ANALISIS COMPARATIVO DEL CRECIMIENTO
Y SUPERVIVENCIA DE DOS POBLACIONES
DE ALMEJA CATARINA Argopecten
ventricosus (Sowerby II, 1842) Y SUS
CRUZAS RECIPROCAS EN
BAJA CALIFORNIA SUR.

TESIS

que para obtener el grado de
Maestro en Ciencias
presenta:

PEDRO CRUZ HERNANDEZ

La Paz, B.C.S., Diciembre de 1997.
<table>
<thead>
<tr>
<th>Tema</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTA DE REVISIÓN DE TESIS</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATORIA</td>
<td>ii</td>
</tr>
<tr>
<td>AGRADECIMIENTOS</td>
<td>iii</td>
</tr>
<tr>
<td>LISTA DE FIGURAS</td>
<td>vii</td>
</tr>
<tr>
<td>LISTA DE TABLAS</td>
<td>x</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>1</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>GLOSARIO</td>
<td>5</td>
</tr>
<tr>
<td>INTRODUCCIÓN</td>
<td>9</td>
</tr>
<tr>
<td>ANTECEDENTES</td>
<td>10</td>
</tr>
<tr>
<td>JUSTIFICACIÓN</td>
<td>14</td>
</tr>
<tr>
<td>OBJETIVO</td>
<td>16</td>
</tr>
<tr>
<td>MATERIALS AND METHODS</td>
<td>17</td>
</tr>
<tr>
<td>AREA DE ESTUDIO</td>
<td></td>
</tr>
<tr>
<td>Bahía Magdalena</td>
<td>17</td>
</tr>
<tr>
<td>Bahía Concepción</td>
<td>20</td>
</tr>
<tr>
<td>PRODUCCIÓN DE GRUPOS EXPERIMENTALES</td>
<td>22</td>
</tr>
<tr>
<td>Reproductores y acondicionamiento</td>
<td>22</td>
</tr>
<tr>
<td>Desove</td>
<td>22</td>
</tr>
<tr>
<td>CULTIVO LARVAL</td>
<td>23</td>
</tr>
<tr>
<td>Análisis estadístico</td>
<td>25</td>
</tr>
<tr>
<td>Crecimiento</td>
<td>25</td>
</tr>
<tr>
<td>* Supervivencia</td>
<td>26</td>
</tr>
<tr>
<td>CULTIVO DE SEMILLA EN FIJACION</td>
<td>28</td>
</tr>
<tr>
<td>Análisis estadístico</td>
<td>28</td>
</tr>
<tr>
<td>Longitud y altura</td>
<td>28</td>
</tr>
<tr>
<td>Supervivencia</td>
<td>29</td>
</tr>
<tr>
<td>CULTIVO EN CAMPO</td>
<td>29</td>
</tr>
</tbody>
</table>
Análisis estadístico... 32
 Crecimiento... 32
 Supervivencia.. 32

ESTIMACIONES GENETICAS.. 33
 Heterosis... 33
 Efecto materno... 35

RESULTADOS.. 36

DESARROLLO LARVAL... 36
 Longitud.. 36
 Supervivencia... 37
 Efecto materno y heterosis... 37

ORGANISMOS EN FIJACION [SEMILLA]..................................... 40
 Longitud y altura... 40
 Supervivencia... 41

DESARROLLO EN CAMPO... 42
 Crecimiento.. 42
 Interacción edad - medio ambiente.. 43
 Interacción edad - grupo genético.. 43
 Interacción grupo genético - medio ambiente........................ 43
 Interacción edad - medio ambiente - grupo genético.............. 48
 Supervivencia... 54
 Interacción edad - medio ambiente.. 54
 Interacción edad - grupo genético.. 55
 Interacción grupo genético - medio ambiente........................ 56
 Interacción edad - medio ambiente - grupo genético.............. 57
 Heterosis.. 59
 Crecimiento.. 59
 Supervivencia... 59

DISCUSION... 61
 1- EFECTO MATERNO.. 61
 2- DIFERENCIAS GENETICAS INTERPOBLACIONALES.............. 62
 3- EFECTO DEL MEDIO AMBIENTE.. 65
4 - INTERACCIÓN GENÓTIPO - MEDIO AMBIENTE .. 68

5 - HETEROSIS. ... 71

CONCLUSIONES .. 78

RECOMENDACIONES ... 80

BIBLIOGRAFÍA .. 81
Fig. 1. Localización de las dos poblaciones de almeja catarina estudiadas (Bahía Magdalena y Bahía Concepción) en la Península de Baja California. 18

Fig. 2. Localización del área de colecta de reproductores (Punta Edie) y del área de cultivo (Rancho Bueno) en Bahía Magdalena. 19

Fig. 3. Localización del área de colecta de reproductores (El Remate) y del área de cultivo (Punta el Coloradito) en Bahía Concepción. 21

Fig. 4. Diseño de apareamientos y los cuatro grupos genéticos que se generan. 24

Fig. 5. Características biométricas evaluadas en la concha de la almeja catarina. 30

Fig. 6. Crecimiento de los cuatro grupos genéticos durante el cultivo larval. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno. 39

Fig. 7. Efecto sobre crecimiento en longitud de origen de huevo (M y C) y estrategia de apareamiento para cada edad. Poblaciones: línea continua; Cruzas recíprocas: línea punteada. 39

Fig. 8. Interacción edad-medio ambiente sobre crecimiento en cada característica biométrica evaluada. BM: Bahía Magdalena; BC: Bahía Concepción. 44

Fig. 9. Interacción edad-grupo genético: Crecimiento de los cuatro grupos genéticos considerando el promedio de ambos medios ambientales. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno. 45

Fig. 10. Interacción grupo genético-medio ambiente sobre crecimiento para las distintas características evaluadas. BM: Bahía Magdalena; BC: Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción magdalena; donde paterno/materno. 46

Fig. 11. Crecimiento comparativo en LONGITUD entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno. 51
Fig. 12. Crecimiento comparativo en ALTURA entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 51

Fig. 13. Crecimiento comparativo en CONVEXIDAD entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 52

Fig. 14. Crecimiento compartivo en PESO TOTAL entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 52

Fig. 15. Crecimiento compartivo en BIOMASA entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 53

Fig. 16. Interacción edad-medio ambiente en supervivencia. BM: Bahía Magdalena; BC: Bahía Concepción. ... 55

Fig. 17. Interacción edad-grupo genético: Supervivencia de los cuatro grupos genéticos considerando el promedio de ambos medios ambientes. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 56

Fig. 18. Interacción grupo genético-medio ambiente sobre supervivencia. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 57

Fig. 19. Supervivencia de los cuatro grupos genéticos en Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F 1 MC: Cruza recíproca Magdalena/Concepción; F 1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno ... 58

Fig. 20. Valores promedio de las diferentes características evaluadas y la respectiva HETEROSIS para cada carácter a la edad de 7 meses en cada ambiente, considerando a las poblaciones Magdalena (M), Concepción (C), y ambas cruzas recíprocas promediadas (F1) ... 60

Fig. 21. Temperatura superficial para los meses de muestreo (1994) en las zonas de cultivo en Bahía Magdalena y Bahía Concepción, así como el patrón anual para el mismo año en la zona oceánica aledaña (Base de datos Pesquerías-CIBNOR) 66
Fig. 22. Patrón anual 1986-1996 de temperatura superficial para las zonas oceá-
nicas aledañas a Bahía Magdalena y Bahía Concepción (Base de datos
Pesquerías-CIBNOR) ... 67

Fig. 23. Valores de heterosis a lo largo del cultivo en ambos medios ambientes.
BM: Bahía Magdalena; BC: Bahía Concepción .. 76
LISTA DE TABLAS

Tabla 1. Alimentación diaria de microalgas durante el cultivo larval y en fijación..... 25

Tabla 2. Densidades de cultivo en canastas “Nestier” durante los cultivos en campo .. 31

Tabla 3. Análisis de varianza para el modelo global de crecimiento y supervivencia larval. Cuadrados Medios (CM) y valores de P ... 36

Tabla 4. Valores promedio de supervivencia (%) y sus intervalos de confianza (IC), así como la heterosis para este carácter y desempeño materno (DM) para los grupos genéticos a la edad de 17 días... 37

Tabla 5. Análisis de varianza considerando los efectos de origen de huevo y estrategia de apareamiento en longitud para cada edad y supervivencia al día 17 de edad. Cuadrados medios (CM) y valores de P ... 38

Tabla 6. Medias geométricas de la longitud (µm) de los grupos genéticos para cada edad, así como el valor de heterosis en longitud y desempeño materno (DM) durante el periodo larval .. 40

Tabla 7. Análisis de varianza para los valores de longitud (a) y altura (b) de la semilla desgranada a la edad de 73 días. Cuadrados Medios (CM) y valores de P ... 41

Tabla 8. Valores promedio de longitud, altura y supervivencia y intervalos de confianza por grupo genético y los valores de heterosis por carácter para la semilla desgranada a los 73 días de edad ... 41

Tabla 9. Análisis de varianza para supervivencia durante el periodo de fijación (17-73 días de edad). Cuadrados Medios (CM) y valores de P ... 41

Tabla 10. Análisis de varianza para el modelo global de crecimiento Bahía Magdalena-Bahía Concepción. Cuadrados medios (CM) y valores de P 42

Tabla 11. Medias geométricas (± error standar) por grupo genético considerando todas las edades para cada característica morfométrica en cada medio ambiente .. 47

Tabla 12. Medias geométricas por grupo genético para cada característica morfométrica y los valores de heterosis durante el cultivo en Bahía Magdalena.. 49
Tabla 13. Medias geométricas por grupo genético para cada característica motformétrica y los valores de heterosis durante el cultivo en Bahía Concepción.

Tabla 14. Análisis de varianza para el modelo global (Bahía Magdalena-Bahía Concepción) de supervivencia. Cuadrados medios (CM) y valores de P.

Tabla 15. Valores promedio porcentuales de supervivencia (%) (± error estandar) para cada grupo genético considerando todas las edades en cada medio ambiente.

Tabla 16. Valores promedio porcentuales de supervivencia (%) por grupo genético y los valores de heterosis a lo largo del cultivo en Bahía Magdalena.

