plantas que contienen glucósidos cianogénicos.

Previoamente las tiras de papel se sumergieron dentro de una solución al 1 % de ácido pícrico y se dejaron secar, después se sumergieron dentro de una solución de carbonato de sodio al 1 % y se secaron, éstas se guardaron en envases color ambar bien cerrados.

Se colocaron 2 g de muestra de algas molidas y secas a una temperatura de 38 °C, mezclada con cloroformo y glucosidasa. Si los vapores de la mezcla desprendían ácido cianhídrico, el efecto se observaba sobre una tira de papel filtro impregnada de picrato de sodio (color amarillo), el cual tenía un cambio a un color rojizo, confirmando la presencia de glucósidos cianogénicos en la muestra. La cantidad de glucósidos cianogénicos dependía de la intensidad del color comparada con una tira de papel con picrato de sodio expuesta a los vapores de una solución de KCN.

Alcaloides (Método cualitativo, Bentley, 1957)

Para efecto de hacer reaccionar la muestra con cada uno de los reactivos de Mayer, Dragendorff, Wagner y Sönnenschein, se mezclaron 5 g de muestra seca y desengrasada con ácido clorhídrico R.A. al 1 % para formar una suspensión. Se colocó en un baño maría a 80 °C durante 4 horas con agitación periódica. Después de este tiempo se retiró del baño de agua, se dejó enfriar y se filtró al vacío hasta
obtener al menos 2 ml del filtrado (se puede centrifugar para no tener que filtrar). En cuatro tubos de ensayo se colocaron 0.2 ml (4 gotas) del filtrado y se le agregó a cada tubo 0.1 ml del reactivo correspondiente. La aparición de precipitado indicó que la prueba era positiva y los resultados se reportaron como sigue según la reacción con cada uno de los reactivos:

+++ Abundante; ++ Moderada; + Escasa; - Negativa

Al mismo tiempo que las muestras, se corrió un blanco de tabaco con el que se compararon los resultados por su alto contenido de alcaloides.

Reactivo de Mayer: Se pesaron 0.68 g de cloruro mercúrico y se disuelvieron en 30 ml de agua destilada; además se pesan 2.5 g de yoduro de potasio y se disolvieron en 5 ml de agua destilada. Se mezclaron las dos soluciones y se aforó a 50 ml.

Reactivo de Dragendorff: Se pesaron 4 g de nitrito de bismuto y se disolvieron en 10 ml de ácido nítrico R.A. al 30 %; aparte se pesaron 27.2 g de yoduro de potasio, se disolvieron en 25 ml de agua destilada. Se dejó reposar durante 24 horas, se decantó y se aforó a 50 ml.

Reactivo de Wagner: Se pesaron 0.635 g de yodo y 1 g de yoduro de potasio, se disolvieron ambos en 10 ml de agua destilada y se aforó a 50 ml.

Reactivo de Sönnenschein: El ácido fosfomolíbdico se disolvió 10 veces su peso en una mezcla de ácido nítrico concentrado y agua (1:9 v / v). Se filtró la solución y se guardó en un frasco bien cerrado.

6.7. FORMULACION DE DIETAS

Los análisis aproximados y determinación de energía bruta de los ingredientes (tabla 1) como de las dietas (tabla 2) formuladas en las pruebas de digestibilidad in vivo, in situ y de comportamiento, fueron hechos con los mismos métodos descritos para Sargassum spp.
6.7.1. FORMULACION DE DIETAS PARA LAS PRUEBAS DE DIGESTIBILIDAD \textit{in vivo e in situ} DE LA MATERIA SECA DE \textit{Sargassum spp.}

Las dietas usadas en las pruebas de digestibilidad \textit{in vivo e in situ} fueron (Tabla 1): una dieta testigo, con 0% de concentración de algas de \textit{Sargassum spp.} y tres con concentraciones de 10%, 20% y 30% de algas en la dieta, cuidando que las cuatro dietas fueran isoprotéicas e isocalóricas. Se proporcionaron en forma restringida, la ración proporcionada cubrió los requerimientos nutrimentales del animal (12.8% de proteína cruda y 2.4 Mcal/Kg) (NRC, 1984). De cada una de las dietas ya preparadas, una parte se usó para los períodos de adaptación y otra para los de muestreo durante las pruebas de digestibilidad \textit{in vivo e in situ}.

<table>
<thead>
<tr>
<th>INGREDIENTES</th>
<th>M.S.</th>
<th>P.C.</th>
<th>E.M.</th>
<th>FND</th>
<th>FAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALFALFA</td>
<td>90</td>
<td>12</td>
<td>1.95</td>
<td>34</td>
<td>45</td>
</tr>
<tr>
<td>MAIZ</td>
<td>87</td>
<td>8.2</td>
<td>2.81</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>\textit{Sargassum spp.}</td>
<td>96</td>
<td>6.35</td>
<td>2.13</td>
<td>47.11</td>
<td>44.45</td>
</tr>
<tr>
<td>PASTA DE SOYA</td>
<td>90</td>
<td>44.8</td>
<td>2.85</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>UREA</td>
<td>-----</td>
<td>245</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>SEBO</td>
<td>-----</td>
<td>-----</td>
<td>8</td>
<td>-----</td>
<td>----</td>
</tr>
</tbody>
</table>

M.S. = Materia seca; P.C. = Proteína cruda; E.M. = Energía metabolizable; FND = Fibra neutro detergente; FAD = Fibra ácido detergente.

Para efecto de formular las dietas con los mismos niveles de proteína y energía metabolizable, se utilizaron los ingredientes mencionados en la tabla 2.

6.7.2. FORMULACION DE DIETAS PARA LA PRUEBA DE COMPORTAMIENTO

Debido a que en los resultados de digestibilidad de materia seca se obtuvo una ligera disminución con la concentración de 30%, se consideró conveniente realizar la prueba de comportamiento con un nivel de inclusión intermedio entre 20% y 30% del alga, para evitar algún problema futuro con la digestibilidad. Para ello se elaboraron una dieta testigo (0% de algas) y otra dieta con una concentración de
algas al 25%, tratando de obtener valores isoprotéicos e isocalóricos para los dos tratamientos. En la dieta testigo se utilizó una mezcla de alfalfa, maíz, pasta de soya, urea y sebo, y en la dieta que contenía algas (25 %), se usaron los mismos ingredientes además de la concentración mencionada de algas (Tabla 3).

Tabla 2. Dietas empleadas para las pruebas de digestibilidad in vivo e in situ.

<table>
<thead>
<tr>
<th>Ingredientes (%)</th>
<th>Dieta testigo</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>50.40</td>
<td>48.00</td>
<td>42.20</td>
<td>28.00</td>
</tr>
<tr>
<td>Maíz</td>
<td>32.50</td>
<td>23.50</td>
<td>17.50</td>
<td>20.80</td>
</tr>
<tr>
<td>Alga</td>
<td>0.00</td>
<td>10.00</td>
<td>20.00</td>
<td>30.00</td>
</tr>
<tr>
<td>Pasta de Soya</td>
<td>14.80</td>
<td>15.70</td>
<td>17.50</td>
<td>18.80</td>
</tr>
<tr>
<td>Urea</td>
<td>0.30</td>
<td>0.30</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Sebo</td>
<td>2.00</td>
<td>2.50</td>
<td>2.60</td>
<td>2.10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Aporte determinado:
- **Proteína cruda (g)**: 160.78, 160.91, 160.99, 161.28
- **Energía metabolizable (Mcal/Kg)**: 2.48, 2.45, 2.44, 2.47

Tabla 3. Composición de las dietas utilizadas en la prueba de comportamiento

<table>
<thead>
<tr>
<th>Ingredientes (%)</th>
<th>Dieta testigo (% de inclusión)</th>
<th>Dieta Con 25% del alga (% de inclusión)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>50.40</td>
<td>40.00</td>
</tr>
<tr>
<td>Maíz</td>
<td>32.50</td>
<td>13.90</td>
</tr>
<tr>
<td>Alga</td>
<td>0.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Pasta de Soya</td>
<td>14.80</td>
<td>17.90</td>
</tr>
<tr>
<td>Urea</td>
<td>0.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Sebo</td>
<td>2.00</td>
<td>2.80</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Aporte determinado:
- **Proteína cruda (g)**: 160.78, 160.61
- **Energía metabolizable (Mcal/Kg)**: 2.48, 2.44
6.8. PRUEBAS DE DIGESTIBILIDAD in vivo e in situ.

El experimento en las jaulas metabólicas y la prueba de comportamiento se realizó en la Posta Zootécnica de la Universidad Autónoma de Baja California Sur, donde las jaulas metabólicas permanecieron en condiciones ambientales y a la sombra en un piso de cemento.

Para las pruebas de digestibilidad in vivo e in situ, se utilizaron cuatro borregas en crecimiento, de raza pelibuey, con un peso promedio de 24.5 Kg, provistas de una cánula ruminal de una pulgada diámetro interno Plastisol 1"; Bar Diamond, Inc., Ferreiro (1986), la cual fue modificada a fin de que tuviera un tope externo para evitar que se fuera hacia el interior del rumen de las borregas por algún accidente.

Antes de la operación para colocarles la cánula ruminal, los animales se sometieron a una fase de acostumbramiento de 37 días que consistió en ir incrementando en una ración de 2 kg el porcentaje de algas, desde un 5% hasta llegar al 25 %, tiempo suficiente en que se advirtió que el forraje tenía aceptación por las cuatro borregas en experimentación.

Una vez que los animales fueron operados colocándoles la cánula, tuvieron una etapa de recuperación total de un mes y posteriormente se procedió a la etapa de adaptación requerida para la realización de las pruebas de digestibilidad in vivo e in situ y que se describe a continuación.

El diseño experimental para las dos pruebas de digestibilidad y la determinación de los perfiles de variación de pH, nitrógeno amoniacal y AGV’s, fue un diseño de muestreo sistemático en dos dimensiones de cuadrado latino de “movimiento del rey” con arreglo 4 x 4 con una división de cuatro muestras sistemáticas, el cuál es un poco más preciso que un cuadrado elegido al azar porque no hay alineación ni en las diagonales, ni en las filas, ni en las columnas (Cochran, 1981; Steel yTorrie,1988). El sistema de alimentación fue restringido.

Dichas determinaciones estuvieron diseñadas para dos etapas de trabajo (una etapa de adaptación a cada uno de los tratamientos y otra de muestreo tanto
de alimento y agua consumidos como de heces, para su análisis y registro), dentro de cada uno de los cuatro períodos (Rodríguez y Llamas, 1990):

a).- Etapa preliminar o adaptación.- Tuvo el objetivo de acostumbrar a los animales al alimento, a las instalaciones y al equipo, así como al manejo durante un período normal de catorce días, aunque pudo ser de siete si la dieta previa y la experimental eran similares. Para este caso se utilizaron 10 días de adaptación para cada uno de los cuatro tratamientos. Como el diseño experimental es un arreglo de cuadrado latino se tuvieron cuatro períodos de adaptación (tratamiento por período para cada uno de los animales).

b).- Etapa de colecta de muestras.- Se hizo la colecta de muestras de heces y la medición de agua y alimento consumido, durante cinco días para cada tratamiento dentro de cada uno de los cuatro períodos, considerando que ya habían desalojado totalmente los residuos de la dieta inmediata anterior con el período de adaptación previo. El diseño experimental de cuadrado latino para los períodos de muestreo permitió que cada una de las borregas en experimentación tuviera un tratamiento diferente por cada uno de los cuatro períodos de adaptación y muestreo ocurrido.

A cada una de las borregas se le suministraron diariamente 1.2 kg de alimento distribuidos en dos etapas: una parte en la mañana y otra en la tarde. Diariamente después de la segunda alimentación en la tarde, se midió el alimento rechazado así como las cantidades de agua consumida, las heces y orina excretadas. El agua consumida se midió por medio de cubetas a las cuáles se les reponía el agua consumida por las borregas con un recipiente graduado hasta décimas de litro. Las heces se colectaban por medio de un azadón pequeño y se pasaban a una rejilla donde se acumulaban por día y de ahí se procedía a su pesado. En los períodos de muestreo se tomaba un 10% de las heces para determinar humedad, el análisis de proteína y de fibra neutro y ácido detergente para efecto de hacer el balance correspondiente. La orina se colectaba por gravedad a través de una lámina dispuesta en la parte de abajo de la jaula metabólica llegando a caer en un recipiente de plástico graduado hasta centésimos de litro.
6.8.1. DIGESTIBILIDAD in vivo DE LA MATERIA SECA

La digestibilidad in vivo se puede definir como la proporción del alimento consumido que supuestamente es absorbido en el tracto gastrointestinal por no aparecer en las heces. Normalmente se expresa como coeficiente de digestibilidad y se calcula en base a la materia seca. La fórmula para obtener el coeficiente de digestibilidad es la siguiente:

\[
CD = \frac{C - E}{C} \times 100
\]

Donde:
CD = Coeficiente de digestibilidad (%)
C = Cantidad de materia seca o del nutriente "X" consumido (proteína, fibra, etc.)
E = Cantidad de materia seca o del nutriente "X" excretado.

Este método proporciona la digestibilidad aparente, debido a que considera a los nutrimentos encontrados en la heces como las únicas pérdidas que ocurren durante la digestión y no considera las pérdidas de energía en forma de gases (metano) que ocurren en el rumen, además de que parte de las sustancias que aparecen en las heces no son de origen alimenticio (enzimas, secreciones glandulares, bacterias, etc.).

Para este caso se utilizó el método directo o la colección total de las heces producidas por los animales, las cuáles se recolectaron y se pesaron en fresco diariamente, tomando una muestra del total (10%), con la cual se determinó la humedad contenida, proteína y la fibra neutro y ácido detergente.

6.8.2. DIGESTIBILIDAD in situ DE LA MATERIA SECA

La evaluación de digestibilidad in situ se realiza a través de cánulas flexibles que permiten un acceso directo al rumen de los animales, facilitando los estudios de nutrición y la obtención de pequeñas muestras de contenido ruminal (Garza, 1990a). Las cánulas ruminales permiten un mejor acceso a la zona de muestreo para la extracción de las infusiones a estudiar y se obtiene la alternativa para un buen
manejo de las bolsas de nylon para la medición de la digestibilidad *in situ* (Harmon y Richards, 1997). La técnica de la bolsa de nylon es ampliamente usada para estimar la degradación de los nutrimentos de la dieta, porque es relativamente simple y de bajo costo, en ellos se suspende el alimento a digerir a diferentes intervalos de tiempo, con la ventaja que involucra el proceso digestivo del animal vivo (Stern *et al*., 1997).