Tabla 17. Valores promedio porcentuales de supervivencia (%) por grupo genético y los valores de heterosis a lo largo del cultivo en Bahía Concepción.
RESUMEN

A partir de cruzas intra e interpoblacionales entre dos poblaciones de almeja catarina, *Argopecten ventricosus* (Sowerby II, 1842), de Bahía Magdalena y Bahía Concepción, se determinaron diferencias genéticas entre las poblaciones al evaluar el crecimiento y la supervivencia en estadio larval y adulto, así como la presencia de heterosis para crecimiento durante todo el periodo de cultivo, además de presentarse un efecto considerable del medio ambiente y una interacción genotipo-medio ambiente. El primero de mano de 1994, a partir de desoves masivos controlados (N, = 16 individuos/grupo genético) se realizaron cruzas intra e interpoblacionales por lo que se originaron cuatro grupos genéticos de almeja catarina: dos grupos poblacionales (Magdalena y Concepción) y sus cruzas recíprocas (F1-CM y F1-MC). Bajo las condiciones manejadas durante el cultivo larval (densidad inicial de 10 larvas/ml, temperatura de 22 °C y salinidad de 38 %) la talla promedio de las larvas de la población Magdalena (166.8 μm), no fue significativamente diferente de las larvas de las cruzas recíprocas (F1-CM: 160.1 μm; F1-MC: 153.3 μm), mientras que las larvas derivadas de la población Concepción presentaron la menor longitud promedio (140.4 μm). En cuanto a la supervivencia al final del cultivo larval, la población de Magdalena y la cruza recíproca con tal complemento materno, F1-CM, tuvieron la mayor supervivencia (45.8 % y 47.5 % respectivamente), además de ser significativamente diferentes de la población de Concepción (32.5 %) y la cruza recíproca con tal complemento materno, F1-MC (28.9 %), lo cual implica un fuerte efecto materno y ausencia de heterosis para supervivencia. Concordando con lo esperado teóricamente el efecto materno en crecimiento tuvo mayor impacto al principio del cultivo y posteriormente no tuvo ninguno, mientras que la heterosis en longitud aumentó a lo largo del cultivo, la heterosis final fue de 6.8 %. Durante un periodo de cultivo simultáneo en Bahía Magdalena y Bahía Concepción hasta una edad de 7 meses, el efecto del medio ambiente fue el más determinante en el crecimiento y supervivencia de los grupos genéticos, ya que se presentó un mejor desempeño de todos los grupos en Bahía Magdalena que en Bahía Concepción, lo cual se explica por el mayor rigor ambiental en Bahía Concepción (menor productividad y mayor temperatura media anual), lo cual determina que Bahía Magdalena sea un sitio con mejores condiciones ambientales para el crecimiento de la almeja catarina. Se observó una interacción genotipo medio ambiente, a consecuencia de una elevada...
sensibilidad al medio ambiente de Bahía Concepción por parte de algunos grupos genéticos. En Bahía Magdalena los grupos no presentaron diferencias entre ellos, con la excepción del carácter convexidad, mientras que en Bahía Concepción, y para todos los caracteres evaluados (longitud, altura, convexidad, peso total, biomasa y músculo), la población nativa (Concepción) y ambas cruzas recíprocas fueron significativamente mayores que la población Magdalena. La interacción genotipo-medio ambiente para supervivencia resultó no solo del menor desempeño de la población Magdalena en Bahía Concepción, sino también de un pobre desempeño de las cruzas recíprocas. Al final del cultivo se observó una heterosis mayor en Bahía Concepción (>15%), principalmente en los caracteres peso, biomasa y músculo. No se observó heterosis para supervivencia en ningún de los sitios evaluados. Tanto a nivel larval como adulto, y a pesar de presentarse cierta heterosis para crecimiento, esta no se considera como una heterosis útil a nivel de producción, debido a que las cruzas recíprocas fueron similares a la población con el mejor crecimiento en cada etapa sin llegar a superarla. En ambos sitios de cultivo, Bahía Magdalena ó Bahía Concepción, las poblaciones nativas son las más adecuadas para ser utilizadas como recurso inicial en la implementación de un programa de mejoramiento genético y/o repoblamiento.
Genetic differences, when growth and survival were evaluated, were determined between two populations of the catarina scallop *Argopecten ventricosus* (= *circularis*) (Sowerby II, 1842) from Bahía Magdalena and Bahía Concepción when intra- and intercrosses were produced. Also, the presence of growth heterosis was detected during the culture and a considerable environmental effect and a genotype-environmental interaction were seen. On 1 March 1994, intra- and intercrosses between the populations, by means of controlled massive spawnings, formed four genetic groups of the catarina scallop. There were two parental population groups (Magdalena and Concepción) and their reciprocal crosses (Fl-CM and Fl-MC). Under managed conditions during larvae culture (initial stocking density of 10 larvae/ml, temperature 22 °C, and salinity 38%), the mean size of the Magdalena population (166.8 μm) was not significantly different from the reciprocal cross larvae (Fl-CM: 160.1 μm; Fl-MC: 153.3 μm), whereas the larvae derived from the Concepción population had the lowest average length (140.4 μm). For survival at the end of the larvae culture, the Magdalena population (45.8%) and the reciprocal cross with its maternal complement, Fl-CM (47.5%), had the highest survival. Both were significantly different from the Concepción population (32.5%) and the reciprocal cross with its maternal complement, Fl-MC (28.9%). This shows a strong maternal effect and the absence of heterosis for survival. In agreement with the theoretical expectations, the maternal effect on growth had a bigger impact at the beginning of the culture, disappearing later, whereas the heterosis in length increased during the culture with final heterosis of 6.8%. During the simultaneous growout in Bahía Magdalena and Bahía Concepción to 7-months age, the environment effect was the greatest determinant in the growth and survival of the genetic groups, with better performance of genetic groups in Bahía Magdalena than in Bahía Concepción. This can be explained by the greater environmental stress in Bahía Concepción (low productivity and high annual average temperature). This indicates Bahía Magdalena is a place with better environmental conditions for the growth of the catarina scallop. A significant genotype by environment interaction was observed, resulting in a high sensitivity to the environment of Bahía Concepción for some genetic groups. In Bahía Magdalena, the groups did not have differences among them, with the exception of width, whereas in Bahía Concepción the evaluated characteristics (length,
height, width, total weight, tissue weight, and muscle weight) of the native population (Concepción) and both reciprocal crosses were significantly larger than the Magdalena population. The genotype-environmental interaction for survival resulted not only in a low performance of the Magdalena population in Bahía Concepción, but also in a poor performance of the reciprocal crosses. At the end of the culture there was a bigger heterosis in Bahía Concepción (>15%) for the characteristics measuring weights. There was no heterosis for survival in either of the evaluated environments. At both stages, larval and adult, and regardless of certain heterosis for growth, this cannot be considered an “useful heterosis” at the production level because both reciprocal crosses were similar to the population with the best growth in each stage without exceeding them. In both environments, Bahía Magdalena or Bahía Concepción, the native populations were the most suitable to be used as an initial resource in the implementation of a genetic-improvement program and a restocking program.
GLOSARIO

Adaptación: Característica estructural o funcional de un organismo que le permite vivir mejor en su ambiente (Ayala y Kiger, 1984); el proceso evolutivo por el cual los organismos sufren modificaciones que favorecen su supervivencia y reproducción en un medio ambiente dado (Hartl, 1991).

Aditiva, variación: La magnitud de la variación genética que resulta de la acción aditiva de los genes; el valor que la variación genética asumiría si no existiera dominancia y interacción en los alelos que afectan a la característica (Hartl, 1991).

Alelo: Una de dos o más formas alternativas de un gen, cada uno con una secuencia de nucleótidos única (Ayala y Kiger, 1984).

Cruzamiento "outbreeding": Apareamiento de organismos lo menos emparentados posible (Stufflebeam, 1989). Apareamiento entre individuos de diferentes razas o poblaciones.

Deriva genética: Variación en las frecuencias alélicas de una generación a otra debida a fluctuaciones al azar (Ayala y Kiger, 1984).

Dominancia completa: Condición en la cual el fenotipo del heterocigoto es similar al fenotipo de uno de los homocigotos (Falconer, 1989).

Dominancia parcial: Condición en la cual el fenotipo del heterocigoto se sitúa intermedio entre los correspondientes homocigotos pero más similar a uno de ellos (Hartl, 1991).

Dominancia, variación debida a: La parte de la variación genotípica no aditiva que resulta de los efectos dominantes de los alelos que afectan a la característica (Hartl, 1991).

Dominante: Alelo, o el fenotipo correspondiente, que se manifiesta en todos los heterocigotos (Ayala y Kiger, 1984).

Endogamia "inbreeding": Apareamiento de organismos relacionados entre sí (Gäll, 1987).

Enzima: Una proteína o agregado de proteínas que cataliza una reacción bioquímica específica y que no es alterada por sí misma durante el proceso (Hartl, 1991).

Epistasis: Interacción entre genes, de tal manera que un gen interfiere o impide la expresión de otro (Hartl, 1991).
Estrés medioambiental: Cualquier factor o situación que es capaz de reducir el desarrollo de un organismo o alterar sus funciones normales cuando se llega a los límites de tolerancia para el factor ambiental en cuestión (Baker, 1988).

Fenotípica, variación: Variación total en una característica métrica fenotípica entre los individuos de una población (Hartl, 1991).

Fenotipo: Las propiedades observables de una célula u organismo, determinadas por el genotipo y el medio ambiente (Hartl, 1991).

F1: Primera generación resultante del cruzamiento entre organismos de diferentes poblaciones o líneas endogámicas (Falconer y Mackay, 1996).

Gen: En el genoma de un organismo, una secuencia de nucleótidos a la que se le puede asignar una función específica (Ayala y Kiger, 1984). Unidad hereditaria que contiene información genética que es transcrita a RNA y procesada a una molécula de RNA que funciona directamente o es traducida a una cadena polipeptídica (proteína); un gen puede mutar a varias formas (Hartl, 1991).

Genotípica, variación: La parte de la variación fenotípica atribuible a diferencias en genotipos entre los individuos (Hartl, 1991).