Se realizó una incubación de las dietas a probar, directamente dentro de los animales fistulados, con el fin de obtener una estimación de la tasa de desaparición de los nutrimentos, en este caso se obtuvo la tasa de desaparición de materia seca. En dicha incubación se utilizaron 224 bolsas de nylon de 10 cm x 4 cm con una malla de 2,000 orificios por cm², las cuales tenían costuras dobles redondeadas, para evitar la acumulación del alimento en las esquinas y que ofrecieran mayor resistencia al rompimiento. Las bolsas lavadas y secadas a 60°C se pesaron a peso constante. Se introdujeron a cada bolsa 3 g de cada una de las dietas utilizadas con inclusión de algas (10%, 20% y 30%) y el testigo; se hicieron por duplicado para cada una de las horas contempladas para la digestión. El extremo superior de la bolsa se cerró con hilo cáñamo y encima de éste se cerró con una liga bien apretada para evitar que se saliera la muestra y se perdieran las bolsas en el rumen del animal.

Las bolsas se amarraron a un hilo de nylon grueso con un espacio entre 15 y 20 cm, en grupos de 6 bolsitas, lo que permitía introducir para tres tiempos diferentes de medición de incubación en el rumen, ya que estas se introdujeron por duplicado. Se dejó un extremo del hilo de 30 a 40 cm fuera de la cánula para poder sacar las bolsas fuera del animal una vez transcurrido el tiempo de incubación.

Las bolsas se mojaron y se introdujeron al rumen y el hilo de nylon se aseguró con la cánula. En la evaluación de la desaparición de la materia seca se utilizó el siguiente horario para cada uno de los periodos de muestreo: a los tiempos en horas 0, 6, 9, 12, 24, 48, y 72, realizándose por duplicado para cada uno de los tratamientos.
El tiempo t_0 de cada uno de los tratamientos se determinó incubando las bolsitas asignadas, en agua a 40 °C durante 15 minutos.

Para determinar la desaparición de materia seca de cada una de las bolsas, se lavaron al chorro de agua, hasta que el enjuague salía completamente incoloro, posteriormente se secaron a 60 °C durante 24 horas. Se enfriaron en un desecador y se pesaron.

\[
\text{%DISMS} = \left[\frac{(\text{Peso de bolsa + muestra antes de incubar} - (\text{peso bolsa + muestra después de incubar}))}{\text{Peso de la muestra en gramos.}} \right] \times 100
\]

Donde:
DISMS = Desaparición in situ de materia seca.

6.9. DETERMINACIÓN DE pH del LIQUIDO RUMINAL

Las mediciones de pH se realizaron con un potenciómetro ORION 701A, con electrodo CORNING. Las muestras medidas eran extraídas durante cuatro días de muestreo con el siguiente horario: hora 0, 1.5, 3, 6, 9, 12, 18 y 24. El líquido ruminal se extrajo presionando la panza de la borrega y con ayuda de una cucharilla de alambre introducida al rumen a través de la cánula, se extraían tanto líquido como residuos del forraje que se estaba digiriendo, depositándolos en un recipiente cubierto con tela de nylon de malla fina. El material extraído se filtraba inmediatamente sobre un recipiente colocado en una cama de hielo, con objeto de que en el líquido filtrado se detuviera el crecimiento bacteriano. Posteriormente esta muestra filtrada se utilizó para las mediciones correspondientes de Nitrógeno y para la determinación de ácidos grasos volátiles.

6.10. DETERMINACIÓN DE NITROGENO EN RUMEN (Stándar Methods, 1989)

A la muestra filtrada de líquido ruminal se le agregó 0.1 ml de NaOH 10 M por cada 10 ml de muestra e inmediatamente se procedió a tomar la lectura antes de la variación de pH entre 11 y 14.
La cuantificación de nitrógeno se realizó mediante un electrodo de amonio ORION modelo 95-10 y el potenciómetro 701A, mismo que proporciona lecturas en milivolts, los cuáles son transformados a partes por millón de nitrógeno en la muestra, por medio de interpolación en una curva patrón, preparada previamente con cloruro de amonio con concentraciones: 10^{-1} M, 10^{-2} M, 10^{-3} M, 10^{-4} M y 10^{-5} M.

El horario utilizado para las mediciones de la variación de amonio en cada uno de los periodos de muestreo para los cuatro tratamientos fue el siguiente: hora 0, 1.5, 3, 6, 9, 12, 18 y 24, durante cuatro días, por período y por borrega.

6.11. DETERMINACION DE ACIDOS GRASOS VOLATILES (A.O.A.C. 1990)

En esta técnica la muestra se procesó de tal forma que los ácidos grasos volátiles (AGV’s), acético, butírico y propiónico, no se volatilizaran con el calor antes de realizar la cromatografía de gases, por lo que fue necesario realizar todo el proceso en una cama de hielo para evitar lo anterior, dándole el siguiente tratamiento:

1. Se utilizó el líquido ruminal filtrado de las anteriores determinaciones, y con la eliminación máxima de sólidos, para que no taparan el cromatógrafo.
2. Se tomaron 5 ml de este filtrado y se colocaron en un tubo de ensaye de 15 ml.
3. Se agregó un ml de una solución de ácido metafosfórico y ácido fórmico al 25 %, siendo la proporción 3:1.
4. Se centrifugó la mezcla por 30 minutos a 2,000 rpm a temperatura ambiente en tubos sellados y enfriados al termino del tiempo.
5. El líquido libre de sólidos se colocó en botecitos de plástico de 20 ml de capacidad.
6. Las muestras se conservaron en congelación hasta las determinaciones, de las cuáles se inyectaron 3 microlitros (por triplicado) en el cromatógrafo de gases.
7. La cuantificación de ácidos grasos volátiles (acético, propiónico y butírico, se realizaron en un cromatógrafo Varian Star 3400, con gas de nitrógeno como
portador a 35 ml/min en una columna de acero inoxidable de 1.2 m de largo y 1/8" de diámetro interno, empacada con Porapak Q, malla 80-100, a una temperatura de 180 °C (0.30 min), 235 °C (2 min), con una temperatura de inyector de 270 °C y un detector a 260 °C. Después de cada corrida de muestra se incluyó un tiempo de estabilización de 2 minutos. La columna fue lavada cada 20 muestras con agua desionizada (2 veces).

El estándar fue una mezcla de etanol, acetato, propionato y butirato, 1 g/l cada uno. El estándar fue acidificado con 1 g/l de ácido clorhídrico 10 N. Se evaluó un estándar cada 5 muestras, por duplicado.

Las muestras fueron centrifugadas previamente para eliminar los sólidos suspendidos (12,000 rpm, 10 min); después se hizo una dilución 1:5 pues un análisis preliminar del carbono orgánico total de varias muestras tomadas al azar, mostró que éste era mayor a 4 g/l. La dilución se hizo con agua desionizada. El volumen de muestra inyectada fue de 2 microlitros evaluada por duplicado.

Los registros de resultados se hicieron con un integrador Varian 4,400 (velocidad de papel, 0.5 cm/min).

6.12. PRUEBA DE COMPORTAMIENTO

La prueba de comportamiento se realizó con 20 borregas pelibuey al destete, dividiéndolas aleatoriamente en dos grupos: uno testigo y el otro con una concentración del 25% de Sargassum spp. Cada grupo estaba distribuido en tres corrales de la siguiente forma:

Grupo testigo.- Corral 1: cuatro animales.
 Corral 2: tres animales.
 Corral 3: tres animales.

Grupo problema.- Corral 4: tres animales.
 Corral 5: tres animales.
 Corral 6: cuatro animales.
Se prepararon tres lotes de alimento (Tabla 3), cada uno para un mes de alimentación, proporcionando un kilogramo de alimento diario en dos raciones, 0.5 kg en la mañana y 0.5 kg después de transcurridas doce horas, además de proporcionarles minerales a libre acceso. Durante noventa días se midió el alimento rechazado y el agua consumida diariamente y se registró el incremento de peso semanal.

6.13. ANALISIS ESTADISTICO.

Para las pruebas de digestibilidad in vivo e in situ, la medición de pH ruminal, nitrógeno amoniacal y ácidos grasos volátiles se aplicó un análisis de varianza monofactorial y la prueba de Tukey, para comparar pares de medias y juzgar con un solo valor la significancia de todas las diferencias entre la dieta testigo con respecto a los tratamientos con inclusión de algas y su variación con respecto a los tiempos definidos para cada parámetro (Steel y Torrie, 1988). El grado de significancia del análisis de varianza de la digestibilidad in vivo e in situ, pH ruminal y nitrógeno amoniacal fue de 0.05 % y para AGV’s de 0.01 %.

En la prueba de comportamiento se utilizó comparación de medias del efecto de la dieta testigo con respecto a la dieta con 25% de inclusión de Sargassum spp. En los parámetros de incremento de peso, consumo de alimento y consumo de agua, se calculó la regresión de la curva del mejor ajuste, correlacionando el consumo de la dieta con 25% de Sargassum con respecto a la dieta testigo, así como del consumo de agua y alimento rechazado de los dos grupos de animales. El crecimiento se ajustó a la ecuación de segundo grado siguiente debido a que proporcionó el mejor ajuste a la dieta con 25% de Sargassum:

\[Y = -0.0576 \times x^2 + 1.7172 \times x + 11.401 \]
7. RESULTADOS

7.1. ANALISIS QUIMICO APROXIMADO DE Sargassum spp.

Los resultados del análisis químico proximal mostraron ser similares a los obtenidos para diferentes especies de Sargassum. En las tablas 4, 5 y 6 se comparan estos resultados con los obtenidos por diversos autores para el mismo género y con diferentes especies forrajeras terrestres de uso común.

Tabla 4. Resultados del análisis químico aproximado (%) y energía bruta (Kcal / g) de Sargassum spp. comparados con los obtenidos por diferentes autores.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S.</td>
<td>92.3 +/- 0.03</td>
<td>90.00</td>
<td>92.6</td>
<td>93.75</td>
<td>88.58</td>
<td>90.83</td>
</tr>
<tr>
<td>P.C.</td>
<td>6.3 +/- 0.04</td>
<td>12.42</td>
<td>6.57</td>
<td>5.99</td>
<td>4.64</td>
<td>6.45</td>
</tr>
<tr>
<td>C.E.</td>
<td>33.3 +/- 0.11</td>
<td>37.25</td>
<td>38.35</td>
<td>38.45</td>
<td>31.22</td>
<td>38.87</td>
</tr>
<tr>
<td>E.E.</td>
<td>0.45 +/- 0.03</td>
<td>0.58</td>
<td>1.5</td>
<td>0.58</td>
<td>0.27</td>
<td>0.52</td>
</tr>
<tr>
<td>F.C.</td>
<td>6.4 +/- 0.08</td>
<td>11.75</td>
<td>""""</td>
<td>12.75</td>
<td>10.85</td>
<td>""""</td>
</tr>
<tr>
<td>E.L.N.</td>
<td>45.8 +/- 0.06</td>
<td>37.98</td>
<td>46.63</td>
<td>41.98</td>
<td>41.60</td>
<td>44.99</td>
</tr>
<tr>
<td>E.B.</td>
<td>2.13 +/- 0.02</td>
<td>2.0</td>
<td>2.5</td>
<td>2.2</td>
<td>1.85</td>
<td>2.005</td>
</tr>
</tbody>
</table>

M.S. = Materia seca (%). P.C. = Proteina Cruda (%). C.E. = Cenizas(%). F.C. Fibra Cruda(%). E.E. = Extracto Etéreo (%). E.L.N. = Extracto Libre de Nitrógeno(%). E.B. = Energía Bruta (Kcal / g).

1 Media de tres determinaciones.
*Sargassum sinicola.
**Mezcla de Sargassum sinicola y Macrocystis pyrifera.
2 Valor máximo encontrado para el mes de febrero y sin lavar.

Tabla 5. Comparación del análisis químico aproximado (%) y energía bruta (Kcal / g) de Sargassum spp. obtenidos en el presente trabajo, con otros forrajales de uso común.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Sargassum spp.</th>
<th>Alfalfa</th>
<th>Semilla de Algodón</th>
<th>Maíz</th>
<th>Paja de Sorgo</th>
<th>Zacate buffel</th>
<th>Paja de Avena</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.S.</td>
<td>92.3 +/- 0.03</td>
<td>90.00</td>
<td>96.45</td>
<td>89.0</td>
<td>96.27</td>
<td>96.94</td>
<td>99.62</td>
</tr>
<tr>
<td>P.C.</td>
<td>6.3 +/- 0.04</td>
<td>18.56</td>
<td>35.16</td>
<td>8.86</td>
<td>5.06</td>
<td>4.45</td>
<td>5.49</td>
</tr>
<tr>
<td>C.E.</td>
<td>33.3 +/- 0.11</td>
<td>7.16</td>
<td>5.89</td>
<td>8.58</td>
<td>11.32</td>
<td>13.86</td>
<td>10.71</td>
</tr>
<tr>
<td>E.E.</td>
<td>0.45 +/- 0.03</td>
<td>1.65</td>
<td>6.20</td>
<td>2.16</td>
<td>1.47</td>
<td>4.77</td>
<td>4.96</td>
</tr>
<tr>
<td>F.C.</td>
<td>6.4 +/- 0.08</td>
<td>30.88</td>
<td>21.81</td>
<td>19.9</td>
<td>37.10</td>
<td>23.2</td>
<td>60.96</td>
</tr>
<tr>
<td>E.L.N.</td>
<td>45.8 +/- 0.06</td>
<td>41.75</td>
<td>30.94</td>
<td>60.5</td>
<td>45.05</td>
<td>53.72</td>
<td>24.56</td>
</tr>
<tr>
<td>E.B.</td>
<td>2.13 +/- 0.02</td>
<td>4.3</td>
<td>4.1</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
<td>----</td>
</tr>
</tbody>
</table>

M.S. = Materia seca (%). P.C. = Proteina Cruda (%). C.E. = Cenizas(%). F.C. Fibra Cruda(%). E.E. = Extracto Etéreo(%). E.L.N. = Extracto Libre de Nitrógeno(%). E.B. = Energía Bruta (Kcal / g).