Genética: Rama de la Biología que estudia los fenómenos de la herencia y variación, y las leyes que rigen las semejanzas y diferencias entre individuos con ascendencias comunes (Villee, 1985).

Genética cuantitativa: Rama de la genética en la que se analizan las características fenotípicas que pueden ser medidas en una escala de manera continua (Falconer, 1989) y que son determinadas por la acción aditiva de múltiples genes (Hartl, 1991).

Genética de poblaciones: Rama de la genética en la que se estudia la variabilidad genética de las poblaciones naturales, expresada en frecuencias genotípicas y alélicas, así como los mecanismos que la hacen variar en generaciones consecutivas.

Genotipo: Suma total de la información genética contenida en un organismo; la constitución genética de un organismo con respecto a un locus o algunos loci génicos en consideración (Ayala y Kiger, 1984).

Heterocigoto: Célula u organismo que tiene dos alelos diferentes en un locus dado en cromosomas homólogos (Ayala y Kiger, 1984).

Heterosis: Incremento porcentual en desempeño de las cruzas sobre el promedio de las líneas parentales. Manera de cuantificar el vigor híbrido (Stufflebeam, 1989).
Heterosis útil: Heterosis en la cual las cruzas presentan un mejor desempeño que la mejor de las lineas parentales (Falconer y Mackay, 1996).

Heterocigosidad: La proporción de individuos heterocigotos para un locus, o de loci heterocigotos en un individuo (Ayala y Kiger, 1984).

Homocigoto: Célula u organismo que tiene el mismo alelo en un locus dado de los cromosomas homólogos (Ayala y Kiger, 1984).

Homoscedasticidad: Término usado en estadística. Homogeneidad o igualdad de varianzas entre un grupo de muestras, es una condición importante antes de realizar varias pruebas estadísticas. La condición inversa se conoce como heteroscedasticidad (Sokal y Rohlf, 1981).

Locus (plural loci): Lugar en un mapa genético en el que reside un gen particular (Ayala y Kiger, 1984).

Materno, efecto: Influencia del fenotipo materno sobre el fenotipo de la progenie (Pirchner, 1983). Estará en función de factores genéticos y no genéticos. En el caso de moluscos y otros organismos en los que se acumulan reservas energéticas en el huevo durante la gametogénesis, las condiciones ambientales serán de vital importancia en la determinación de la cantidad y calidad de tales reservas. El efecto materno se evalúa en los primeros estadios del desarrollo, en los cuales el abastecimiento de energía proviene principalmente de las reservas del huevo.

Medio ambiental, variación: La parte de la variación fenotípica entre organismos que atribuía diferencias en efectos del medio ambiente (Hartl, 1991).

Medio ambiente: Todo lo que rodea a un organismo que incluye factores tanto abióticos como bióticos. Se puede caracterizar en el caso del medio marino por parámetros fisicoquímicos, como temperatura, salinidad, oxígeno disuelto, turbidez, corrientes, los cuales a su vez determinan a los productores primarios, microalgas, algas, pastos, sobre los cuales se establece la cadena de consumidores.

Pediveliger, larva: Etapa final del periodo larval de ciertos moluscos, precedida de una metamorfosis. Se caracteriza por la desaparición del velo y el desarrollo del pie en la larva que le permite establecerse en el fondo para adoptar los hábitos bentónicos del adulto (Barnes, 1990).
Población: Grupo de organismos de la misma especie que habitan una determinada área geográfica (Hartl, 1991) y que por ende se entrecruzan y comparten un acervo común de genes (Ayala y Kiger, 1984).

Recesivo: Alelo, o el rasgo correspondiente, que se manifiesta solamente en los homocigotos (Ayala y Kiger, 1984).

Stock: Anglicismo con el cual se hace referencia a una población en términos pesqueros. Existencias en español.

Veliger, larva: Segunda etapa larval, después de trocófora, en la mayoría de las clases de moluscos. Se caracteriza por su simetría y la aparición de la concha, el velo y la boca, los cuales le confieren gran capacidad para nadar y filtrar su alimento (microalgas) (Barnes, 1990).

Vigor híbrido: Superioridad del heterocigoto sobre los hornocigotos con respecto a uno o más caracteres (Ayala y Kiger, 1984). Término preferentemente utilizado para definir la superioridad de una cruza entre poblaciones o entre especies o variedades altamente diferentes.
La almeja catalina *Argopecten ventricosus* (= *circulans*) (Sowerby II, 1842) (Waller, 1995) es un recurso pesquero muy importante en ambas costas de la Península de Baja California Sur (Félix-Pico, 1991). En la actualidad además de la captura directa se ha dado un gran impulso a otras alternativas para su producción, como lo son la recolección de semilla silvestre para su posterior engorda en condiciones más controladas, o el reciente desarrollo de tecnologías de cultivo larval, que permiten producir semilla en condiciones de laboratorio para su posterior engorda en campo. El desarrollo de tecnologías de cultivo larval permite, realizar programas de repoblamiento en áreas sobreexplotadas, sustentados en una previa evaluación de la respuesta de diferentes poblaciones a un medio ambiente específico. Así mismo, pero relacionado con la producción con fines de explotación, estas tecnologías permiten el reducir o eliminar la dependencia de desoves naturales con fines de captación de semilla; el producir semilla continuamente a lo largo del año y el realizar programas de mejoramiento genético con fines de incrementar el rendimiento de los cultivos. Los programas tendientes a mejorar a organismos cultivados parten de la evaluación de las poblaciones naturales disponibles, comparándolas y en caso de que existan diferencias entre éstas, seleccionando a la mejor (Refstie, 1990).

Para la evaluación de poblaciones de moluscos susceptibles de cultivar, Gjedrem (1983) sugiere que esta se sustente en el análisis comparativo de características genéticas cuantitativas con impacto directo o indirecto sobre la producción, tales como: tasa de crecimiento, supervivencia, eficiencia en la conversión de alimento, resistencia a enfermedades, edad de maduración y fecundidad. Por tanto, los programas de mejoramiento genético para características relacionadas con el crecimiento en poblaciones de bivalvos sujetas a producción artificial, deben de estar basados en el reconocimiento de las poblaciones existentes (stocks), específicamente en sus fenotipos importantes a nivel de producción, tanto larval como de juveniles y adultos en campo. La evaluación de las poblaciones disponibles permite determinar cual es la mejor para producción artificial, ya sea durante la etapa de cultivo larval o durante el periodo de crecimiento en campo bajo determinado medio ambiente. Newkirk (1980) ha enfatizado...
que los organismos utilizados en acuacultura deberían de ser estudiados para
determinar si existen diferencias suficientes entre las poblaciones de tal manera que se
favorezca alguna en particular para el cultivo.

ANTECEDENTES

Para poder determinar si existen diferencias genéticas entre poblaciones de una misma
especie, es necesario producir y cultivar simultáneamente a los organismos bajo las
mismas condiciones ambientales. Esto permite eliminar el efecto que tiene el medio
ambiente sobre el fenotipo. Alternativamente, para evaluar el efecto del medio ambiente
sobre diferentes genotipos, los grupos genéticos deben ser cultivados en diferentes
ambientes, esto es transplantados recíprocamente. Diferentes estudios en bivalvos han
demostrado la existencia de diferencias poblacionales para características biométricas al
crecer a sus progenies simultáneamente bajo las mismas condiciones ambientales. Uno
de los bivalvos más estudiados a nivel de comparaciones poblacionales es el Ostión
americano *Crassostrea virginica*, para el cual varios autores han observado diferencias
genéticas en crecimiento y supervivencia en estadios larvales (Newkirk et al., 1977;
Newkirk 1978) así como en adultos (Mallet y Haley 1983; Hawes et al.; 1990, Martínez y
DiMichele 1992). En lo que respecta a mítílidos, en varios estudios poblacionales de
Mytilus edulis en los que se realizaron transplantes recíprocos se observaron diferencias
interpoblacionales en supervivencia, las cuales estuvieron genéticamente determinadas
(Dickie et al., 1984; Mallet et al., 1987; Kautsky et al., 1990).

Entre los pectínidos también se han estudiado diferentes poblaciones de algunas
especies. Kraeuter et al. (1984) evaluaron dos subespecies de *Argopecten irradians*,
encontrando diferencias genéticas en largo, color y número de costillas en la concha.
Paulet et al. (1988) demostraron la existencia de diferencias genéticas en crecimiento y
supervivencia larval entre dos poblaciones de *Pecten maximus*. Cochard y Devauchelle
(1993) compararon el crecimiento y supervivencia larval de cuatro poblaciones nativas y

Un factor muy importante a considerar cuando se pretenden evaluar distintas poblaciones es la elección de las condiciones de cultivo apropiadas, abarcando desde el cultivo en laboratorio hasta la engorda en el campo. En muchos casos al trabajar bajo determinadas condiciones de cultivo se pueden o no observar diferencias poblacionales debido a que las características fenotípicas que son utilizadas para definir el crecimiento no son determinadas únicamente por la información genética, sino también por el efecto del medio ambiente sobre los diferentes genotipos evaluados (fenotipo = genotipo + medio ambiente; Falconer y Mackay, 1996). De esta manera las diferencias entre grupos genéticos se pueden evidenciar al cultivar a los organismos en un mismo medio ambiente. Por otro lado, es importante el evaluar también el efecto del medio ambiente sobre los diferentes grupos genéticos, lo cual se logra al cultivarlos simultáneamente en diferentes medios ambientales.

En los casos más simples, el efecto del medio ambiente sobre el fenotipo es aditivo, y cada ambiente aumenta o reduce en la misma proporción el fenotipo independentemente del genotipo (Hartl, 1991), por lo que los genotipos mantienen el mismo orden de desempeño en todos los ambientes, siendo siempre un genotipo el mejor (Falconer, 1989). Sin embargo, cuando no se cumple lo anterior, esto es, cuando el efecto que tiene el medio ambiente sobre el fenotipo es diferente en función de cada genotipo, el resultado es lo que se conoce como una interacción genotipo-medio ambiente. Tal interacción se presenta cuando los grupos genéticos no se comportan de manera similar entre los ambientes probados, ya que se presenta un cambio en el orden
de desempeño de los genotipos en función del medio ambiente (Baker, 1988) o un mayor efecto del medio ambiente sobre algunos genotipos. Esto ocurre como consecuencia de que algunos genotipos presentan una mayor sensibilidad que otros a las condiciones específicas de un medio ambiente. La evaluación de este tipo de interacción es altamente relevante para poblaciones que se pretenden utilizar para cultivar en diferentes medios ambientales, y la ocurrencia de este tipo de interacción es indicada cuando se observa una interacción estadística significante entre genotipo y medio ambiente (Falconer y Mackay, 1996).

Cuando se ha cultivado a Crassostrea *virginica* a diferentes salinidades se ha observado una interacción genotipo-medio ambiente tanto en crecimiento como en supervivencia larval (Newkirk et al., 1977; Newkirk, 1978). Mallet y Haley (1983) observaron que la tasa de crecimiento de distintos grupos experimentales de Crassostrea *virginica* dependió del medio ambiente, debido a una interacción genotipo-medio ambiente significativa en longitud y peso, ya que algunos grupos crecían bien solo en un determinado ambiente.

Adicionalmente, en la *planeación* de un programa de mejoramiento genético, no solamente es importante el conocer la respuesta aislada de cada una de las poblaciones en estudio, sino también la respuesta en progenies derivadas del cruzamiento entre esas poblaciones. En bivalvos existen múltiples estudios que evalúan el crecimiento de ciertas poblaciones y sus cruzas recíprocas en especies como: Crassostrea *virginica* (Newkirk et al., 1977; Newkirk, 1978; Mallet y Haley, 1983; Mallet y Haley, 1984; Hawes et al., 1990; Martinez y DiMichele, 1992), *Ostrea edulis* (Newkirk, 1980), Mercenaria mercenaria (Knaub y Eversole, 1988; Manzi et al., 1991) y *Argopecten irradians* (Kraeuter et al., 1984), ya que cuando organismos provenientes de poblaciones con diferencias en sus frecuencias alélicas son cruzados, la progenie puede desarrollarse mejor que sus padres en cualquiera de las características antes citadas, debido tanto a efectos de complementación como a posibles efectos heteróticos, lo cual podría indicar que el mejor método de mejoramiento sería el cruzamiento.

La heterosis, definida como el incremento porcentual en determinadas cualidades de las cruzas recíprocas sobre el promedio de las poblaciones parentales (Stufflebeam, 1989),
resulta del efecto conjunto de dos características genéticas: alta heterocigosidad en las cruzas a consecuencia de diferenciación genética entre las poblaciones parentales, y la presencia de dominancia en las relaciones interalélicas de algunos de los genes involucrados en el fenotipo para el cual se estima la heterosis (Falconer, 1989; Van Vleck et al., 1987). Para que exista heterosis ambas condiciones deben de existir. Alta heterocigosidad sin dominancia no resulta en heterosis, así como la presencia de muchos genes con relaciones interalélicas de tipo dominante no implica que habrá heterosis si esos genes no tienen diferentes alelos, esto es, si están en condición homocigótica (Falconer, 1989). Debido a este requerimiento, no todos los cruzamientos resultan en heterosis. Por ejemplo Newkirk (1986) no encontró heterosis significante en tasa de crecimiento en la progenie de la intercruza de dos poblaciones de ostión europeo Ostrea edulis. Por otro lado se ha observado heterosis en crecimiento y supervivencia larval en Crassostrea virginica (Newkirk, 1978), donde algunas de las cruzas de cuatro poblaciones al final del cultivo se desarrollaron mejor que las poblaciones parentales. Mallet y Haley (1983) evaluaron tres poblaciones de Crassostrea virginica y sus cruzas, observando heterosis en peso total después de 3 años de cultivo en dos de las tres cruzas interpoblacionales evaluadas. Manzi et al. (1991) al evaluar cruzas (intra e interpoblacionales) entre dos poblaciones de Mercenaria mercenaria observaron que estas fueron significativamente diferentes en tamaño a los 2 años de edad, siendo las cruzas interpoblacionales las más grandes, lo cual es una manifestación de heterosis.

En el caso de moluscos, el propósito de evaluar el crecimiento de cruzas recíprocas no solo busca detectar la ocurrencia de heterosis como tal, sino el conocer si estas cruzas presentan ciertas ventajas tanto en crecimiento como en supervivencia a consecuencia de presentar una mayor variabilidad genética. Esto obedece al hecho de que en moluscos se ha observado una correlación positiva entre alta variabilidad genotípica y crecimiento (Zouros et al., 1980; Koehn y Shumway, 1982; Foltz et al., 1983; Garton et al., 1984; Koehn y Gaffney, 1984), así como con supervivencia (Volckaert y Zouros, 1989).

Una forma de crear máxima variabilidad genotípica en individuos es a través del cruzamiento de poblaciones aisladas entre sí, ya sea por barreras espaciales o...
temporales. En el caso de las poblaciones de almeja *catarina* de Bahía Concepción y de Bahía Magdalena, existe un aislamiento espacial; esto es, una barrera geográfica compuesta por la misma Península de Baja California. Debido a diferentes condiciones de medio ambiente, se espera que los procesos de selección natural que han operado sobre cada una de esas poblaciones hayan resultado en diferencias alélicas entre las mismas; de tal forma que al cruzarlas, su progenie presentará una alta variabilidad genotípica, que podría traducirse en un mayor crecimiento y/o una mayor supervivencia.

En este estudio se realizaron apareamientos intra e interpoblacionales entre ejemplares de almeja *catarina* *Argopecten ventricosus* provenientes de Bahía Magdalena y Bahía Concepción, y se cultivaron a las progenies en su periodo larval en laboratorio y de juvenil a adulto en dos ambientes distintos. Se evaluó la presencia de heterosis para crecimiento y supervivencia, paralelamente a la evaluación de las poblaciones, y la presencia o ocurrencia de interacción genotipo-medio ambiente.

JUSTIFICACION

En el Estado de Baja California Sur, a pesar de múltiples estudios realizados, no se ha evaluado a las poblaciones de almeja *catarina* en forma simultanea, ni se han estudiado los efectos del cruzamiento sobre el crecimiento y supervivencia. El crecimiento de la almeja *catarina* solo ha sido evaluado *in situ* en la población de Bahía Magdalena (Félix-Pico, 1993); en tanto que en el aspecto reproductivo se han realizado algunos estudios que obtienen diferentes periodos reproductivos para las poblaciones de Bahía Magdalena (Félix-Pico, 1993), Bahía Concepción (Villalejo-Fuerte y Ochoa-Báez, 1993) y Bahía de La Paz (Baqueiro et al., 1981). Sin embargo, estos resultados se han obtenido a partir de muestreos directos en cada localidad en diferentes tiempos, lo cual no permite establecer si las diferencias encontradas se deben a diferencias genéticas o condiciones medioambientales. Por tanto, ya sea con fines de repoblamiento o de producción acuacultural, es necesario determinar la respuesta simultanea de progenies de las poblaciones deseadas evaluadas bajo las mismas condiciones ambientales, permitiendo
esto definir cual es la más adecuada para el fin que se persiga (mejoramiento genético y/o repoblamiento).

La relevancia de este estudio radica en que no se hizo a partir de muestreos de semilla silvestre sino que a partir de larvas de la misma edad, producidas y cultivadas simultáneamente bajo las mismas condiciones. Esta metodología permite eliminar efectos medio ambientales temporales entre grupos genéticos y conocer si existe o no una interacción genotipo-medio ambiente, cuando estos grupos se evalúan en diferentes medios ambientales.

La información generada de estos estudios se pretende que tenga dos fines: uno es la generación del conocimiento básico sobre las características genéticas de estas dos poblaciones y sus cruzas en cuanto a su crecimiento y supervivencia; el otro obtener un conocimiento práctico que permita definir cual población o cruza recíproca se desarrolla mejor bajo determinado medio ambiente. Además, a nivel de programa de mejoramiento genético definirá si el cruzamiento poblacional es en realidad una estrategia importante para el mejoramiento de esta especie, y sentará las bases genéticas y productivas para el conocimiento requerido en el planteamiento óptimo de programas de repoblamiento.
OBJETIVO

Objetivo general.

Evaluar dos poblaciones de almeja catarina en Baja California Sur y sus cruzas recíprocas para diferentes características fenotípicas del crecimiento y la supervivencia.

Objetivos particulares.

- Determinar cual población o cruza presenta el mejor fenotipo para crecimiento y supervivencia durante el periodo larval.

- Evaluar la presencia de heterosis y efectos maternos durante la etapa larval.

- Determinar cual población o cruza presenta el mejor fenotipo para crecimiento y supervivencia durante la etapa adulta en cada medio ambiente probado.

- Determinar si existe efecto del medio ambiente sobre las distintas características fenotípicas evaluadas, así como interacción genotipo-medio ambiente.

- Determinar si existe heterosis para crecimiento y supervivencia, es decir un mejor desempeño de las cruzas en relación a las poblaciones parentales, durante el cultivo en ambos medios ambientes.
MATERIALES Y METODOS

AREA DE ESTUDIO

Las dos poblaciones de almeja catarina evaluadas en el presente trabajo de tesis fueron las nativas de las áreas de Bahía Magdalena y Bahía Concepción, de donde se extrajeron los reproductores que fueron acondicionados en laboratorio para producir los grupos experimentales de esta investigación (Fig. 1).

Bahía Magdalena

Bahía Magdalena es un complejo lagunar situado en las costas del Pacífico de B.C.S. localizado entre los 24° 15’ y 25° 20’ N y los ll 1° 30’ y 112° 15’ W. En lo que respecta a condiciones fisicoquímicas se tienen reportes de temperatura superficial de manera puntual en distintos periodos: de 1973 a 1974 con temperatura máxima y mínima de 28 y 16” C (Alvarez-Borrego et al., 1975); de 1982 a 1988 con una temperatura promedio anual de 22 ºC con máximas de 26.6 ºC en septiembre y mínimas alrededor de 20 ºC para el invierno (Hernández-Rivas et al., 1993). Bahía Magdalena presenta durante todo el año condiciones antiestuarinas, con salinidades mayores que en el océano abierto, 39.2 % en los canales y 34 % en las entradas (Alvarez Borrego et al., 1975), así como surgencias y gran cantidad de nutrientes en la superficie durante todo el año, lo cual determina una variación diurna de clorofila a entre 1.5 y 5.1 mg/m³ en la boca de la Bahía en el mes de abril de 1976 (Acosta-Ruiz y Lara-Lara, 1978).