*Media de tres determinaciones.
Tabla 6. Comparación entre diferentes tipos de energía calculados (Mcal/g) para *Sargassum spp.* y forrajes de uso común en Baja California Sur.

<table>
<thead>
<tr>
<th>Tipo de energía</th>
<th>Sargassum spp. en este estudio*</th>
<th>Obtenidos por Gojón (1997)</th>
<th>Alfalfa</th>
<th>Algodón*</th>
<th>Maíz</th>
<th>Sorgo</th>
<th>Buffel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ED</td>
<td>1.62</td>
<td>1.5</td>
<td>2.6</td>
<td>3.1</td>
<td>2.9</td>
<td>2.2</td>
<td>2.5</td>
</tr>
<tr>
<td>Em</td>
<td>1.33</td>
<td>1.2</td>
<td>2.1</td>
<td>2.6</td>
<td>2.3</td>
<td>1.8</td>
<td>2.1</td>
</tr>
<tr>
<td>ENm</td>
<td>0.4863</td>
<td>0.44</td>
<td>1.3</td>
<td>1.6</td>
<td>1.4</td>
<td>0.96</td>
<td>1.2</td>
</tr>
<tr>
<td>ENg</td>
<td>-0.037</td>
<td>-0.08</td>
<td>0.72</td>
<td>1.08</td>
<td>0.9</td>
<td>0.42</td>
<td>0.67</td>
</tr>
</tbody>
</table>

ED=Energía digestible. ENm=Energía neta de mantenimiento. Em=Energía metabolizable. ENg=Energía neta de ganancia.

*Semilla de algodón extracción mecánica.

*Calculadas en base a medias de composición proximal. (NRC, 1984)

Fuente: Peláez (1988)

7.2. FRACCIONES DE FIBRA.

Se obtuvieron valores de 47.11 % para paredes celulares y un contenido celular total de 52.89%, así como un contenido de hemicelulosa de 2.66 (Tabla 7).

Tabla 7. Comparación de fibras de ingredientes de uso común en la alimentación animal con las contenidas en *Sargassum spp.*

<table>
<thead>
<tr>
<th>TIPO DE FIBRAS (%)</th>
<th>ALIMENTO</th>
<th>FND</th>
<th>FAD</th>
<th>CELULOSA</th>
<th>LIGNINA</th>
<th>SILICE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sargassum spp.*</td>
<td>47.11</td>
<td>44.45</td>
<td>6.17</td>
<td>5.92</td>
<td>1.72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+/- 0.42)</td>
<td>(+/- 0.35)</td>
<td>(+/- 0.37)</td>
<td>(+/- 0.27)</td>
<td>(+/- 0.29)</td>
</tr>
<tr>
<td></td>
<td>Alfalfa*</td>
<td>40.30</td>
<td>33.75</td>
<td>24.91</td>
<td>7.09</td>
<td>2.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+/- 0.30)</td>
<td>(+/- 0.35)</td>
<td>(+/- 0.30)</td>
<td>(+/- 0.25)</td>
<td>(+/- 0.25)</td>
</tr>
<tr>
<td></td>
<td>Paja de avena*</td>
<td>70.80</td>
<td>49.67</td>
<td>41.63</td>
<td>4.27</td>
<td>4.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+/- 0.30)</td>
<td>(+/- 0.35)</td>
<td>(+/- 0.30)</td>
<td>(+/- 0.25)</td>
<td>(+/- 0.25)</td>
</tr>
<tr>
<td></td>
<td>Sorgo*</td>
<td>22.04</td>
<td>7.89</td>
<td>3.63</td>
<td>1.61</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+/- 0.30)</td>
<td>(+/- 0.35)</td>
<td>(+/- 0.30)</td>
<td>(+/- 0.25)</td>
<td>(+/- 0.25)</td>
</tr>
<tr>
<td></td>
<td>Ensilaje de Maíz</td>
<td>64.0</td>
<td>41.1</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+/- 0.30)</td>
<td>(+/- 0.35)</td>
<td>(+/- 0.30)</td>
<td>(+/- 0.25)</td>
<td>(+/- 0.25)</td>
</tr>
<tr>
<td></td>
<td>Pasta de Soya*</td>
<td>14.9</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

FND= Fibra detergente neutro. FAD=Fibra detergente ácido. nd= no disponible

Fuente: *Presente estudio, media de tres determinaciones.

7.3. MINERALES

En las cantidades de minerales obtenidas en *Sargassum spp.* destacan como los principales el calcio, el sodio y el potasio y en menores cantidades Mg, P, Fe, Zn (Tabla 8). En la tabla 8 y 9 se comparan los resultados obtenidos por diversos
autores para el mismo género y con diferentes especies forrajeras terrestres de uso común.

Tabla 8. Comparación del contenido de minerales de Sargassum spp. obtenidos en este estudio con el informado por otros autores.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg (mg/g)</td>
<td>7.54 +/- 0.07</td>
<td>121.66</td>
<td>9.00</td>
<td>138.30</td>
<td>5.32</td>
<td>6.52</td>
</tr>
<tr>
<td>K (mg/g)</td>
<td>15.9 +/- 0.06</td>
<td>33.30</td>
<td>57.70</td>
<td>24.40</td>
<td>25.06</td>
<td>31.95</td>
</tr>
<tr>
<td>Na (mg/g)</td>
<td>28.74 +/- 0.159</td>
<td>38.88</td>
<td>200.70</td>
<td>24.50</td>
<td>38.20</td>
<td>23.97</td>
</tr>
<tr>
<td>Ca (mg/g)</td>
<td>6.41 +/- 0.094</td>
<td>38.66</td>
<td>32.10</td>
<td>32.70</td>
<td>17.17</td>
<td>11.78</td>
</tr>
<tr>
<td>P (mg/g)</td>
<td>2.69 +/- 0.07</td>
<td>27.55</td>
<td>0.11</td>
<td>27.90</td>
<td>2.00</td>
<td>--</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>263.2 +/- 9.65</td>
<td>1450.00</td>
<td>3600.00</td>
<td>--</td>
<td>--</td>
<td>4240.00</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>119.0 +/- 5.41</td>
<td>10.00</td>
<td>1600.00</td>
<td>--</td>
<td>0.10</td>
<td>24.00</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>13.7 +/- 0.29</td>
<td>20.00</td>
<td>1.00</td>
<td>--</td>
<td>2.70</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Sargassum sinicola.

****Mezcla de Sargassum sinicola más Macrocystis pyrifera.

***Se toma el valor más alto de los meses estimados en este trabajo.

*Media de tres determinaciones.

Tabla 9. Comparación del contenido de minerales del alga del género Sargassum, respecto a algunos forrajes de uso común.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Sargassum spp.</th>
<th>Alfalfa*</th>
<th>Semilla de Algodón*</th>
<th>Maíz*</th>
<th>Sorgo*</th>
<th>Buffel*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg (mg/g)</td>
<td>7.54 +/- 0.07</td>
<td>2.7</td>
<td>3.5</td>
<td>2.9</td>
<td>2.9</td>
<td>1.4</td>
</tr>
<tr>
<td>K (mg/g)</td>
<td>15.90 +/- 0.06</td>
<td>21.3</td>
<td>12.1</td>
<td>9.3</td>
<td>14.7</td>
<td>7.1</td>
</tr>
<tr>
<td>Na (mg/g)</td>
<td>28.74 +/- 0.159</td>
<td>1.5</td>
<td>3.1</td>
<td>0.3</td>
<td>0.2</td>
<td>****</td>
</tr>
<tr>
<td>Ca (mg/g)</td>
<td>6.41 +/- 0.094</td>
<td>15.3</td>
<td>1.6</td>
<td>5.0</td>
<td>4.0</td>
<td>5.7</td>
</tr>
<tr>
<td>P (mg/g)</td>
<td>2.69 +/- 0.07</td>
<td>2.7</td>
<td>7.5</td>
<td>2.5</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>263.2 +/- 9.65</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Zn (ppm)</td>
<td>119.0 +/- 5.41</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
<tr>
<td>Cu (ppm)</td>
<td>13.7 +/- 0.29</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
<td>n/d</td>
</tr>
</tbody>
</table>

n/d= no disponible

Fuente: *Presente estudio, media de tres determinaciones. **NRC (1984)*
7.4. METALES PESADOS

En las determinaciones de metales pesados se obtuvieron 18.2 ppm de plomo, pequeñas cantidades de mercurio y selenio con 181 y 85.1 ppb, respectivamente. Sin que estas cantidades representen peligro de intoxicación debido a que no rebasan las cantidades que se aceptan como tóxicas en animales.

A manera comparativa se presentan los valores obtenidos por Meza (1998), quien obtiene los niveles de metales pesados para una mezcla de algas cafés, los cuales están dentro de intervalos que no rebasan los límites para su inclusión en raciones de animales (Tabla 10), destacando el hecho de que no se detectó mercurio.

Tabla 10. Comparación de metales pesados obtenidos en Sargassum sinicola y el reportado en otras algas cafés.

<table>
<thead>
<tr>
<th>METAL</th>
<th>Obtenido en este estudio</th>
<th>Obtenido por Meza(1998)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plomo (ppm)</td>
<td>18.2</td>
<td>14.63</td>
</tr>
<tr>
<td>Selenio (ppb)</td>
<td>85.1</td>
<td>155.76</td>
</tr>
<tr>
<td>Mercurio (ppb)</td>
<td>181.0</td>
<td>Nd</td>
</tr>
</tbody>
</table>

*nd = no detectable
*Mezcla de Sargassum sinicola y Macrocystis pyrifera (Meza, 1998).
*Una determinación.

7.5. FACTORES ANTINUTRICIOS DE LAS ALGAS

Los valores obtenidos de factores antinutricios en las muestras de Sargassum spp. no representan ningún riesgo para el consumo humano y animal al considerarse que en las frutas los taninos están presentes en dosis de 500 a 1,000 mg en 100 g y en las verduras entre 500 y 2,000 mg en 100 g (Derache, 1990) y para el caso de las saponinas estas ya no se consideran antifisiológicas ya que se hidrolizan por la microflora intestinal, éstas se consideran tóxicas porque in vitro causan hemólisis de eritrocitos (Baduí, 1995) (Tabla 11).
Tabla 11. Comparación de los factores antinutricios de *Sargassum spp.* obtenidos en este estudio y el obtenido en *S.sinicola* por otros autores.

<table>
<thead>
<tr>
<th></th>
<th>En este estudio</th>
<th>Carrillo et al. (1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAPONINAS</td>
<td>++</td>
<td>nd</td>
</tr>
<tr>
<td>ACIDO TANICO (mg/g)</td>
<td>21.6</td>
<td>1.67</td>
</tr>
<tr>
<td>GLUCOSIDOS CIANOCSCICOS</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>ALCALOIDES</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

nd= No detectable.
++ = (moderada)

7.6. DETERMINACION DE DIGESTIBILIDAD

7.6.1. DIGESTIBILIDAD *in vivo* DE LA MATERIA SECA

En los valores obtenidos de consumo de alimento durante los cuatro períodos de adaptación con las tres concentraciones utilizadas de *Sargassum spp.* no existió diferencia significativa con respecto a la dieta testigo, ni entre los tratamientos utilizados ($F_{(3, 76)} = 1.81; p>0.152$; Tabla 12; Anexo1).

Tabla 12. Consumo de alimento durante las cuatro períodos de muestreo para diferentes niveles de inclusión de *Sargassum spp.*

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>E.1</th>
<th>E.2</th>
<th>E.3</th>
<th>E.4</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>1.020</td>
<td>1.188</td>
<td>1.200</td>
<td>1.200</td>
<td>1.152 a</td>
</tr>
<tr>
<td>10%</td>
<td>1.162</td>
<td>1.188</td>
<td>1.028</td>
<td>1.200</td>
<td>1.145 a</td>
</tr>
<tr>
<td>20%</td>
<td>1.196</td>
<td>1.200</td>
<td>1.184</td>
<td>1.200</td>
<td>1.195 a</td>
</tr>
<tr>
<td>30%</td>
<td>0.876</td>
<td>1.200</td>
<td>1.200</td>
<td>1.153</td>
<td>1.108 a</td>
</tr>
</tbody>
</table>

E= períodos de muestreo. Promedio de cinco días.
a, b/ Literales distintas indican diferencia estadística ($p<0.05$).

En el consumo de agua (Tabla 13), existió diferencia significativa ($F_{(3, 76)} = 7.34; p>0.0002$; Anexo1) en la dieta testigo con respecto a las tres concentraciones de algas utilizadas, pero entre los tratamientos del 10% y 20%, no se encontró diferencia estadística de estos últimos con respecto al tratamiento con 30% de inclusión de algas en la dieta.
Tabla 13. Consumo de agua durante cuatro periodos de muestreo para diferentes niveles de inclusión de Sargassum spp.

<table>
<thead>
<tr>
<th>Tratamiento</th>
<th>E.1</th>
<th>E.2</th>
<th>E.3</th>
<th>E.4</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>2.69</td>
<td>4.0</td>
<td>4.16</td>
<td>2.96</td>
<td>3.45 a</td>
</tr>
<tr>
<td>10%</td>
<td>4.96</td>
<td>3.3</td>
<td>3.74</td>
<td>5.06</td>
<td>4.26 b</td>
</tr>
<tr>
<td>20%</td>
<td>5.26</td>
<td>5.0</td>
<td>4.38</td>
<td>6.08</td>
<td>5.18 c</td>
</tr>
<tr>
<td>30%</td>
<td>3.74</td>
<td>5.46</td>
<td>6.68</td>
<td>3.59</td>
<td>4.87 bc</td>
</tr>
</tbody>
</table>

E= periodos de muestreo. Promedio de cinco días.
a,b,c/ Literales distintas indican diferencia estadística (p<0.05)

En cuanto a las cantidades de heces excretadas, no se encontró diferencia significativa entre el grupo testigo y la dieta con 10% Sargassum spp., pero sí se observaron diferencias significativas (F (3, 76) = 5.28; p>0.0023; Anexo1) con respecto a las obtenidas en las concentraciones de 20% y 30% de Sargassum spp. (Tabla 14).