Los organismos utilizados como reproductores se extrajeron en la parte media de la región en Punta Edie a una profundidad aproximada de 3 m. El cultivo de los grupos experimentales producidos se llevo a cabo en el Estero Rancho Bueno, el cual colinda al norte con Bahía Almejas, la parte mas sureña del complejo lagunar. (Fig. 2).
Fig 1. Localización de las dos poblaciones de almeja catarina estudiadas (Bahía Magdalena y Bahía Concepción) en la Península de Baja California.
Fig. 2. Localización del área de colecta de reproductores (Punta Edie) y del área de cultivo (Rancho Bueno) en el Complejo Lagunar de Bahía Magdalena.
Bahía Concepción

Bahía Concepción está sobre la costa oriental de la Península hacia el Golfo de California entre los 26°33' y 26°53' N y ll 1°40' y 112°00' 0. La Bahía ha sido definida como un sistema antiestuarino por sus condiciones hidrográficas registradas durante 1975 y 1976 (Félix-Pico y Sánchez, 1976) con una salinidad promedio anual de 35.3 ppm, con una media mensual mínima de 34.6 % en enero y una media mensual máxima de 37 % en el mes de septiembre. La temperatura superficial media anual es de 24.9°C, con una media mínima de 17.5°C (enero) y una media máxima de 32.1 °C (septiembre). La concentración de clorofila a a 10 m de profundidad en febrero de 1991 varió espacialmente de 0.3 a 3.1 mg/m³ (Martínez-López y Gárate-Lizárraga, 1994). Reyes - Salinas (1994) observó menores valores de clorofila a en la parte central de la bahía, con concentraciones mínimas (0.38 mg/m³) en octubre y concentraciones máximas (1.63 mg/m³) en diciembre.

La zona de colecta de los organismos fue en la localidad conocida como “El Remate” en la parte sur de la bahía, en tanto que el cultivo de los organismos experimentales fue en la línea costera en la parte media oriental de la Bahía en el punto conocido como “Punta el Coloradito” (Fig. 3).
Fig. 3. Localización del área de colecta de reproductores (El Remate) y del área de cultivo (Punta el Colorado) en Bahía Concepción.
PRODUCCION DE GRUPOS EXPERIMENTALES

Reproductores y acondicionamiento

En cada una de las siguientes poblaciones: Bahía Magdalena (M) y Bahía Concepción (C) en Baja California Sur, México (Fig. 1) sesenta organismos seleccionados por su condición de madurez (Estado III - IV en la escala de Sastry, 1963) fueron colectados y transportados al laboratorio. Para el acondicionamiento se colocaron grupos de 6 organismos en contenedores de 45 l, cada reproductor fue alimentando diariamente con una ración de 3.5 x 10^6 células de Isochysis galbana y Chaetoceros muelleri en una proporción 1:1. La temperatura y salinidad del agua fueron de 21 °C ± 1 °C y 38 ± 1 %III, respectivamente. El agua (filtrada y tratada con luz U.V.) fue recambiada diariamente y las heces removidas sifoneando del fondo de cada contenedor. Aproximadamente 15 días después de que el acondicionamiento comenzó, los reproductores de ambas poblaciones alcanzaron la madurez sexual (estado IV) en la escala de Sastry (1963).

Desove

El primero de marzo de 1994, 32 reproductores de cada población fueron seleccionados para ser desovados. Para inducir el desove de cada organismo, se les inyectó en el músculo aductor 0.2 ml de Serotonina 0.5mM (5-Hidroxitriptamina). Previo a los apareamientos para conformar los grupos genéticos y con el fin de prevenir poliespermia, los reproductores fueron primero colocados en tanques de 40 l (en grupos de 8 individuos) para la liberación de parte del esperma.

Cuatro grupos genéticos fueron conformados: dos poblaciones parentales (Magdalena y Concepción) así como sus cruzas recíprocas, Fl-CM y Fl-MC (F1-paterno/materno). Los apareamientos para conformar los cuatro grupos genéticos se llevaron a cabo en tinas de 1500 l, por lo que se utilizaron un total de 8 tinas (2 por grupo genético). Debido a que esta especie es hermafrodita y la probabilidad de autofecundación existe cuando...
los gametos femeninos y masculinos son liberados en el mismo contenedor, la estrategia de apareamiento intra-grupo para evitar esto fue la siguiente. Para cada una de las poblaciones, se colocaron 8 individuos en cada una de las dos tinas correspondientes a esa población, para que cada uno de ellos liberara los gametos masculinos y posteriormente se intercambiaran a la otra tina para que liberaran los gametos femeninos. En el caso de las cruzas recíprocas, se colocaron 8 individuos de Bahía Magdalena en una tina y 8 individuos de Bahía Concepción en otra. Al intercambiar estos individuos entre tinas, cada una de ellas contenía una de las cruzas recíprocas (Fig. 4). De esta manera el número total de individuos utilizados por grupo genético fue de 16 (Nt=16 individuos/grupo genético). Debido a que el diseño de apareamientos permitió utilizar los mismos 8 individuos como machos para una de las cruzas recíprocas, y como hembras para la otra cruza, ambos grupos genéticos estuvieron relacionados entre sí (hermanos carnales y medios hermanos).

La temperatura y la salinidad durante el desove fueron de 20°C y 38 ‰, respectivamente.

CULTIVO LARVAL

Una vez que la larva “D” pudo ser manipulada, treinta y seis horas después de la fertilización, cada tanque fue individualmente drenado a través de un tamiz de 30 μm. Las larvas colectadas de cada tanque fueron colocadas en cubetas con 15 litros de agua para estimar el número de estas. Se tomaron tres muestras de 0.5 ml, contando las larvas en ellas, y promediando las tres para estimar el número total por grupo genético. Posteriormente, las larvas de los dos tanques conteniendo el mismo grupo genético fueron mezcladas en proporciones iguales. El experimento se inició con aproximadamente 2,400,000 larvas por grupo genético. Para cada grupo genético se establecieron tres réplicas distribuidas al azar siguiendo el procedimiento de Neter et al. (1985). Se utilizaron tanques de cultivo de 80 l de capacidad a una densidad inicial de 10 larvas/ml (800,000 larvas/tanque).
Fig. 4 Diseño de apareamientos y los 4 grupos genéticos que se generan.
El mantenimiento durante el cultivo larval consistió de recambiar el 100 % del agua cada tercer día. La alimentación fue en base a *Isochrysis galbana* a una concentración que se fue incrementando conforme al crecimiento de las larvas (Tabla 1). Durante todo el cultivo larval se manejó agua filtrada hasta 1 μm y tratada con luz UV, a una temperatura y salinidad de 22°C y 38 %, respectivamente.

<table>
<thead>
<tr>
<th>Periodo (días)</th>
<th>Ración (cel/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivo larval Isochrysis galbana</td>
<td></td>
</tr>
<tr>
<td>2-6</td>
<td>30,000</td>
</tr>
<tr>
<td>7-13</td>
<td>60,000</td>
</tr>
<tr>
<td>14-17</td>
<td>100,000</td>
</tr>
<tr>
<td>Cultivo en fijación Isochrysis galbana- Chaetoceros muelleri</td>
<td></td>
</tr>
<tr>
<td>18-25</td>
<td>120,000</td>
</tr>
<tr>
<td>26-37</td>
<td>150,000</td>
</tr>
<tr>
<td>38-41</td>
<td>180,000</td>
</tr>
<tr>
<td>42-58</td>
<td>200,000</td>
</tr>
<tr>
<td>59-73</td>
<td>240,000</td>
</tr>
</tbody>
</table>

Tabla 1. Alimentación diaria de microalgas durante el cultivo larval y en fijación.

Para la evaluación del crecimiento, se tomaron muestras larvales los días 7, 11, 15 y 17, las cuales se preservaron con formol al 4 %. Para cada réplica, se midió la longitud (distancia anteroposterior en la concha) de 30 larvas. La supervivencia fue estimada al día 17 de edad, contando por triplicado el número de larvas vivas en cada réplica, usando alicuotas de 1.5 ml y extrapolando al volumen total.

Análisis estadístico

Crecimiento

Las diferencias en crecimiento entre los grupos genéticos a lo largo de todo el periodo larval fueron evaluadas por medio de un análisis de varianza. Los valores de las mediciones de longitud fueron transformados a logaritmo natural para incrementar la
normalidad y homoscedasticidad (Neter et al., 1985). Debido a la naturaleza azarosa del efecto de réplica, el modelo fue mixto (Modelo III):

\[Y_{ijk} = u + E_i + G_j + R_{G_k(i)} + E_i * G_j + E_i * R_{G_k(i)} + \epsilon_{m(ijk)} \]

donde:

\[Y_{ijk} \] = longitud de la larva \(m \) dentro de la réplica \(k \) del grupo genético \(j \), a la edad \(i \);

\(u \) = Media constante;

\(E_i \) = Efecto de edad (fijo) sobre longitud \((j = 1,2,3,4) \);

\(G_j \) = Efecto de Grupo genético (fijo) sobre longitud \((j = 1,2,3,4) \);

\(R_{G_k(i)} \) = Efecto de réplica (azaroso) dentro de los grupos genéticos \((k = 1,2,3) \);

\(E_i * G_j \) = Interacción entre edad y grupo genético;

\(E_i * R_{G_k(i)} \) = Interacción (azarosa) entre edad y réplica dentro de grupo genético;

\(\epsilon_{m(ijk)} \) = error observacional (azaroso) \((m = 1, \ldots, 30) \).

Para cada edad se hizo un análisis comparativo de medias (Prueba de Tukey) llegando a determinar intervalos de confianza para cada valor promedio de grupo genético.