Tabla 14. Cantidad de heces eliminadas durante los cuatro periodos de muestreo con diferentes niveles de inclusión de Sargassum spp.

<table>
<thead>
<tr>
<th>Conc.</th>
<th>E.1</th>
<th>E.2</th>
<th>E.3</th>
<th>E.4</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.47</td>
<td>0.422</td>
<td>0.468</td>
<td>0.494</td>
<td>0.463 a</td>
</tr>
<tr>
<td>10%</td>
<td>0.53</td>
<td>0.428</td>
<td>0.388</td>
<td>0.460</td>
<td>0.452 a</td>
</tr>
<tr>
<td>20%</td>
<td>0.43</td>
<td>0.686</td>
<td>0.556</td>
<td>0.516</td>
<td>0.547 b</td>
</tr>
<tr>
<td>30%</td>
<td>0.404</td>
<td>0.662</td>
<td>0.718</td>
<td>0.502</td>
<td>0.572 b</td>
</tr>
</tbody>
</table>

E= etapas de muestreo. Promedio de cinco días.
a,b/ Literales distintas indican diferencia estadística (p<0.05)

La cantidad de orina eliminada (Tabla 15), por efecto del cambio de concentraciones de Sargassum spp. mostró un incremento gradual a medida que aumentaba la concentración del alga, reflejando con esto una mayor actividad metabólica para efecto de regular el nivel osmótico en el tracto gastrointestinal (F (3, 76) = 24.10; p>0.0002).

Los resultados obtenidos en la digestibilidad in vivo durante los cuatro periodos de muestreo y para el coeficiente global de digestibilidad de materia seca (Fig. 1) no indicaron diferencia significativa (F (3, 76) = 2.61; p>0.05) entre tratamientos utilizando un análisis de varianza monofactorial.
Tabla 15. Cantidad de orina eliminada durante los cuatro periodos de muestreo con diferentes niveles de inclusión de *Sargassum spp.*

<table>
<thead>
<tr>
<th>Conc.</th>
<th>E.1</th>
<th>E.2</th>
<th>E.3</th>
<th>E.4</th>
<th>MEDIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.22</td>
<td>0.498</td>
<td>0.88</td>
<td>0.764</td>
<td>0.591 a</td>
</tr>
<tr>
<td>10%</td>
<td>0.886</td>
<td>0.65</td>
<td>0.92</td>
<td>1.498</td>
<td>0.989 b</td>
</tr>
<tr>
<td>20%</td>
<td>1.274</td>
<td>1.452</td>
<td>0.83</td>
<td>1.00</td>
<td>1.139 b</td>
</tr>
<tr>
<td>30%</td>
<td>1.410</td>
<td>1.890</td>
<td>1.954</td>
<td>1.006</td>
<td>1.565 c</td>
</tr>
</tbody>
</table>

E= etapas de muestreo. Promedio de cinco días.
a,b/ Literalas distintas indican diferencia estadística (p<0.05)

Figura 1. Coeficiente global de digestibilidad de materia seca (Promedios de cuatro períodos para cada tratamiento)
También se observó que las cantidades de consumo de agua y excreción de orina están relacionadas con el incremento de la concentración de algas utilizadas (Fig. 2).

![Diagrama de barras mostrando la correlación entre la concentración de algas en la dieta y el consumo de agua y excreción de orina.](image)

Figura 2. Correlación de las diferentes concentraciones de *Sargassum spp.* en la dieta, entre el consumo de agua y la excreción de orina durante cuatro períodos de muestreo.
7.6.2. DIGESTIBILIDAD *in situ* DE LA MATERIA SECA.

Durante la incubación ruminal de las dietas (testigo, 10%, 20% y 30%), no se encontró diferencia significativa \((F_{(6,21)} = 0.39; \ p<0.76)\) (Anexo 1) en la desaparición de materia seca (Fig.3) entre tratamientos, pero sí a las diferentes horas de medición \((F_{(6,21)} = 63.14; \ p<0.00)\) (Anexo 1), es decir, que conforme aumentaba el tiempo de incubación de cada dieta, se lograba una mayor digestibilidad de la materia seca.

![Figura 3. Digestibilidad *in situ* de la materia seca de las dietas en las que se incluyó *Sargassum* spp. a diferentes niveles](image)

En la tabla 16 se muestra la digestibilidad *in situ* de la materia seca, no se encontró diferencia significativa \((p>0.05)\) entre los cuatro tratamientos, pero sí entre las horas de medición; se utilizó un análisis de varianza bifactorial en el cual la interacción hora / tratamiento no mostró diferencia significativa entre tratamientos para cada una de las horas (Anexo 1).

Tabla 16. Variación del % de digestibilidad *in situ* con diferentes niveles de *Sargassum* spp. y a diferentes horas de muestreo

<table>
<thead>
<tr>
<th>Conc.</th>
<th>0</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>24</th>
<th>48</th>
<th>72</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>9.92</td>
<td>15.84</td>
<td>26.81</td>
<td>37.97</td>
<td>40.74</td>
<td>69.89</td>
<td>72.94</td>
</tr>
<tr>
<td>10%</td>
<td>9.98</td>
<td>22.96</td>
<td>25.59</td>
<td>35.33</td>
<td>49.3</td>
<td>64.24</td>
<td>67.20</td>
</tr>
<tr>
<td>20%</td>
<td>10.34</td>
<td>21.80</td>
<td>29.28</td>
<td>31.72</td>
<td>41.31</td>
<td>54.39</td>
<td>66.98</td>
</tr>
<tr>
<td>30%</td>
<td>12.55</td>
<td>19.58</td>
<td>28.98</td>
<td>35.12</td>
<td>47.44</td>
<td>61.63</td>
<td>66.28</td>
</tr>
</tbody>
</table>

Medias de ocho determinaciones
7.7. DETERMINACIÓN DE pH del LIQUIDO RUMINAL

Se observó un incremento en el valor promedio de pH a medida que aumentaba la concentración de algas en la dieta, este resultado está relacionado directamente con el consumo de agua, ya que a mayor consumo de sales minerales se produce un aumento en las necesidades de agua, lo que provoca un aumento en valor de pH presente.

En la figura 4 se observa la tendencia de variación de las curvas correspondientes a cada concentración de *Sargassum* utilizada a lo largo de 24 horas con las ecuaciones polinomiales siguientes:

\[y = 0.0481 x^2 - 0.4061 x + 7.2922 \quad (R^2 = 0.8888) \quad \text{(Testigo)} \]

\[y = 0.0396 x^2 - 0.3108 x + 7.3048 \quad (R^2 = 0.7862) \quad \text{(10% de algas)} \]

\[y = 0.0395 x^2 - 0.3357 x + 7.4652 \quad (R^2 = 0.6626) \quad \text{(20% de algas)} \]

\[y = 0.0345 x^2 - 0.2815 x + 7.3106 \quad (R^2 = 0.7996) \quad \text{(30% de algas)} \]

Observándose en general que a medida que aumenta la concentración de algas, se incrementaba el pH de líquido ruminal respecto a la dieta testigo, en un lapso de 24 horas de digestión. En el análisis de varianza bifactorial se obtuvo diferencia estadística de la dieta testigo respecto a los tratamientos utilizados (10%, 20% y 30% de *Sargassum spp.*) en la dieta, \(F_{(3, 480)} = 8.82; \ p < 0.00001 \), y también entre las diferentes horas de medición \(F_{(7, 480)} = 13.48; \ p < 0.00 \), en el cual la interacción hora / tratamiento no mostró diferencia significativa \(F_{(7, 480)} = 0.21; \ p < 0.999 \) entre tratamientos para cada una de las horas (Anexo1).
Figura 4. Variación del pH del líquido ruminal a diferentes horas de digestión con las dietas suplementadas con 10%, 20% y 30% de algas de Sargassum spp. y la dieta testigo.

7.8. DETERMINACION DE NITROGENO EN RUMEN

Los valores promedio obtenidos cuantificados como amonio y transformados a partes por millón de nitrógeno mostraron una disminución después de las horas en que se consumió alimento (6:00 y 18:00 hrs. del día) con una tendencia de aumento en las cantidades de nitrógeno a medida que avanzaba la digestión desde la segunda alimentación del día (18:00 hrs), hasta la primera alimentación del otro día. No existió diferencia significativa en la variación de nitrógeno entre la concentración y horas de digestión entre la dieta testigo respecto a los tratamientos utilizados con inclusión de Sargassum spp. en la dieta ($F_{(3, 420)} = 0.49; p< 0.065$) en base a un análisis de variancia bifactorial (Anexo 1).
Figura 5. Tendencia de variación de nitrógeno amoniacal en el líquido ruminal a diferentes horas de digestión en dietas suplementadas con diferentes niveles de *Sargassum spp*.

Las tendencias observadas en la variación de nitrógeno amoniacal de las diferentes concentraciones de *Sargassum* durante 24 horas (Fig. 5), mostraron que a una mayor cantidad de *Sargassum* (20 % y 30 %) existía mejor síntesis de nitrógeno amoniacal para el intervalo entre la hora seis y la hora doce de digestión (6:00 y 12:00 hrs del día respectivamente).

Las ecuaciones polinomiales correspondientes a las curvas de tendencia obtuvieron los siguientes valores:

\[y = -4.4857 x^2 + 0.39791 x + 107.22 \] (R\(^2\)=0.2215) (Testigo)

\[y = -6.2995 x^2 + 43.771 x + 139.27 \] (R\(^2\)=0.2981) (10% de algas)

\[y = -13.619 x^2 + 125.64 x + 15.32 \] (R\(^2\)=0.5129) (20% de algas)

\[y = -17.072 x^2 + 144.78 x - 22.381 \] (R\(^2\)=0.7787) (30% de algas)
7.9. DETERMINACION DE ACIDOS GRASOS VOLATILES

La variación en el contenido de ácidos grasos volátiles en el líquido ruminal de los animales para las cuatro dietas utilizadas en la prueba metabólica, mostraron que los ácidos acético y propiónico medidos a las horas 6, 12, 18 y 24, tuvieron una tendencia a disminuir a medida que se incrementaba la concentración del alga (Figs. 6 y 7); no así el ácido butírico, el cual aumentaba a medida que se incrementaba la concentración del alga (Fig. 8), aún así, no rebasó las cantidades máximas sintetizadas con la dieta testigo.

Se aplicó un análisis de varianza bifactorial a los tratamientos con respecto a las concentraciones y a las horas de digestión. Con el ácido acético se obtuvieron diferencias significativas \((F_{3, 240}) = 12.77; p<0.000) entre la dieta testigo y la que tiene 30% del alga, y entre el tratamiento al 10% con respecto a la dieta del 30%. En cuanto al ácido propiónico, sólo hubo diferencia significativa con respecto a la dieta con 30% \((F_{3, 240}) = 5.18; p<0.00175. Con el ácido butírico, existió diferencia significativa con respecto al 10% y 20% de algas en la dieta \((F_{3, 240}) = 9.37; p<0.000007).

En la síntesis de ácido acético, la dieta testigo tuvo valores de 73.3, 78.2, 72.5 y 53.7 milimoles/l para las horas 6, 12, 18 y 24 de digestión respectivamente, tomando como referencia la hora 0:00 del día, observándose la máxima síntesis a la hora 12 (Fig. 6). Con respecto a los valores obtenidos en la dieta con inclusión de algas al 10%, se observaron valores de 73.7, 79.2, 67.6 y 48.0 milimoles/l con un comportamiento similar al testigo, a medida que avanzaba el tiempo de digestión. Las cantidades sintetizadas con la dieta al 20% fueron de 63.6, 73.0, 58.8 y 46.5 milimoles/l, apreciándose otra ligera disminución, comportamiento que también se obtiene con la dieta al 30% de alga con los valores de 56.5, 61.7, 56.7 y 43.0 milimoles/l para las mismas horas de digestión.
En la síntesis de ácido propiónico, la dieta testigo tuvo valores de 25.1, 30.0, 25.5 y 15.4 milimoles/l para las horas 6, 12, 18 y 24 de digestión respectivamente, observándose la máxima síntesis a la hora 12. Con la inclusión de algas al 10%, se obtuvieron valores de 21.4, 23.5, 19.3 y 12.3 milimoles/l siendo menores con respecto a la dieta testigo (Fig.7). La síntesis con la dieta al 20% de algas fueron de 19.3, 22.1, 16.5 y 12.7 milimoles/l y para la dieta al 30% fueron de 24.7, 17.2, 14.2 y 9.6 milimoles/l.
Figura 7. Variación de ácido propiónico presente en el líquido ruminal a las horas 6, 12, 18 y 24 de la digestión con dietas suplementadas con *Sargassum spp.* al 10%, 20% y 30% y la dieta testigo.

Durante la síntesis del ácido butírico la dieta testigo mostró valores de 10.8, 12.8, 13.2 y 8.7 milimoles/l en las horas 6, 12, 18 y 24 de digestión respectivamente, con síntesis máxima a la hora 18 (Fig. 8). Con la dieta al 10% de inclusión de algas, fueron 6.1, 8.1, 8.3 y 5.7 milimoles/l, al compararlos con la dieta testigo el comportamiento por hora de digestión se invierte con respecto a los ácidos acético y propiónico, ya que en este caso la concentración más baja de algas (10%) obtiene los valores más bajos de ácido butírico con respecto a los otros dos tratamientos (20 y 30% de algas).

Los valores obtenidos de ácido butírico con las dietas al 20% para las mismas horas de digestión fueron de 7.6, 9.11, 8.3 y 6.0 milimoles/l y con la dieta al 30% de alga se obtuvieron 8.1, 10.0, 9.9 y 7.1 milimoles/l.
Figura 8. Variación del ácido butírico presente en el líquido ruminal a las horas 6, 12, 18 y 24 de la digestión con dietas suplementadas con Sargassum spp. al 10%, 20% y 30% y la dieta testigo.

Tabla 17. Proporciones de ácidos grasos en el líquido ruminal de bovinos alimentados con diferentes raciones.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>P</th>
<th>B</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ensilaje de pastos</td>
<td>74</td>
<td>17</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Heno de mala calidad</td>
<td>72</td>
<td>18</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Pradera</td>
<td>66</td>
<td>19</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Heno molido y concentrados</td>
<td>52</td>
<td>31</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Alfalfa y maíz cocido</td>
<td>42</td>
<td>47</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Maíz cocido</td>
<td>34</td>
<td>46</td>
<td>6</td>
<td>14</td>
</tr>
</tbody>
</table>

A=ácido acético; P=ácido propiónico; B=ácido butírico; O=otros ácidos.

Fuente: De Alba, 1977
7.10. PRUEBA DE COMPORTAMIENTO

Al utilizar una concentración del 25 % del alga Sargassum spp. en la dieta problema, se obtuvieron los incrementos de peso mostrados en la figura 9, no hubo diferencia significativa entre el crecimiento del grupo problema y el testigo \(F(1, 278) = 0.061 \; ; \; p<0.805 \) ajustándose dicho crecimiento a una curva polinómica de segundo grado con los valores de:

\[
y = - 0.047 (x)^2 + 1.5222 (x) + 13.28 \quad (R^2 = 0.9898) \quad \text{(Testigo)}.
\]

\[
y = - 0.0576 (x)^2 + 1.7172 (x) + 11.401 \quad (R^2 = 0.9867) \quad \text{(Inclusión de 25 % de alga)}.
\]

Es importante resaltar que aunque se haya utilizado un porcentaje elevado de Sargassum spp. y que metabólicamente exista una disminución en la digestibilidad de materia seca, dicha disminución no afectó el incremento de peso neto de los animales. Así mismo, los resultados de las mediciones de alimento consumido y rechazado, concuerdan con los obtenidos en la prueba metabólica, donde no existió diferencia significativa entre tratamientos \(p<0.05 \).

![Figura 9. Incremento de peso con una dieta testigo y la suplementada con 25% de Sargassum spp. no hay diferencias significativas entre dietas \(P<0.05 \).](image)
La ganancia de peso registrada para el grupo problema fue mayor que el grupo testigo en un 3.5%, con valores de 129.9 g/d y de 125.5 g/d para la dieta testigo, con una conversión alimenticia de 3.66 y 3.79 Kg de alimento consumido / Kg de incremento de peso respectivamente, obteniéndose una mayor conversión alimenticia para la dieta con 25% de *Sargassum spp.*

El consumo de agua se incrementó con la dieta al 25% de *Sargassum spp.* (Fig. 10), se encontró diferencia significativa (Anexo1) entre los tratamientos utilizados ($p<0.05$), con un comportamiento similar al obtenido durante la prueba metabólica. Las ecuaciones del mejor ajuste para cada curva fueron $y = 3.495x^{0.1222}$ ($R^2 = 0.4994$) y $y = 3.3187x^{0.0758}$ ($R^2 = 0.2757$), para la dieta con 25% de *Sargassum spp.* y la dieta testigo respectivamente, donde se aprecian valores bajos de R^2, pero que son justificados en cuanto a las variaciones de las condiciones climáticas existentes, ya que dichos factores ocasionan una tendencia similar en las dos curvas obtenidas.

Figura 10. Comparación de consumo de agua entre la dieta testigo y la dieta suplementada con 25% de *Sargassum spp.*
Para el caso del comportamiento en el consumo y rechazo de las dietas utilizadas, no se obtuvieron diferencias significativas (p<0.05) (Anexo1), su tendencia está definida por las ecuaciones lineales de ajuste siguientes: \(y = 0.3956x + 10.923 \) \((R^2 = 0.1878) \) para la dieta con 25% de *Sargassum spp.* y \(y = 0.511x + 11.423 \) \((R^2 = 0.3262) \) para la dieta testigo. En este caso se pudieron apreciar rechazos de alimento mayores en la semana uno y la semana cuatro de forma similar para ambos tratamientos, lo que influyó directamente en el ajuste de las curvas obtenidas (Fig.11).

![Gráfico de comparación alimentaria](image-url)

Figura 11. Comparación del alimento rechazado con la dieta testigo y la dieta suplementada con 25% de *Sargassum spp.*
8. DISCUSION

8.1. ANALISIS QUIMICO APROXIMADO

Para conocer la calidad de los nutrimentos de un alimento es necesario primero realizar un análisis químico aproximado, el cual, como su nombre lo indica, da una idea general del contenido de humedad, proteína cruda, carbohidratos, extracto etéreo, fibra cruda y cenizas de la muestra al momento de hacer el análisis (Tejada, 1985). La composición de los alimentos es la base sobre la cual se formulará la dieta para los animales (Shimada, 1983). En base a esto, existe una gran cantidad de ingredientes que conforman la alimentación tradicional de los rumiantes, dando por resultado una clasificación en función de su contenido químico y cuya nomenclatura según la NRC (1984) es la siguiente: los alimentos que en estado seco contienen más de un 18% de fibra cruda, se clasifican como forrajes, los que contienen 20% de proteína o más se clasifican como suplementos proteicos y los productos que contienen menos de 20% de proteína y menos de un 18% de fibra cruda, se clasifican como alimentos energéticos (Fonnesbeck et al., 1978 en Hernández, 1993). La clasificación del *Sargassum spp.* como alimento para animales de acuerdo a la nomenclatura del NRC (1984), corresponde a la de un alimento energético por contener 6.42% de fibra cruda y 6.33% de proteína cruda, sin embargo, el contenido de minerales también lo ubica como un alimento con aporte considerable de estos nutrimentos (Tabla 4) (Carrillo et al., 1992).

En relación a la proteína cruda, el contenido de *Sargassum spp.* se encuentra en los niveles que proporcionan forrajes como la paja de sorgo, zacate buffel y paja de avena, disponibles de acuerdo a la época del año y su disponibilidad en el mercado (Martínez, 1980). El género *Sargassum* es el más abundante en la Bahía de la Paz, según Rocha y Siqueiros (1990), con mayor abundancia a fines de la primavera y principios de verano, predominando la especie *Sargassum sinicola*, la cual ocupa un alto porcentaje de las muestras analizadas, además de existir especies como *S. horridum* y *S. herporizum*, que se desarrollan al mismo tiempo que *S. sinicola* (Muñeton, 1987).
El valor de humedad obtenido en la harina fue de 7.74%, cantidad no suficiente para una descomposición inmediata, ya que las reacciones deteriorativas de oscurecimiento no enzimático (reacciones de Maillard) ocurren a valores de humedad superiores al 30% (Desrosier, 1983). El valor obtenido en el presente estudio es similar al señalado por Rodríguez (1995) de 7.40% y al informado por Pérez (1997) del 8.44% al 11.42% para la harina de *Sargassum sinicola*, por lo tanto, por diferencia se obtuvo un contenido de materia seca del 92.6%.

Las cenizas corresponden al material remanente después de la combustión orgánica y representan básicamente a los minerales que reflejan la condición del desarrollo de las algas de *Sargassum* en el ambiente marino (Rodríguez y Hernández, 1991).

Las cantidades de minerales reportadas son 3 a 7 veces mayor en las algas de *Sargassum spp.* con respecto a forrajes terrestres (Tabla 8), con valores similares a los de Rodríguez (1995) y Manzano y Rosales (1989) de 38.5% y 37.3% respectivamente.

El contenido de extracto etéreo en las algas es bajo en comparación con los vegetales terrestres de uso común y corresponde a las sustancias que son solubles en éter. Esto de acuerdo a Badui (1995) representa una ventaja, ya que no se presentarían reacciones de rancidéz en las raciones alimenticias, además de que por el estado de deshidratación presente se ocasiona una inhibición segura de la oxidación de los lípidos, de actividad enzimática y crecimiento de hongos, levaduras y bacterias.

Otra ventaja del bajo contenido de extracto etéreo, es el de no provocar la desnaturalización de vitaminas hidrosolubles y liposolubles, porque no se está provocando polimerización de las proteínas presentes (Karel et al., 1975; en Ocampo, 1981). Llamo (1997) detectó en su estudio cuatro vitaminas en *Sargassum sinicola*, entre las que se encuentran beta-caroteno (760 mg/Kg), vitamina B1 (0.96 mg/Kg), vitamina B2 (108 mg/Kg), y vitamina C (248 mg/Kg), representando esto
una ventaja adicional por suministrar en una ración cantidades suficientes para el buen desarrollo del animal (Chapman, 1980).

Los niveles de extracto etéreo encontrados en el presente estudio, son similares a los informados para algas como *Macrocystis pyrifera*, con valores entre 0.56% y 0.75 % dependiendo de la época del año (Castro *et al.*, 1994) y también para *Sargassum spp*.

Se han determinado ácidos grasos insaturados en *Sargassum homeri*, *S. ringgoldianum* y *S. thunbergii*, por lo que también puede esperarse que el contenido de extracto etéreo de *Sargassum spp* incluya cierta cantidad de estos ácidos grasos (Araki *et al.*, 1991; Fleurence *et al.*, 1994).

En el presente trabajo, se reportó un valor de 6.42 % de fibra cruda en *Sargassum spp* la cual comparada con alimentos de uso común es menor, mientras que coincide con la variación mostrada por Manzano y Rosales (1989) Gojón (1997), Pérez (1997) y de este componente (6.42% a 12.75%). La ventaja de *Sargassum spp* con respecto a los forrajes toscos de uso común, es que no proporciona niveles altos de materiales celulósicos y ricos en lignina.

En el caso de los rumiantes, la fibra cruda no es considerada como un carbohidrato indigestible en el alimento o dieta, ya que en este tipo de animales, en el interior del rumen se realiza la fermentación de los alimentos celulósicos, en cooperación con microorganismos (Orskov, 1990). En los alimentos de origen vegetal, la fibra cruda se compone principalmente de varias porciones de celulosa (polímero de glucosa con enlaces β), hemicelulosa (polímero de pentosas con enlaces β) y lignina (compuesto aromático complejo derivado del fenilpropano) (Goytortúa *et al.*, 1996; Llamas y Tejada, 1990).

La fibra cruda recupera únicamente una fracción del material fibroso de un forraje, mientras que en los elementos libres de nitrógeno, se incluyen parte de esta fibra (hemicelulosa, celulosa y lignina), no sólo carbohidratos disponibles para el animal (Llamas y Tejada, 1990).
La composición principal del extracto libre de nitrógeno en *Sargassum spp.* es en una tercera parte de alginatos y las otras dos terceras partes son componentes de la pared celular y carbohidratos solubles.

La importancia de un alto contenido de carbohidratos en la dieta radica en que el rumiante aprovecha este tipo de alimento para la obtención principal de energía de mantenimiento y crecimiento por medio de la fermentación (Collins, 1990; Shimada, 1983; Church, 1974b.; Orskov, 1990).

Para fines prácticos se utiliza un sistema de conversiones basado en promedios generales, en el que un kilogramo del total de nutrimentos digestibles (TND) equivale a 4.409 Mcal de ED y a 3.615 Mcal de EM (Garza, 1990c). Asumiéndose en este caso que un 18% de la energía digestible se elimina en la orina y en los gases producidos.

Al restar a la energía metabolizable la que se pierde al producirse “el incremento calórico” producido cuando el animal consume un alimento, se obtiene lo que se llama energía neta (EN) de un alimento.

El valor obtenido para la energía bruta de *Sargassum spp.* (2.13 Kcal/g), mostró similitud con los valores obtenidos por Terrazas y Casas (1985), Manzano y Rosales (1989), Rodríguez (1995), Gojón (1997), Pérez (1997) y Meza (1998); y en comparación con forrajes de uso común, la energía que aporta es aproximadamente la mitad de la de dichos forrajes (Tabla 4), pero es similar a otros alimentos para animales como la cebada (2.64 kcal/g) y la avena (2.51 kcal/g) (Manzano y Rosales, 1989).

La energía digestible de *Sargassum spp.* fue casi 50% más baja que en los forrajes terrestres, y la energía neta de mantenimiento es inferior a los forrajes de
uso común llegando a una energía neta de ganancia negativa, pero sin que esto represente un efecto global de pérdida de peso del animal, ya que posteriormente se demuestra que el aporte energético del alga en la prueba de incremento de peso es significativamente superior al calculado (Tabla 6).

Otro aspecto que influyó en el cálculo de la energía neta de mantenimiento es el correspondiente a que las ecuaciones determinadas tienen parámetros para su utilización en forrajes terrestres.

8.2. FRACCIONES DE FIBRA

Comparando las fracciones de fibra de *Sargassum spp.* con otros tipos de alimentos (Tabla 7), se observa que esta alga tuvo cuatro veces menos celulosa que un alimento forrajero, pero 50% más que alimentos energéticos como los granos de sorgo, maíz y trigo. Los componentes como FND, FAD y lignina, fueron superiores hasta en 2.14, 5.6 y 3.7 veces que la alfalfa, paja de avena y sorgo, respectivamente (Hernández, 1993).

Rodríguez (1995) obtuvo valores menores de FND (22.7%) con respecto al valor de este estudio (47.1%), debido a la variabilidad del contenido de polisacáridos (alginatos) (Dawes, 1986; O.P.S., 1991).

El contenido celular total para *Sargassum spp.* (52.89%) se incrementó debido al contenido de alginatos (8.44%), el cual fue obtenido por diferencia entre dicho contenido celular y la FAD (44.45%), y se encontró en el intervalo que obtuvo Pérez (1997). De acuerdo a los resultados de digestibilidad *in situ*, la presencia de alginatos presentes en el *Sargassum spp.* no afectó significativamente (p<0.05) la digestión de las fracciones de fibra incluidas en las diferentes dietas utilizadas.

8.3. MINERALES

Las cantidades de minerales obtenidos en el análisis de *Sargassum spp.* junto con los carbohidratos, representaron el mayor porcentaje dentro del alga (Tabla
8), dando una buena aportación de calcio, sodio, potasio, magnesio y fósforo, ya que superan en cantidad a alimentos de buena calidad como son la alfalfa, semilla de algodón, el maíz, rastrojos de maíz y de sorgo (Tabla 9) (Shimada, 1983).

Los requerimientos de calcio y fósforo para mantenimiento de rumiantes de 50 Kg son de 3 y 2.8 g por día (NRC', 1984) respectivamente, cantidades que se van cubriendo a medida que se aumenta la concentración de algas en la dieta con Sargassum spp.