Supervivencia

Los valores porcentuales de supervivencia larval fueron transformados a valores angulares para estabilizar la varianza de los errores (Rohlf y Sokal, 1981). El modelo lineal para el análisis de supervivencia fue:

\[Y_{ij} = u + G_i + \epsilon_{ij} \]

donde:

\(Y_{ij} \) = El valor angular de supervivencia observada en la réplica \(j \) dentro del grupo genético \(i \);
\(\beta = \) Media constante;
\(G_i = \) Efecto de grupo genético sobre supervivencia \((i = 1, 2, 3, 4)\);
\(\epsilon_{ij} = \) error observacional \((j = 1, 2, 3)\).

Las medias de supervivencia en valores angulares fueron comparadas con una prueba de comparación múltiple (Prueba de Tukey), definiendo intervalos de confianza (prueba de \(t\)) para cada media de grupo genético y retransformando a valores porcentuales.

Adicionalmente al posible efecto heterótico debido al esperado incremento en heterocigosidad en las cruzas, un segundo efecto debido a diferencias maternas fue considerado. Para determinar la significancia de cada uno de estos efectos sobre longitud para cada edad y supervivencia al día 17, se examinaron los valores medios de longitud (o supervivencia) con un ANOVA, en el que se probaron los efectos de “origen de huevo” (Magdalena o Concepción) y “estrategia de apareamiento” (intra- v.s. interpoblacionales), con el siguiente modelo:

\[
Y_{ijk} = \mu + H_i + A_j + (H*A)_{ij} + \epsilon_{ijk}
\]

Donde:

\(Y_{ijk} = \) longitud media (o valor porcentual de supervivencia) de la réplica \(k \) del origen de huevo \(i \) y la estrategia de apareamiento \(j \);
\(\mu = \) Media constante;
\(H_i = \) Efecto de origen de huevo sobre longitud (o supervivencia) \((i = 1, 2)\);
\(A_j = \) Efecto de estrategia de apareamiento sobre longitud (o supervivencia) \((j = 1, 2)\);
\((H*A)_{ij} = \) Interacción entre origen de huevo y estrategia de apareamiento;
\(\epsilon_{ijk} = \) error observacional azaroso \((k = 1, 2, 3)\).
CULTIVO DE SEMILLA EN FIJACION

Cuando las larvas llegaron a la metamorfosis (larva pedivéliger, día 17 de edad), el cultivo se continuó en contenedores rectangulares (taras) de 60 l de capacidad, introduciendo como substrato de fijación bastidores circulares recubiertos con malla negra de luz de 2 mm. Se manejaron tres réplicas por grupo genético siendo un total de 12 unidades experimentales. Se realizaron recambios de agua cada tercer día y alimentación diaria en base a una dieta 1:1 de Isochrysis galbana y Chaetoceros muelleri, aumentando la concentración conforme al crecimiento de la semilla en fijación (Tabla 1).

Después de 56 días en fijación (73 días de vida), cuando la mayoría de las semillas superaron una talla de 700 µm, se realizó el desgrane de las mismas. Para este fin se utilizó una brocha y un flujo de agua sobre el substrato de fijación, propiciando el desprendimiento de la semilla que era recibida en un tamiz de luz de malla de 700 µm.

Se determinó el número total de organismos por unidad de cultivo al contar los organismos contenidos en una probeta de volumen de 5 ml y extrapolando al volumen total ocupado por la semilla en una probeta de 50 ml. Se realizó una evaluación de longitud y altura (Fig. 5) hasta el final del mismo a partir de muestras de 30 organismos por réplica. Posteriormente se mezclaron las semillas pertenecientes a las réplicas de un mismo grupo genético, repartiendo la semilla de cada uno de estos en 18 sobres de 25 x 25 cm (luz de malla = 710 µm), a una densidad de 300 semillas/sobre.

Análisis estadístico

Longitud y altura

Con los valores logarítmicos de longitud y altura de la semilla desgranada se realizaron respectivos análisis de varianza no balanceados, con los efectos principales definidos en el siguiente modelo lineal:

\[Y_{ijk} = \mu + G_i + RG_{j(i)} + e_{k(j)} \]
donde:

\[Y_{ijk} = \text{Longitud o altura del organismo k dentro de la réplica j del grupo genético i; } \]
\[u = \text{Media constante; } \]
\[G_i = \text{Efecto de grupo genético sobre longitud o altura}(i = 1, 2, 3, 4); \]
\[RG_{j(i)} = \text{Efecto azaroso de réplica dentro de los grupos genéticos}(j = 1, 2, 3); \]
\[e_{k(ij)} = \text{Error observacional}(k = 1, ..., 30). \]

Se realizó un análisis comparativo de medias (Prueba de Tukey) llegando a determinar intervalos de confianza para cada valor promedio de grupo genético.

Supervivencia

Se determinó la supervivencia de cada réplica para el periodo de fijación (17-73 días de edad) considerando como valor inicial el número de larvas pediveliger que inicialmente se pusieron para fijación.

Los valores porcentuales de supervivencia fueron transformados a valores angulares (Rohlf y Sokal, 1981). Las diferencias en supervivencia entre los grupos genéticos fueron analizadas con un modelo de análisis de varianza de un solo factor (grupo genético), similar al utilizado para el periodo larval. Para determinar diferencias entre los grupos genéticos en cuanto a supervivencia se realizó una comparación múltiple de medias (Prueba de Tukey) y se obtuvieron sus intervalos de confianza.

CULTIVO EN CAMPO

A mediados de mayo de 1994, nueve sobres con semilla de cada grupo genético fueron transportados a dos sitios de cultivo: Estero “Rancho Bueno” (Complejo Lagunar de Bahía Magdalena) y Playa “El Coloradito” en Bahía Concepción. En cada sitio se contó con 9 réplicas por grupo genético repartidas al azar (Neter et al., 1985). Las artes de cultivo utilizadas consecutivamente en campo fueron de dos tipos: cultivo en superficie y cultivo en fondo.
Fig. 5. Características biométricas evaluadas en la concha de la almeja catarina.
Para el cultivo inicial de la semilla, se utilizaron 3 módulos de 3 canastas suspendidos de un cabo, el cual fue mantenido en superficie con boyas y fijado al fondo con lastres de concreto. La densidad inicial fue de 1200 organismos/canasta (4 sobres/canasta). En ambos sitios, después de 15 días de cultivo se realizó el primer ajuste de densidades al cambiar a los organismos a sobres más grandes (25 x 50 cm, luz de malla=2 mm), quedando ahora 2 sobres por canasta, a una densidad de 600 organismos/canasta. A los 45 días de iniciado el cultivo en campo y con el fin de evitar efectos diferenciales en crecimiento entre canastas causados por estratificación superficial de la temperatura, se cambió a un sistema de cultivo en fondo. Tal sistema consistió en acomodar módulos de 2 canastas en estructuras metálicas de tres niveles, ancladas aproximadamente a 4 m de profundidad. A este tiempo también, se realizó el segundo ajuste de densidades al dejar 100 organismos por canasta, sin necesidad de seguir manteniéndolos en sobres al haber alcanzado la talla mínima para ser liberados en las canastas. Mes con mes, hasta llegar a 4.5 meses de cultivo en campo (octubre de 1994), se les dió mantenimiento a los organismos liberándolos de epibiontes y ajustando densidades hasta llegar a 77 organismos por canasta (Tabla 2).

<table>
<thead>
<tr>
<th>Días de cultivo en campo</th>
<th>Densidades (organismos/canasta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>1200</td>
</tr>
<tr>
<td>15-45</td>
<td>600</td>
</tr>
<tr>
<td>45-75</td>
<td>100</td>
</tr>
<tr>
<td>75-105</td>
<td>85</td>
</tr>
<tr>
<td>105-135</td>
<td>77</td>
</tr>
</tbody>
</table>

Tabla 2. Densidades de cultivo en canastas “Nestier” durante los cultivos en campo.

En cada sitio de cultivo se realizaron biometrías mensuales, a partir de 45 días de cultivo en campo (4 meses de edad), en las que se evaluaron 8 organismos por réplica en cuanto a longitud, altura y convexidad de la concha (Fig. 5), peso total, biomasa (peso de tejidos) y peso del músculo aductor. La supervivencia mes a mes se determinó al
contar el número de organismos por réplica, a partir del ajuste a 100 organismos después de 75 días de cultivo en campo a una edad total de 4 meses.

Análisis estadístico

ANÁLISIS DE EFECTOS DE EDAD, GRUPO GENÉTICO Y MEDIO AMBIENTE.

Crecimiento

Los valores observacionales por individuo para cada característica fenotípica a evaluar (longitud, altura, convexidad, peso total, biomasa y peso de músculo aductor) fueron transformados a logaritmo natural para incrementar la normalidad y homoscedasticidad (Neter et al., 1985) y obtener la media logarítmica por réplica. Para el análisis estadístico de cada característica biométrica a evaluar, las medias logarítmicas fueron transformadas a las unidades observacionales, obteniendo así lo que se conoce como medias geométricas, con las cuales se realizó un análisis de varianza tri-factorial con la finalidad de evaluar el efecto del medio ambiente, la edad y el grupo genético sobre el crecimiento, así como las interacciones entre estos factores principales: grupo genético-medio ambiente (genotipo-medio ambiente), la interacción de edad con medio ambiente y edad con grupo genético.

\[Y_{ijkm} = u + E_i + A_j + G_k + E_i * A_j + E_i * G_k + A_j * G_k + E_i * A_j * G_k + e_{ijkm} \]

donde:

- \(Y_{ijkm} \) = Valor de la característica biométrica evaluada en la réplica \(m \) dentro del grupo genético \(k \) en el medio ambiente \(j \) a la edad \(i \);
- \(u \) = Media constante;
- \(E_i \) = Efecto de edad en la característica evaluada \((i = 1, ..., 4 \) para todos los caracteres a excepción de músculo, donde \(i = 3, 4 \));
- \(A_j \) = Efecto del medio ambiente sobre la característica evaluada \((j = 1, 2) \);
- \(G_k \) = Efecto de grupo genético sobre la característica evaluada \((k = 1, 2, 3, 4) \);
- \(E_i * A_j \) = Interacción entre edad y medio ambiente;
E, *Gk = Interacción entre edad y grupo genético;
A, *Gk = Interacción entre medio ambiente y grupo genético;
E, *A, *Gk = Interacción entre edad, medio ambiente y grupo genético;
e_{ijkm} = Error observacional (m = 1 , ..., 9).