8.4. METALES PESADOS

Actualmente existen catorce elementos trazas esenciales para el hombre: hierro, cobre, manganeso, zinc, cobalto, yodo, molibdeno, selenio, flúor, cromo, estaño, níquel, vanadio y silicio. Algunos de los elementos trazas como el arsénico, plomo, cadmio y mercurio se clasifican como elementos tóxicos. La toxicidad en el hombre y animales es relativamente alta y su actividad biológica está limitada a reacciones tóxicas. Sin embargo, todos los elementos traza pueden ser tóxicos si se consumen en grandes cantidades o por períodos de tiempo largos.

El plomo puede causar toxicidad a los rumiantes debido a que se puede asentar en el retículo, convirtiéndose a acetato soluble de plomo por la acción del medio ácido del estómago. Para el caso de terneros una dosis de 200 a 400 mg de plomo por Kg de peso vivo ingerida como acetato puede causarle la muerte, mientras que para el ganado adulto se requieren de 600 a 800 mg/Kg de peso vivo (Hernández y Aguirre, 1993). Los valores de plomo obtenidos en Sargassum spp. (18 mg/100g) no rebasaron esta cantidad, por lo cual no representa riesgo alguno su consumo, además que la cantidad suministrada se reduce una vez que se ha combinado con los otros ingredientes (Tabla 10).

El mercurio (Hg) está identificado como un elemento tóxico por ingestión e inhalación, el cual se encuentra en la naturaleza distribuido ampliamente y es relativamente volátil. El Hg es absorbido fácilmente por el tracto respiratorio, el tracto
gastrointestinal y a través de la piel. El metil mercurio es de 60 a 100% absorbido por rumiantes, aves y humanos. El ión de Hg sólo se absorbe un 15%, actúa como veneno acumulativo ya que se excreta muy despacio por el cuerpo del animal. Tiene una gran influencia en la absorción de Cu, Zn y Cd. Los casos de toxicidad aguda resultan en una deficiencia renal y muerte ya que en cantidades de 0.5 ppm causan cambios histopatológicos en el tejido de los riñones (Hernández y Aguirre, 1993). El valor obtenido de mercurio en las algas de Sargassum spp. no representa un riesgo de toxicidad ya que en la muestra analizada se obtuvieron cantidades de 181.0 partes por billón.

El selenio actualmente se ha reconocido también como un nutrimento, en el rumen es aprovechado por los microorganismos y produce selenoaminoácidos, análogos a los aminoácidos que contienen azufre como la metionina. El selenio puede actuar como antioxidante y se requiere para la absorción de lípidos en el tracto gastrointestinal y es importante en la facilitación de la transferencia de lípidos a través de las membranas celulares (Oldfield, 1970 en Church, 1974a). La manifestación de la toxicidad del Se se da en los niveles de 10 a 30 ppm (Church, 1974a), cantidad que no se logra con las suplementaciones de Sargassum spp., ya que sólo se alcanzaron niveles de 85.1 partes por billón.

8.5. FACTORES ANTINUTRICIOS DE LAS ALGAS

Dentro de los resultados obtenidos en la determinación de factores que alteran la digestión, se encontró en Sargassum spp. un valor de saponinas en cantidad moderada (++). Estas saponinas son glucósidos formados por sapogenina y diversos carbohidratos, con la propiedad de producir espuma, disminuir la tensión superficial y ser hemolíticas al entrar directamente a la sangre, sin embargo, no existe ninguna relación entre la cantidad de espuma producida y la acción hemolítica, ya que al pasar por el tracto digestivo, éstas se descomponen y no representan ningún riesgo (Domínguez, 1973). Manzano y Rosales (1989) realizaron determinaciones de saponinas en Sargassum sinicola de otras localidades, sin
encontrar la presencia de éstas, por lo que probablemente tuvo que ver la zona y época de muestreo de las algas utilizadas.

En relación a la cantidad de ácido tánico presente en las muestras, no representa niveles tóxicos, ya que hay informes de consumo de hasta 2500 mg en habitantes de la India, sin que produzcan toxicidad (Bourges, 1987; Horowitz, 1964 y Read y Pierson, 1985 citados por Manzano y Rosales, 1989). Los resultados obtenidos de ácido tánico en las muestras de Sargassum spp. analizadas (2.16 mg/g) fueron muy pequeñas para que puedan tener efectos negativos en la digestión. Se han suministrado complementos alimenticios a pollos con un contenido de hasta 30% de esta alga en la dieta con una concentración de 31.82 mg / g de taninos, sin ser tóxico o alterar la eficiencia alimenticia (Embong y Ravof, 1981 en Manzano y Rosales, 1989; Price, et al. 1980). Los taninos se utilizan como aditivos en enología, cervecería y en la industria de conservas, donde la dosis diaria admitida (DDA) es de 500 mg / día. Esta dosis se ve superada por las dietas alimentarias normales, ya que en los frutos, la cantidad de taninos está presente en tasas que varían entre 0.2 y 1 g por 100 g de peso fresco y en las verduras entre 0.5 y 2 g (Derache, 1990).

En el rumen de un animal los taninos disminuyen la concentración de ácidos grasos volátiles, aumentan la proteína en el fluido ruminal e inhiben el crecimiento bacteriano, haciendo que el valor nutritivo se reduzca en función del contenido de taninos (Fernández, 1980).

En las muestras analizadas para la determinación de glucósidos cianogénicos no se detectó su presencia. Estas sustancias son potencialmente tóxicas para humanos y animales monogástricos por la producción de ácido cianhídrico (HCN), pero su efecto es mínimo en los microorganismos anaerobios del rumen, mismos que pueden utilizar este ácido como una fuente de nitrógeno (Cohn, 1969). No se detectaron alcaloides en Sargassum spp. En el caso de los alcaloides, contienen nitrógeno en su estructura molecular y tienen poco efecto en la digestión de forrajes por los rumiantes (Tabla 11) (Domínguez, 1973).
8.6. DETERMINACIÓN DE DIGESTIBILIDAD

Una prueba de comportamiento se puede definir como un experimento en el que tanto la composición como la cantidad de alimentos proporcionados al animal, son registrados para evaluar la respuesta del animal en términos de mantenimiento y producción (crecimiento, reproducción, lactación) (Garza, 1990b).

Las dietas tienen como base la condición de contener la misma cantidad de proteína y energía tanto para las necesidades de mantenimiento como para el incremento de peso, por lo que se realizó la formulación de las dietas para que las cuatro fueran isoproteicas e isocalóricas. En este sentido, la capacidad de evitar pérdidas de nitrógeno endógeno a través de la orina y la capacidad de las proteínas para efectuar una retención o crecimiento es muy diferente según la composición de aminoácidos; dicha capacidad de acuerdo a las diferencias por contenidos de aminoácidos en las dietas no se vió afectada en gran medida, ya que el *Sargassum spp.* también aporta aminoácidos esenciales (Carrillo *et al.*, 1992), razón por la cual no existió una disminución en la síntesis de nitrógeno a medida que se aumentaba la concentración del alga, pero sí hubo un efecto claro de disminución de digestibilidad de materia seca total, debido básicamente al efecto del ácido algínico presente, cuya propiedad de formación de coloides estaría obstaculizando la disponibilidad de materia seca (Mc Hugh, 1987).

Para el caso de suplementación de proteína por el cambio que se tiene al variar la concentración de alga en la dieta, se utilizaron ingredientes ricos en proteínas como la pasta de soya, misma que equilibró la ración en esta combinación de ingredientes tradicionales con algas de *Sargassum*, clasificado como alimento energético (Morrison, 1977).

En general, de acuerdo a Rodríguez y Llamas (1990), las dietas experimentales utilizadas cumplieron con los requisitos mínimos que son:

a) Permitir un consumo voluntario suficiente para cubrir los requerimientos de mantenimiento.
b) Que el animal no hiciera una selección marcada de los ingredientes.

c) Proporcionar una mezcla homogénea de los ingredientes durante todo el tiempo que dure la prueba.

8.6.1. DIGESTIBILIDAD in vivo DE LA MATERIA SECA

El análisis de variancia del coeficiente de digestibilidad aparente de materia seca de las dietas, no mostró diferencia significativa entre los tratamientos, indicando un buen aprovechamiento del alga en sus tres concentraciones (Fig.1). Aunque Sargassum spp. se ubique dentro de la clasificación de forraje energético por contener menos de 20% de proteína y menos de 20% de fibra cruda (Fonnesbeck et al., 1978 en Hernández, 1993), proporciona ingredientes suficientes como complemento alimenticio (Peláez, 1988; Avilés y Avila, 1992).

Los trabajos donde se ha medido digestibilidad in vivo de Sargassum spp., son escasos, pero sí se ha determinado la digestibilidad in vitro e in situ de Sargassum sinicola.

Manzano y Rosales (1989) en un experimento in situ realizado en ovinos obtuvieron un porcentaje bajo de desaparición (27.5 %), mientras que para digestibilidad in vitro fue de (24.7 %), valores que al compararlos con los obtenidos por Gojón (1997), (prueba realizada en bovinos) son bajos ya que dicho autor obtiene un valor del 54.8% de desaparición de materia seca in situ y del 95% in vitro, lo que demuestra que el porcentaje del alga desaparecido en el abomaso es del 40% aproximadamente, aprovechándose casi en su totalidad. Asimismo, Manzano y Rosales (1989) señalan que la digestibilidad aparente de S. sinicola en tres concentraciones del 5%, 15% y 25% en dietas para ratas correspondió a 88%, 83% y 77%, respectivamente; siendo mayores estas digestibilidades que las informadas para Macrocystis pyrifera en las mismas proporciones, ya que S. sinicola contiene menor cantidad de gomas.
Los resultados del coeficiente global de digestibilidad de la materia seca obtenidos en el presente estudio no fueron significativamente diferentes (p>0.05) para la dieta testigo y las tres que incluyeron *Sargassum spp.* (10%, 20% y 30%) con valores máximos de digestibilidad de 77.5%, 78.1%, 77.2% y 73.4% respectivamente, lo que indica una degradación adecuada para los nutrimentos aportados por el alga.

Al comparar los resultados de la digestibilidad aparente de las dietas suplementadas con *Sargassum spp.* con la digestibilidad de otros forrajes, se observaron valores de 78%, 77%, 76% y 75% respectivamente y la de forrajes de uso común fueron: alfalfa (80.8%), maíz (79.4%) y sorgo (68.6) (Martínez *et al.*, 1995) con niveles proteicos y de fibra diferentes (Peláez, 1988).

De acuerdo a la cantidad presente de extracto libre de nitrógeno (carbohidratos) en las algas utilizadas, éstas proporcionan una cantidad similar a la mayoría de los forrajes (Peláez, 1988), ocasionando que el suministro de material fermentable en el rumen no se vea drásticamente afectado, además de proveer una cantidad considerable de paredes celulares que fluctúa entre el 21.4% y el 40.3%, adicional al contenido de alginatos cuyas cantidades presentes son de 9.9% a 11.7% (dependiendo del estado de desarrollo del alga) (Darley, 1987).

En el presente estudio se observó que aunque se proporcionaba un porcentaje elevado de paredes celulares y carbohidratos, éstos no ocasionaban una resistencia a la masticación durante la ingestión y rumia del animal, básicamente debido a que el *Sargassum spp.* se pone muy flexible, principalmente por el efecto del contenido de alginatos, comparable con la obtenida por Bermúdez *et al.* (1993), quienes incluyeron veza (*Vicia sativa*), y avena sola o suplementados con concentrados, conduciendo a un incremento en el consumo de materia seca, materia orgánica y proteína, así como en la digestibilidad de la materia orgánica y proteína cruda respecto a la avena sola.

Los niveles de fibra cruda (31%, 33.2%, 35.4% y 29%) utilizados en las dietas suplementadas con *Sargassum spp.* en este trabajo, se encuentran dentro de
los forrajes mencionados por Maeng et al. (1998), quien probó en borregos, dietas compuestas por 55% de maíz y con siete diferentes fuentes de fibra consistentes en heno de alfalfa, olote de maíz, ensilaje de maíz, cascarilla de semilla de algodón, cascarilla de cacahuate, paja de arroz y bagazo de caña de azúcar, estudio en el cual se obtuvo una digestibilidad de materia seca significativamente más alto en el ensilaje de maíz (p<0.01) que las otras fuentes. Y debido a esto, las fuentes de fibra proporcionadas al suplementar con *Sargassum spp.* colaboran al funcionamiento ruminal y disponibilidad de nutrimentos en el tracto digestivo.

Las cantidades adicionales de NaCl aportadas por *Sargassum spp.* a los animales en este estudio, alcanzaron niveles de hasta 2.9 % de sal por kilogramo de algas, equivalentes a 8.8 g adicionales de NaCl en la dieta con un 30% de algas, por lo que en el efecto metabólico de mayor consumo de agua y mayor generación de orina, intervinieron todas las sales formadas por los cationes. Estos niveles de sal aportados no se pueden considerar altos, ya que Carrillo (1977) recomienda niveles de hasta un 30 a 35 %, siempre y cuando los animales no tengan restricciones de agua, para evitar trastornos fisiológicos y una concentración más aceptable del 20% de NaCl.

8.6.2. DIGESTIBILIDAD *in situ* DE MATERIA SECA

Los valores obtenidos de la digestibilidad *in situ* con las dietas suplementadas con las algas de *Sargassum spp.* son similares a los de forrajes toscos en la digestibilidad de dichas raciones (Hernández, 1993). Las digestibilidades *in situ* de forrajes de uso común (Peláez, 1988) se encuentran en rangos de valores parecidos a los encontrados en el presente estudio, sin que exista diferencia significativa con respecto a la dieta testigo (p>0.05), indicando con esto que no se afecta la digestión debido al exceso de sales y al contenido de alginatos de las algas (Pérez, 1997).

En el presente estudio se obtuvieron valores máximos de digestibilidad a la hora 72 con valores de 72.9%, 67.2%, 67.0% y 66.3% para la dieta testigo y los tres
tratamientos utilizados, teniendo la máxima concentración utilizada (30%) sólo una diferencia del 6.7 % menos con respecto a la dieta testigo, sin existir diferencia significativa entre los tratamientos utilizados (p> 0.05).

Los valores de digestibilidad in situ obtenidos en este trabajo difieren de los informados por Gojón (1997) (54.9%), ya que éste midió el alga sola y de los obtenidos por Manzano y Rosales (1989) para S. Sinicola (27.5%), además estos últimos autores no contaron con material suficiente para los períodos de acostumbramiento de los animales, lo que no les permitió el establecimiento de una flora microbiana debidamente adaptada.

El nivel de degradabilidad ruminal in situ de Sargassum spp., es similar a los informados por Hernández (1987) y Hernández (1993) para ensilaje de maíz y para paja de avena. En las dietas utilizadas en este estudio que combinan pasta de soya, alfalfa, maíz y Sargassum spp. no se afectó la digestibilidad (p>0.05) (10%,20% y 30% de algas) y además se encontraron en intervalos de digestibilidad similares a los de forrajes de buena calidad de uso común señalados por Martínez et al., (1995), con porcentajes de 80.8 % para alfalfa, 79.4% para maíz y 68.6% para sorgo.

Al comparar la digestibilidad in situ de diez arbustos de la zona desértica de Baja California Sur (media de 68.3% de desaparición de materia seca) (Ramírez et al.,1998), con la máxima digestibilidad (66.3%) de la dieta con 30% de Sargassum spp. utilizada en el presente trabajo, se observó que no existe diferencia significativa (p> 0.05) entre dichas digestibilidades, además de considerar que las dietas utilizadas en ambos casos contenían un promedio de 16% de proteína cruda.

Asimismo, los niveles de digestibilidad de materia seca no se afectaron debido a la inclusión de sebo en las dietas, ya que de acuerdo a Nasserian (1998) la inclusión de compuestos de lípidos en dietas altas en fibras, mantiene la digestibilidad de materia seca cuando no rebasa niveles entre 2 y 5% en la ración.
8.7. DETERMINACION DE pH DEL LIQUIDO RUMINAL

El pH se redujo inmediatamente después de la alimentación, correspondiendo este momento a la mayor síntesis de ácidos grasos volátiles. Esta es una relación inversa entre el pH presente en el rumen y la síntesis de ácidos grasos volátiles para dietas que no sean ricas en almidón (Church, 1974a).

La variación entre los tratamientos de Sargassum spp. (10%, 20% y 30%) no fue significativa (p>0.05), pero sí con respecto a la dieta testigo (p<0.05), sin afectar el proceso digestivo del animal, ya que son valores normales para las características químicas de las raciones con Sargassum spp. (Hernández, 1987).

Aunque en el presente estudio los valores promedios de pH (6.3-7.4) de los tratamientos utilizados (10, 20 y 30% de algas en la dieta) fueron superiores respecto al generado por la dieta testigo (Fig. 4), estos no inhiben la fermentación de la fibra proporcionada en los tratamientos utilizados, como lo demuestra la digestibilidad *in situ*, en la cual no hubo diferencias significativas con respecto a la dieta testigo ya que dichas dietas no se encontraban con niveles altos de azúcares que pudieran convertirse rápidamente en energía a través de la fermentación como los informados por Mould et al. (1983) citado por Hernández (1987), quienes utilizaron melaza y obtuvieron un pH alto (6.5), observando la disminución de la degradación de la fibra.

Además dichos valores se mantuvieron similares a los obtenidos en otros trabajos donde se incluyen cantidades de fibra altas por contener paja de avena (Hernández, 1993). Asimismo, Nasserian (1998) obtuvo valores promedio de pH de 6.4 para dos dietas compuestas por alfalfa (40%), cascarilla de avena (60%) y cuyo componente diferente eran 20 g de aceite de soya.

Maeng et al. (1998) no obtuvieron diferencias significativas en la variación del pH ruminal con dietas para borregos donde probaron diferentes fuentes de fibra cuyas composiciones son similares a las utilizadas en este estudio con una base de 55% de maíz.
8.8. DETERMINACION DE NITROGENO EN RUMEN

Los perfiles de variación de nitrógeno amoniacal presente, tuvieron un comportamiento normal de síntesis máxima entre la hora 6 y 12 tomando como referencia las 0:00 hrs del día y con alimentación a las 6:00 y 18:00 horas, valores que concuerdan con los informes de Christiansen et al. (1965) citados por Church (1974a), quienes han medido las variaciones de amoniaco en el rumen de corderos con fauna microbiológica íntegra y cuya máxima síntesis de amoniaco se encontró entre las 11:00 hrs. y 13:00 hrs.

Este patrón de síntesis de nitrógeno amoniacal se debió a que la última alimentación se suministró a las 18:00 horas del día anterior, ocasionando mayor degradabilidad por las condiciones inactivas del animal y coincidiendo con los efectos de dietas compuestas a base de harina de soya, gluten de maíz y soya sin refinar, complementos productores de elevados niveles de amoniaco, aunque cada dieta específica no produce los mismos niveles de proteína (Davis y Stallcup, 1967).

Las cantidades de nitrógeno amoniacal obtenidas en el presente estudio a partir de los tratamientos utilizados, proporcionaron niveles suficientes para el crecimiento del animal y para la actividad del rumen, descartando el efecto contrario que pudiera tener una proteína de mala digestibilidad con alta solubilidad en el rumen. Las variaciones de nitrógeno obtenidas concuerdan con los trabajos revisados por Church (1974a), quien señala que existe una considerable absorción de amoniaco procedente del rumen, cuando los niveles son elevados. Sin embargo, el flujo neto de nitrógeno (en forma de urea proveniente del hígado y transportado por la saliva producida por las glándulas parótidas o por simple difusión) al interior del rumen puede producirse a niveles relativamente elevados durante los momentos en que el nivel ruminal de amoniaco es bajo, lo cual sirve como medio de conservación de nitrógeno y actúa como fuente secundaria de nitrógeno para los microorganismos presentes en el rumen, sin dejar de considerar la importancia que tiene la generación de proteína de calidad por los microorganismos del rumen (Santra y Karim, 1998; Hernández, 1987; Hernández, 1993; Bermúdez et al., 1993;
Las variaciones de nitrógeno amoniacal dentro del rumen para los tres tratamientos presentados en este estudio se pueden considerar normales, con un incremento en la concentración cuando la digestión está avanzada entre la hora 6 y 12 y una disminución cuando el animal tiene alimentación reciente acompañada de consumo de agua, provocando una dilución del nitrógeno amoniacal presente en el líquido ruminal.

De acuerdo a la figura 5, hubo un máximo crecimiento bacteriano con una máxima degradación de los alimentos en el rumen y la concentración de nitrógeno amoniacal tuvo una tasa de producción e incorporación mayor de éste al cuerpo de las bacterias, así como de la tasa de absorción mayor en la pared ruminal (Song y Kennelly, 1989, citados por Hernández, 1993).

Los perfiles de variación de la dieta testigo utilizada no tuvieron diferencia significativa durante las diferentes horas de medición, ni tampoco entre tratamientos \((p< 0.01)\). De acuerdo con Satter y Slyter (1974) citados por Hernández (1993), la tasa máxima de síntesis microbiana de amoniaco, se encuentra entre 5 y 8 mg N /100 ml de líquido ruminal para dietas compuestas por paja de avena suplementadas con paja de alfalfa; aunque también otros autores como Leng y Nolan (1984) informan cantidades óptimas entre 15 y 20 mg N/100 ml. En el presente trabajo se presentaron patrones de síntesis de nitrógeno amoniacal entre los intervalos de 11.2 mg N / 100 ml y 26.3 mg N/100ml para la dieta testigo, 9.3 mg N / 100 ml y 31.1 mg N / 100 ml para la dieta con 10% de *Sargassum* spp., 4.7 mg N / 100 ml y 32.1 mg N / 100 ml para la dieta del 20% y entre 5.5 mg N / 100 ml y 30.3 mg N / 100 ml para la dieta del 30%, reflejando con esto que el patrón de fermentación no se afectó con ninguno de los tratamientos utilizados con respecto a la dieta testigo.

Santra y Karim (1998) obtuvieron concentraciones de nitrógeno amoniacal de 11.9 mg/dl y 10.6 mg/dl en el líquido ruminal de borregos y cabras respectivamente, utilizando dietas de concentrado de grano de cebada (45%), cascarrilla de nuez (16%), salvado (37%), sal (1%) y mezcla de minerales (1%);
estos datos son aproximadamente un tercio de las concentraciones obtenidas en este estudio.

8.9. DETERMINACION DE ACIDOS GRASOS VOLATILES

De Alba (1977) menciona que fue hasta el año de 1940 cuando se aceptó que los metabolitos del rumen son los ácidos grasos volátiles, denominados así porque a temperaturas del vapor de agua se convierten en gases. El ácido volátil más simple es el acético de sólo dos carbonos y es usualmente el más abundante en raciones altas en celulosa. Le siguen en importancia el propiónico con una cadena de 3 carbonos y en tercer lugar el ácido butírico de 4 carbonos. Los ácidos de más de cuatro carbonos juegan un papel secundario en la digestión del rumen.

Las proporciones pueden variar mucho de acuerdo con la dieta. Los niveles de las concentraciones obtenidas en el presente estudio se aproximan a los intervalos mencionados por Shimada (1983), con proporciones de 65:25:10 para AGV’S acético, propiónico y butírico, respectivamente. Son utilizados por el animal mediante un proceso de absorción facilitado por un gradiente de concentración favorable, afectándose dicha absorción por el pH ruminal, ya que al encontrarse un pH ácido, se reduce proporcionalmente la absorción, tendencias obtenidas por los resultados del presente estudio.

La síntesis de ácidos grasos volátiles mantiene una relación inversa con respecto al pH (Church, 1974a), comenzando la mayor síntesis de éstos inmediatamente después de la alimentación, teniendo la máxima síntesis entre la hora 6 y 18 del tiempo de muestreo.

Las proporciones de cada uno de los ácidos grasos volátiles para cada uno de los tratamientos utilizados muestra la correspondencia a las variaciones de la composición química de las dietas, ya que para la dieta testigo la proporción de los ácidos grasos volátiles: acético, propiónico y butírico fue de 66.2 : 22.9 : 10.9 respectivamente y en los tratamientos al 10%, 20% y 30% de alga las proporciones totales se mantuvieron con valores similares, características proporcionadas por
dietas compuestas por forraje + alimentos proteicos + alimentos energéticos en diferentes proporciones (Judson et al., 1968 citado en Church, 1974a).

Algunos valores típicos de ácidos grasos volátiles reportados por Pant et al. (1959) y Jamieson (1959) citados en Church (1974a), para ovejas alimentadas con raciones de paja de trigo más concentrado, fueron de 65.7 μmol/ml y para las alimentadas con pasto Raygrass-trébol 114 μmol/ml, intervalo en el cual se ubican las cantidades totales de AGV con respecto a los tratamientos utilizados en este estudio de 104.8 μmol/ml para la dieta testigo e incluyendo Sargassum spp., con 93.3 μmol/ml (10%), 85.9 μmol/ml (20%) y 79.7 μmol/ml (30%).

La tendencia a la disminución total de ácidos grasos volátiles a medida que aumentó la concentración de Sargassum spp. en las dietas, concuerda con el tipo de dieta suministrada, ya que existe un efecto por el contenido neto de fibra cruda pues ésta va disminuyendo a medida que aumenta la concentración del alga (Church, 1974a).

Los ácidos grasos volátiles obtenidos por Hernández (1993), mantuvieron las proporciones de acuerdo a los componentes de fibra cruda en la dieta, él utilizó paja de avena suplementada con heno de alfalfa, clasificando esta dieta como forraje, a diferencia de la utilizada con el Sargassum spp., las cuáles dan un patrón característico de un alimento energético (Church, 1974a), por lo que se justifican estos resultados por la diferencia en la composición de las dietas.

En el caso de la suplementación con alga de Sargassum spp., la síntesis de ácidos grasos disminuyó a medida que aumentaba la concentración del alga hasta un 30%, pero sin mostrar una tendencia de inhibición total, manteniéndose en rangos aceptables de síntesis, de acuerdo a la disminución de fibra cruda a medida que aumentaba la concentración de Sargassum spp. en la dieta.

Al efecto anterior es necesario sumarle el que impedía el aumento de digestibilidad de materia seca por la presencia del ácido algínico, mismo que puede detener por más tiempo la disponibilidad de la materia seca (Mc Hugh, 1987).
El perfil de ácidos grasos obtenido en el presente estudio no mostró diferencia significativa \((p<0.05)\) para los tres ácidos (acético, propiónico y butírico) en cada una de las horas de digestión \((6, 12, 18\) y \(24)\) de las dietas con \textit{Sargassum spp.} lo que se traduce en mantener un nivel adecuado de concentración de cada uno de los ácidos, a pesar de las variaciones químicas que se dan por la inclusión del alga (Church, 1974 b).

Aunque existió una reducción de la fibra cruda en la dieta con la máxima concentración de algas \((30\%\)), los valores de AGV’s, quedaron dentro del intervalo adecuado para un forraje de esas características químicas (Hernández, 1993) en cuanto a los contenidos de fibra cruda. Para los tres tratamientos utilizados con inclusión de \textit{Sargassum spp.} hubo una disminución de niveles de concentración de AGV’s totales, con respecto a la dieta testigo, indicando que dichos tratamientos, se van acercando cada vez más a una dieta que contiene menos celulosa (De Alba, 1977), situación corroborada con los análisis de fracciones de fibra del alga de \textit{Sargassum spp.}

Los volúmenes máximos de ácido acético, ácido propiónico y ácido butírico se encontraron en los niveles normales esperados para un alimento suplementado con forrajes toscos, como lo muestra el patrón de comportamiento de ácidos grasos obtenido por Hernández (1993), cuyos niveles de proteína en dietas suplementadas de heno de alfalfa en una dieta basal de paja de avena, fue de 8.22\% en comparación con la utilizada en el presente trabajo del 16.1\%. Las cantidades ligeramente superiores de dicho trabajo, también muestra una síntesis mayor de ácidos grasos volátiles más cerca de la hora 12 del día. Hernández (1987) obtuvo valores similares a los del presente estudio para los ácidos grasos volátiles acético y propiónico, pero casi lo doble para el butírico, cuyas características proporcionan las dietas que contienen melaza (Oldham, 1973 citado por Hernández, 1987), utilizando una dieta de ensilaje de maíz y otra de alfalfa suplementadas con melaza.
8.10. PRUEBA DE COMPORTAMIENTO

Se empleó una dieta testigo (0% de algas) y otra con una concentración de algas al 25%, ambas fueron isoproteicas e isocalóricas. En la dieta testigo se utilizó una mezcla de alfalfa, maíz, pasta de soya, urea y sebo, y en la dieta que contenía algas, se utilizaron los mismos ingredientes, sólo que adicionalmente se incluyó 25% de Sargassum spp.