Se realizó un análisis comparativo de medias (prueba de Tukey) para cada efecto o interacción significativa.

Supervivencia

A partir de los valores angulares de supervivencia correspondientes a los últimos tres meses de cultivo, considerando como valor inicial el ajuste realizado a 100 organismos por canasta, se realizó un análisis de varianza en base al modelo de crecimiento antes descrito, para evaluar los efectos de edad, medio ambiente y grupo genético sobre la supervivencia. Al igual que para el crecimiento se realizó un análisis comparativo de medias (prueba de Tukey) para cada efecto o interacción significativa.

Todos los análisis estadísticos se realizaron en el programa SAS (Statistical Analysis Software) System, versión 6.03, fijando a priori un nivel de significancia de $P<0.05$ para todos los análisis.

ESTIMACIONES GENETICAS

Heterosis

Para cada edad de muestreo durante el periodo larval y cultivo en campo en cada ambiente, se evaluó la presencia de heterosis para crecimiento a partir de las medias geométricas de las características evaluadas de cada grupo genético. La heterosis para supervivencia fue evaluada a la edad de 17 días y para las tres últimas edades del
cultivo en campo usando los valores porcentuales de supervivencia. La ecuación para determinar heterosis es la siguiente (Stufflebeam, 1989):

\[
\text{Heterosis } \% = \frac{(F1-P)100}{P}
\]

donde:

\(P\) = Promedio de ambas lineas parentales (M y C);
\(F1\) = Promedio de las cruzas recíprocas (\(F1_{CM}\) y \(F1_{MC}\)).

En cada medio ambiente, para determinar si los valores de heterosis para cada característica durante el cultivo en campo eran significativos se realizó un análisis de varianza bi-factorial, edad*grupo, aunque considerando un efecto de grupo de solo dos niveles: P (los valores de Magdalena y Concepción) y Fl (los valores de Fl-CM y F1-MC).

\[
Y_{ijk} = \mu + E_i + G_j + E_i*G_j + \epsilon_{ijk}
\]

donde:

\(Y_{ijk}\) = Valor de la característica biométrica evaluada en la réplica k dentro del grupo j a la edad i;
\(\mu\) = Media constante;
\(E_i\) = Efecto de edad en la característica evaluada (\(i = 1, \ldots, 4\) para todos los caracteres a excepción de músculo, donde \(i = 3, 4\));
\(G_j\) = Efecto de grupo sobre la característica evaluada (\(j = P, Fl\));
\(E_i*G_j\) = Interacción entre edad y grupo;
\(\epsilon_{ijk}\) = Error obset-vacional (\(m = 1, \ldots, 9\)).

Se consideró significativa la heterosis cuando se presentó un efecto significativo de grupo, lo cual quiere decir que el promedio de las cruzas recíprocas (Fl) fue significativamente diferente del promedio de las poblaciones parentales (P).
Efecto materno

El efecto materno el cual puede ser evaluado en cruzas a edades tempranas tiene un origen compuesto tanto en el efecto del genotipo de las hembras, como en el efecto que tienen las condiciones ambientales durante la maduración de los reproductores sobre el ovocito en vitelogénesis.

Se comparó el desempeño materno (DM) durante el periodo larval en base a Van Vleck et al. (1987), donde el efecto materno de cada población está dado por:

\[
EM(X) = F1(_X) - P - (Heterosis * P)
\]

Donde, \(EM(X)\) = efecto materno de la población \(X\); \(F1(_X)\) = longitud promedio \(\circ\) supervivencia) para la cruza recíproca producida con el huevo de la población \(X\); y \(P\) tal como se definió anteriormente.

Para cada edad durante el periodo larval \((i = 7, 11, 15 y 17)\), se evaluó el desempeño materno (DM) de la manera siguiente:

\[
DM, = EM(M), - EM(C),
\]
RESULTADOS

DEARROLLO LARVAL

Longitud

La tabla 3 contiene los resultados del modelo global de crecimiento larval. Ambos efectos principales (edad y grupo genético) y su interacción fueron estadísticamente significativos ($P<0.05$). No se observó efecto de réplica dentro de grupo genético, ni interacción entre edad y réplica dentro de grupo genético. La edad tuvo un efecto en concordancia con el incremento esperado en longitud media de las larvas ($113.32 \mu m$ al día 7, $145.89 \mu m$ al día II, $181.59 \mu m$ al día 15 y $193.47 \mu m$ al día 17). Adicionalmente, la presencia de una interacción significativa entre edad y grupo genético nos indica la existencia de diferentes tasas de crecimiento entre los grupos genéticos (Fig. 6). La talla promedio durante el cultivo larvario de las larvas de la población de Bahía Magdalena ($166.79 \mu m$), no fue significativamente diferente de las larvas de las cruzas recíprocas (Fl-CM: $160.13 \mu m$; Fl-MC: $153.32 \mu m$), mientras que las larvas derivadas de la población de Bahía Concepción presentaron la menor longitud promedio ($140.44 \mu m$), además de ser significativamente diferentes de la población de Magdalena y ambas cruzas recíprocas.

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) LONGITUD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td>3</td>
<td>3.9407</td>
<td>0.0001 *</td>
</tr>
<tr>
<td>Grupo Genético</td>
<td>3</td>
<td>0.3686</td>
<td>0.001 *</td>
</tr>
<tr>
<td>Réplica (G. Gen.)'</td>
<td>8</td>
<td>0.0236</td>
<td>0.0525</td>
</tr>
<tr>
<td>Edad X Grupo Genético</td>
<td>9</td>
<td>0.027</td>
<td>0.0267 *</td>
</tr>
<tr>
<td>Ead X réplica (G. Gen.)'</td>
<td>24</td>
<td>0.0102</td>
<td>0.1787</td>
</tr>
<tr>
<td>Error' *</td>
<td>1392</td>
<td>0.008</td>
<td>1</td>
</tr>
<tr>
<td>b) SUPERVIVENCIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grupo Genético</td>
<td>3</td>
<td>92.4343</td>
<td>0.0020 *</td>
</tr>
<tr>
<td>Error'</td>
<td>8</td>
<td>7.2392</td>
<td></td>
</tr>
</tbody>
</table>

¹ Efectos azarosos: * indica que los efectos son significativos al nivel establecido

Tabla 3. Análisis de varianza para el modelo global de crecimiento y supervivencia larval. Cuadrados Medios (CM) y valores de P.
El análisis de varianza de la supervivencia al día 17 indicó también diferencias entre los grupos genéticos para esta característica (Tabla 3). Las larvas de la población de Magdalena (M) y la cruza recíproca con tal complemento materno, Fl-CM, tuvieron la mayor supervivencia, y fueron significativamente diferentes (Tabla 4) de la población de Concepción (C) y la cruza recíproca con tal complemento materno, Fl-MC.

<table>
<thead>
<tr>
<th>GRUPOS GENÉTICOS</th>
<th>% SUPERVIVENCIA (IC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magdalena</td>
<td>45.83 (39.65-52.08) a</td>
</tr>
<tr>
<td>Fl-CM</td>
<td>47.49 (41.28-53.74) a</td>
</tr>
<tr>
<td>Fl-MC</td>
<td>28.88 (23.39-34.69) b</td>
</tr>
<tr>
<td>Concepcion</td>
<td>32.49 (26.78-38.46) b</td>
</tr>
<tr>
<td>Heterosis</td>
<td>0 %</td>
</tr>
<tr>
<td>DM</td>
<td>18.61 %</td>
</tr>
</tbody>
</table>

Medias con la misma letra no son estadísticamente diferentes (p > 0.05)

Tabla 4. Valores promedio de supervivencia (%) y sus intervalos de confianza (IC), así como la heterosis para este carácter y desempeño materno (DM) para los grupos genéticos a la edad de 17 días.

Efecto materno y heterosis

Adicionalmente a las diferencias genéticas poblacionales en crecimiento y supervivencia larval observadas en los resultados previos, el efecto que cada población tuvo sobre el comportamiento de las cruzas recíprocas fue altamente significativo debido a un efecto materno resultante de la calidad del huevo. Esto fue indicado por la significancia del efecto de origen de huevo para ambas características evaluadas, longitud a todas las edades y supervivencia (Tabla 5), así como por los resultados del desempeño materno (DM) para supervivencia a la edad de 17 días (Tabla 4) y para longitud a cada edad (Tabla 6). Sin embargo, aún cuando el origen de huevo fue el único efecto significativo sobre la supervivencia, la estrategia de apareamiento también tuvo un efecto sobre la longitud a edades mayores. Hasta una edad de 11 días, el único factor significante fue el de origen de huevo (_M = 117.49 μm, _C = 109.14 μm a los 7 días y _M ≥ 164.62 μm, _C = 137.13 μm a los 11 días). Sin embargo, a la edad de 15 días, la presencia de una interacción significativa entre origen de huevo y estrategia de apareamiento (Tabla 5),
indicó que la longitud no dependía solamente del origen del huevo, ya que la estrategia de apareamiento, esto es, si eran cruzas o poblaciones puras, llegó a ser un factor significativo que afectó diferencialmente el crecimiento de las larvas.

a) LONGITUD

<table>
<thead>
<tr>
<th>FUENTE DE VARIACIÓN</th>
<th>EDAD 7 DIAS</th>
<th></th>
<th></th>
<th>EDAD 14 DIAS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen de huevo (OH)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrategia de apareamiento (EA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH X EA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) SUPERVIVENCIA

<table>
<thead>
<tr>
<th>FUENTE DE VARIACIÓN</th>
<th>EDAD 17 DIAS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Origen de huevo (OH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estrategia de apareamiento (EA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OH X EA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Indica que los efectos son significativos al nivel establecido.

Tabla 5. Análisis de varianza considerando los efectos de origen de huevo y estrategia de apareamiento en longitud para cada edad y supervivencia al día 17 de edad. Cuadrados medios (CM) y valores de P.