El objetivo de la preparación de estas dietas fue probar la mejor concentración obtenida de la prueba metabólica. El efecto neto de la digestibilidad de los nutrientes aportados para el incremento de peso, se comparó con el obtenido por Bermúdez et al. (1993) en corderos alimentados con forraje de avena más 25% de concentrado, con valores de 129 g/d, a la vez que obtuvo para la conversión alimenticia de esa dieta un valor alto de 9 Kg de alimento/Kg de ganancia de peso, donde influyó la edad y la raza de los animales, ya que él partió de corderos con un peso promedio de 24.5 Kg y en el presente estudio se comenzaron a manejar los animales al destete y de una raza más delgada.

La formulación de la dieta con un 25% de Sargassum spp. permitió un buen consumo de energía y materia seca en general, propiciando buena ganancia en peso 125.5 g/d para la dieta testigo y 129.9 g/d (p>0.01) para la dieta con inclusión de 25% de Sargassum spp., y una aceptable conversión alimenticia de 3.79 Kg de alimento/Kg de peso incrementado para la dieta testigo y de 3.66 para la dieta con Sargassum spp. reflejando con esto un mejor aprovechamiento por el animal de la dieta con 25% Sargassum spp. respecto a la dieta testigo (Collins, 1990; Carrillo et al., 1992; Rodríguez, 1995; Manzano y Rosales, 1989).

No hubo diferencia significativa con respecto a la dieta testigo en cuanto a los factores de crecimiento y alimento consumido (p<0.01), pero sí hubo diferencia significativa en el consumo de agua (p<0.05) corroborando el efecto que se había tenido inicialmente en la prueba metabólica. El comportamiento se ajustó a una ecuación polinomial de segundo grado con una R^2 de 0.99 para el grupo testigo y de 0.99 para el grupo alimentado con Sargassum spp. y aunque para el consumo de
agua si hubo diferencia significativa, ésta se debe al alto contenido de sales, lo que provocó que el animal debiera consumir agua adicional para la regulación del balance osmótico en el tracto gastrointestinal (Shimada, 1983).

Prasad y Reddy (1998) obtuvieron valores de ganancia en peso diario para borregos alimentados con raciones de paja de sorgo tratados con urea y otros forrajes de entre 68.9 g/d y 72.5 g/d y una conversión alimenticia entre 7.8 Kg de alimento/ Kg de peso ganado y 8.1 Kg de alimento/ Kg de peso ganado, valores inferiores en aproximadamente un 50% en ganancia de peso diario con respecto al presente trabajo, demostrando que la inclusión de algas no afectó y dicha ganancia de peso corresponde al de cualquier forraje de buena calidad (Peláez, 1988).

La ganancia de peso obtenido resultó 3.5% mayor en las dietas suplementadas con Sargassum spp., que el grupo testigo (129.9 g/d y 125.5g/d respectivamente, p>0.05). Dichas ganancias de peso son comparables a las obtenidas por Goonewardene et al.(1998) en seis razas diferentes de cabras con dietas altas en energía y proteína con valores entre 118 g/d y 148 g/d para cinco razas, diferiendo significativamente con respecto a una de estas razas que tuvo una ganancia de 62 g/d.

La conversión alimenticia con la dieta al 25% de Sargassum spp. fue mejor (3.66 Kg de alimento / Kg de peso ganado) con respecto al obtenido por Goonewardene et al.,(1998), quien utilizó niveles de proteína de entre 10% y 29% en sus dietas y que dichos valores deben estar influenciados por la raza de borregos utilizada.
9. CONCLUSIONES

1. Los principales componentes nutrimentales de *Sargassum spp.*, fueron los carbohidratos, con pequeñas cantidades de proteína y extracto etéreo. Se obtuvieron altas cantidades de minerales, representando un 33.3% de la materia seca.

2. Los aportes de selenio (Se) son favorables por ser un mineral traza esencial en el desarrollo de los rumiantes y las cantidades de plomo y mercurio halladas en *Sargassum spp.* no representan peligro de intoxicación.

3. Las cantidades moderadas de los factores antinutricios: saponinas y taninos presentes en *Sargassum spp.* proporcionado, no causó trastornos digestivos hasta la máxima concentración de alga utilizada del 30%.

4. La digestibilidad *in vivo e in situ* de la materia seca de las dietas, no se vieron afectadas con la inclusión de hasta 30% del alga *Sargassum spp.* en las raciones.

5. Los efectos metabólicos por el consumo de sales minerales se compensa con un mayor consumo de agua.

6. Los perfiles de variación de pH, nitrógeno amoniacal y ácidos grasos no se vieron afectados negativamente al incluir hasta 30% del alga *Sargassum spp.* en las raciones.

7. La prueba de comportamiento mostró que la ganancia de peso fue 3.5 % mejor en el grupo que se alimentó con 25% de *Sargassum spp.* que el grupo testigo, sin apreciar trastornos patológicos.
8. La conversión alimenticia fue mejor en el tratamiento con 25% de *Sargassum spp.* con un valor de 3.66 Kg de alimento consumido / Kg de incremento de peso, respecto al obtenido con la dieta testigo de 3.79 Kg de alimento consumido / Kg de incremento de peso.

9. Los resultados del análisis químico y de los factores antinutricios de *Sargassum spp.*, así como las digestibilidades *in vivo, in situ*, la variación de pH, nitrógeno amoniacal, AGV´s y la prueba de comportamiento, muestran que el alga puede ser usada como complemento en la alimentación de ganado ovino hasta en un 25%, sin causar trastornos patológicos en el metabolismo, ubicándose dentro de la clasificación de alimentos para animales como un alimento energético-mineral por su bajo contenido proteico y alto contenido de carbohidratos y minerales.
10. SUGERENCIAS Y RECOMENDACIONES

Es necesaria la realización de estudios fisiológicos para la determinación del efecto neto de los macro-minerales y de los metales pesados, para eliminar la incertidumbre de las cantidades máximas acumuladas por estos animales.

Realizar estudios en los cuáles se muestre un patrón de fermentación en rumen generado por el tipo de carbohidratos que aporta el Sargassum spp.

Llevar a cabo pruebas de digestibilidad in vivo para cada uno de los componentes de Sargassum spp. a efecto de medir la desaparición de cada uno.

Realizar pruebas de comportamiento con la máxima concentración utilizada en la prueba metabólica (30%), a efecto de medir el impacto con ese 5% adicional considerado.

Se recomienda realizar estudios del efecto neto de los nutrientes aportados por el Sargassum spp. en el desarrollo de la flora microbiana ruminal.
11. BIBLIOGRAFIA CITADA

 Serie técnica No.1, CICIMAR. 20 p.

Casas, V. M.; Sánchez, I. y Hernández, G. 1993. Evaluación de *Sargassum spp.* en
la Costa Oeste de Bahía Concepción, B.C.S., México. **Inv.Mar. CICIMAR,**
8(2):61-69.

Composición química de *Macrocystis pyrifera* (Sargazo Gigante) recolectada
en verano e invierno y su posible empleo en alimentación animal. **Ciencias
Marinas.** 20 (1): 33-40

Collins, M.M.S. 1990. Algunos parámetros productivos de bovinos engordados a
base de ensilaje de maíz. Tesis profesional. Univ.Autón. de Baja Cfa. Sur. 49
p.

Rodríguez, M.G. 1995. Las algas marinas Sargassum sinicola y Ulva lactuca como fuentes alternas de minerales y pigmentos en gallinas de postura. Tesis de

ANEXO 1

ANALISIS DE VARIANZA

Diseño: Análisis monofactorial

Variable dependiente: *Consumo de alimento (Digestibilidad in vivo)*

Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>0.026</td>
<td>76</td>
<td>0.0143</td>
<td>1.81</td>
<td>0.152</td>
</tr>
</tbody>
</table>

Coeficiente de Variación= 10.55 %

Diseño: Análisis monofactorial

Variable dependiente: *Consumo de agua (Digestibilidad in vivo)*

Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>11.57</td>
<td>76</td>
<td>1.58</td>
<td>7.34*</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 31.49 %
Diseño: Análisis monofactorial
Variable dependiente: Heces húmedas (Digestibilidad in vivo)
Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>0.072</td>
<td>76</td>
<td>0.014</td>
<td>5.28*</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 24.74 %

Diseño: Análisis monofactorial
Variable dependiente: Heces secas (Digestibilidad in vivo)
Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>0.0041</td>
<td>76</td>
<td>0.003</td>
<td>1.36</td>
<td>0.261</td>
</tr>
</tbody>
</table>

Coeficiente de Variación= 22.92 %
Diseño: Análisis monofactorial

Variable dependiente: Orina (Digestibilidad in vivo)

Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>3.24</td>
<td>76</td>
<td>0.013</td>
<td>24.10*</td>
<td>0.00</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 46.92 %

Diseño: Análisis monofactorial

Variable dependiente: Digestibilidad in vivo de materia seca

Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>3</td>
<td>73.36</td>
<td>76</td>
<td>28.10</td>
<td>2.61</td>
<td>0.057</td>
</tr>
</tbody>
</table>

Coeficiente de Variación= 6.92 %
Diseño: Análisis bifactorial

Variable dependiente: Digestibilidad *in situ* de materia seca

Entre: Horas de medición (0, 6, 9, 12, 18, 24, 48 y 72)
Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>6</td>
<td>7333.75</td>
<td>84</td>
<td>116.14</td>
<td>63.14*</td>
<td>0.00</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>45.34</td>
<td>84</td>
<td>116.14</td>
<td>0.39</td>
<td>0.76</td>
</tr>
<tr>
<td>1 x 2</td>
<td>18</td>
<td>52.88</td>
<td>84</td>
<td>116.14</td>
<td>0.46</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 57.84 %

Diseño: Análisis bifactorial

Variable dependiente: pH

Entre: Horas de medición (0, 1.5, 3, 6, 9, 12, 18, 24)
Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>7</td>
<td>3.26</td>
<td>480</td>
<td>0.24</td>
<td>13.48*</td>
<td>0.00 0011</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>2.13</td>
<td>480</td>
<td>0.24</td>
<td>8.82*</td>
<td>0.000001</td>
</tr>
<tr>
<td>1 x 2</td>
<td>21</td>
<td>0.05</td>
<td>480</td>
<td>0.24</td>
<td>0.21</td>
<td>0.999</td>
</tr>
</tbody>
</table>

Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 7.80 %
Diseño: Análisis bifactorial

Variable dependiente: Nitrógeno amoniacal

Entre:
Horas de medición (0, 1.5, 3, 6, 9, 12, 18, 24)
Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>6</td>
<td>181,981.6</td>
<td>420</td>
<td>93315.8</td>
<td>1.95</td>
<td>0.072</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>48,175.1</td>
<td>420</td>
<td>93315.8</td>
<td>0.52</td>
<td>0.67</td>
</tr>
<tr>
<td>1 x 2</td>
<td>18</td>
<td>45,354.5</td>
<td>420</td>
<td>93315.8</td>
<td>0.49</td>
<td>0.964</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación = 149.31 %

Diseño: Análisis bifactorial

Variable dependiente: Acido acético (AGV’s)

Entre:
Horas de medición (0, 1.5, 3, 6, 9, 12, 18, 24)
Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>3</td>
<td>7,384.77</td>
<td>240</td>
<td>228.90</td>
<td>32.26*</td>
<td>0.0</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>2,922.06</td>
<td>240</td>
<td>228.90</td>
<td>12.77*</td>
<td>0.0</td>
</tr>
<tr>
<td>1 x 2</td>
<td>9</td>
<td>132.62</td>
<td>240</td>
<td>228.90</td>
<td>0.58</td>
<td>0.814</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación = 29.38 %
Diseño: Análisis bifactorial

Variable dependiente: Acido propiónico (AGV’s)

Entre:
- Horas de medición (0, 1.5, 3, 6, 9, 12, 18, 24)
- Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>3</td>
<td>1,552.21</td>
<td>240</td>
<td>136.50</td>
<td>11.37*</td>
<td>0.000001</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>706.74</td>
<td>240</td>
<td>136.50</td>
<td>5.18*</td>
<td>0.00175</td>
</tr>
<tr>
<td>1 x 2</td>
<td>9</td>
<td>111.48</td>
<td>240</td>
<td>136.50</td>
<td>0.82</td>
<td>0.60</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 65.30 %

Diseño: Análisis bifactorial

Variable dependiente: Acido butírico (AGV’s)

Entre:
- Horas de medición (0, 1.5, 3, 6, 9, 12, 18, 24)
- Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hora</td>
<td>3</td>
<td>145.29</td>
<td>240</td>
<td>24.50</td>
<td>5.93*</td>
<td>0.00064</td>
</tr>
<tr>
<td>Concentración</td>
<td>3</td>
<td>229.64</td>
<td>240</td>
<td>24.50</td>
<td>9.37*</td>
<td>0.000007</td>
</tr>
<tr>
<td>1 x 2</td>
<td>9</td>
<td>3.68</td>
<td>240</td>
<td>24.50</td>
<td>0.15</td>
<td>0.998</td>
</tr>
</tbody>
</table>

* Diferencia significativa entre la fuente de variación.

Coeficiente de Variación= 60.03 %
Diseño: Análisis monofactorial

Variable dependiente: Incremento de peso (Comportamiento)

Entre: Tratamientos (0 %, 10%, 20% y 30 % de inclusión de algas)

<table>
<thead>
<tr>
<th>Fuente de Variación</th>
<th>Grados de libertad de la fuente</th>
<th>Cuadrado Medio de la fuente</th>
<th>Grados de libertad del error</th>
<th>Cuadrado Medio del error</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentración</td>
<td>1</td>
<td>0.047</td>
<td>278</td>
<td>0.775</td>
<td>0.061</td>
<td>0.805</td>
</tr>
</tbody>
</table>

Coeficiente de Variación= 107.21 %