A partir del día 15 y hasta el final del cultivo, el valor promedio de las cruzas recíprocas (día 15, Fl = 184.68 μm, P = 177.38 μm; día 17, F1 = 199.8 μm, P = 186 μm) fue superior al valor promedio de las poblaciones puras (Fig. 7) como consecuencia posiblemente de un crecimiento “compensatorio” en la cruza Fl-MC.
Fig. 6. Crecimiento de los cuatro grupos genéticos durante el cultivo larval. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.

Fig. 7. Efecto sobre crecimiento en longitud de origen de huevo (M y C) y estrategia de apareamiento para cada edad. Poblaciones: línea continua; Cruzas recíprocas: línea punteada.
Estos resultados concuerdan con los valores estimados de heterosis y DM a lo largo del cultivo (Tabla 6). Mientras el DM indicó una ventaja en longitud para la cruza recíproca producida con el huevo de Magdalena (Fl-CM) sobre la cruza Fl-MC hasta el día 15, la heterosis estimada para el mismo día fue prácticamente la primera significativa, indicando una ventaja en concordancia al esperado incremento de heterocigosidad en las cruces debido a la estrategia de apareamiento. Para el día 17, el valor estimado de DM indicó la ausencia de efecto materno, evidenciado por un valor igual de longitud media entre las cruces recíprocas y un incremento en el valor estimado de heterosis para longitud (Tabla 6).

<table>
<thead>
<tr>
<th>EDAD (DIAS)</th>
<th>7</th>
<th>11</th>
<th>15</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magdalena</td>
<td>117.03 a</td>
<td>160.73 a</td>
<td>198.15 a</td>
<td>207.63 a</td>
</tr>
<tr>
<td>FI-CM</td>
<td>117.95 a</td>
<td>148.56 a b</td>
<td>188.41 a</td>
<td>199.20 a</td>
</tr>
<tr>
<td>FI-MC</td>
<td>109.75 a</td>
<td>138.80 b</td>
<td>181.01 a</td>
<td>200.40 a</td>
</tr>
<tr>
<td>Concepción</td>
<td>108.54 a</td>
<td>135.46 b</td>
<td>158.78 b</td>
<td>166.65 b</td>
</tr>
</tbody>
</table>

Tabla 6. Medias geométricas de la longitud (μm) de los grupos genéticos para cada edad, así como el valor de heterosis en longitud y desempeño materno (DM) durante el periodo larval.

ORGANISMOS EN FIJACION (SEMILLA)

Longitud y altura

Al momento del desgrane de la semilla (73 días de edad) no se observó efecto de grupo genético en longitud ni en altura, pero sí un efecto significativo de réplica en ambas características (Tabla 7). En concordancia, los valores promedio de longitud y altura de cada grupo genético con sus intervalos de confianza no fueron estadísticamente diferentes (Tabla 8). Estos resultados parecen indicar que durante el periodo de cultivo en fijación, cuando la densidad no puede ser evaluada ni controlada en cada una de las unidades de cultivo (taras.rectangulares), los efectos de réplica pueden enmascarar cualquier diferencia genética entre grupos.
FUENTE DE VARIACION	a) LONGITUD	b) ALTURA
 | G.L. | C M | P | G.L. | C.M. | P |
-------------------|-------|-------|-------|-------|-------|-------|
Grupo Genético | 3 | 0.63 | 0.4255 | 3 | 0.52 | 0.4292 |
Réplica (G. Gen.) | 7’ | 0.59 | 0.0001 * | 7 | 0.49 | 0.0004 * |
Error | 320’ | 0.11 | | 320 | 0.13 | |

* Indica que los efectos son significativos al nivel establecido.
1 Grados de libertad mayores debido a la pérdida de una réplica.

Tabla 7. Análisis de varianza para los valores de longitud (a) y altura (b) de la semilla desgranada a la edad de 73 días. Cuadrados Medios (CM) y valores de P.

LONGITUD ALTURA SUPERVIVENCIA
(m) (mm) %

Grupo Genético	Magdalena	1.7 (1.30-2.24) a	1.90 (1.47-2.47) a	3.26 (1.62-5.46) a
	FI-CM	1.53 (1.17-2.01) a	1.72 (1.33-2.24) a	0.69 (0.09-1.88) b
	FI-MC	1.59 (1.21-2.08) a	1.81 (1.40-2.35) a	0.85 (0.15-2.13) b
	Concepción	1.89 (1.36-2.64) a	2.18 (1.58-3.00) a	3.43 (1.43-6.25) a

Heterosis 0 % 0 % 0 %

1 Medias con la misma letra no son estadísticamente diferentes (p > 0.05).

Tabla 8. Valores promedio de longitud, altura, supervivencia e intervalos de confianza por grupo genético y los valores de heterosis por carácter para la semilla desgranada a los 73 días de edad.

Supervivencia

El modelo unifactorial de supervivencia indicó un efecto significativo de grupo genético (Tabla 9). Las poblaciones puras (Magdalena y Concepción) no fueron diferentes entre sí y presentaron la mayor supervivencia (3.26 y 3.43 %) mientras que las cruzas recíprocas, significativamente diferentes de las poblaciones, no fueron diferentes entre sí (Tabla 8), y presentaron la menor supervivencia (0.69 % FI-CM y 0.85% FI-MC). lo cual representa entre 21 y 25 % de la supervivencia observada para las poblaciones.

Cabe hacer la aclaración que durante este periodo de cultivo se perdió accidentalmente una de las réplicas del grupo genético Concepción.

TABLA 9. Análisis de varianza para supervivencia durante el periodo de fijación (17-73 días de edad). Cuadrados Medios (CM) y valores de P.

* Indica que los efectos son significativos al nivel establecido.
Crecimiento

El análisis del modelo global de crecimiento (Tabla 10) en donde se evaluaron los efectos de la edad, del grupo genético y del medio ambiente, resultó en significancia para todos esos factores, pero también indicó a través de la significancia de las interacciones que los factores no actuaban independientemente sobre las diferentes características de crecimiento evaluadas, por lo que el análisis a continuación, se centra en la presentación de tales interacciones significantes.

<table>
<thead>
<tr>
<th>F. DE VARIACION</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo genético</td>
<td>3</td>
<td>101.23</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>79.70</td>
</tr>
<tr>
<td>Medio ambiente</td>
<td>1</td>
<td>1287.37</td>
<td>0.0001</td>
<td>*</td>
<td>1</td>
<td>692.30</td>
</tr>
<tr>
<td>Edad</td>
<td>3</td>
<td>6570.61</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>5545.88</td>
</tr>
<tr>
<td>Edad X M. amb.</td>
<td>3</td>
<td>547.51</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>493.53</td>
</tr>
<tr>
<td>Edad X G. gen</td>
<td>9</td>
<td>1.38</td>
<td>0.5510</td>
<td></td>
<td>9</td>
<td>0.62</td>
</tr>
<tr>
<td>M. amb X G. gen.</td>
<td>3</td>
<td>36.69</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>46.48</td>
</tr>
<tr>
<td>Edad X M. amb. X</td>
<td>9</td>
<td>4.26</td>
<td>0.0052</td>
<td>*</td>
<td>9</td>
<td>4.04</td>
</tr>
<tr>
<td>G. gen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>252</td>
<td>158</td>
<td></td>
<td>252</td>
<td>116</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONVEXIDAD</th>
<th>F. DE VARIACION</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo genético</td>
<td>3</td>
<td>4.52</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>39.92</td>
<td>0.0001</td>
</tr>
<tr>
<td>Medio ambiente</td>
<td>1</td>
<td>593.42</td>
<td>0.0001</td>
<td>*</td>
<td>1</td>
<td>2944.20</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad</td>
<td>3</td>
<td>1910.03</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>4909.30</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X M. amb.</td>
<td>3</td>
<td>213.81</td>
<td>0.0000</td>
<td>*</td>
<td>3</td>
<td>1256.29</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X G. gen</td>
<td>9</td>
<td>0.33</td>
<td>0.0042</td>
<td></td>
<td>9</td>
<td>5.90</td>
<td>0.0001</td>
</tr>
<tr>
<td>M. amb X G. gen.</td>
<td>3</td>
<td>12.32</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>24.00</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X M. amb. X</td>
<td>9</td>
<td>0.88</td>
<td>0.0239</td>
<td>*</td>
<td>9</td>
<td>5.55</td>
<td>0.0020</td>
</tr>
<tr>
<td>G. gen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>252</td>
<td>041</td>
<td></td>
<td>252</td>
<td>184</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIOMASA</th>
<th>F. DE VARIACION</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
<th>G.L.</th>
<th>C.M.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo genético</td>
<td>3</td>
<td>2.89</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>0.27</td>
<td>0.0001</td>
</tr>
<tr>
<td>Medio ambiente</td>
<td>1</td>
<td>709.27</td>
<td>0.0001</td>
<td>*</td>
<td>1</td>
<td>101.66</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad</td>
<td>3</td>
<td>477.50</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>10.46</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X M. amb.</td>
<td>3</td>
<td>233.42</td>
<td>0.0001</td>
<td>*</td>
<td>3</td>
<td>12.75</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X G. gen</td>
<td>9</td>
<td>0.38</td>
<td>0.0856</td>
<td></td>
<td>3</td>
<td>0.08</td>
<td>0.0715</td>
</tr>
<tr>
<td>M. amb X G. gen.</td>
<td>3</td>
<td>3.30</td>
<td>0.0000</td>
<td>*</td>
<td>3</td>
<td>0.21</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X M. amb. X</td>
<td>9</td>
<td>0.49</td>
<td>0.0206</td>
<td>*</td>
<td>3</td>
<td>0.08</td>
<td>0.0558</td>
</tr>
<tr>
<td>G. gen.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>243</td>
<td>0.22</td>
<td></td>
<td>116</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Indica que los efectos son significativos al nivel establecido.

Tabla 10. Análisis de varianza para el modelo global de crecimiento Bahía Magdalena-Bahía Concepción. Cuadrados medios (CM) y valores de P.
INTERACCIÓN EDAD MEDIO AMBIENTE

En los modelos globales para cada una de las características biométricas evaluadas la interacción edad-medio ambiente indicó la existencia de un crecimiento global diferente entre ambos sitios de cultivo, ya que se observaron tasas de crecimiento significativamente mayores en Bahía Magdalena que en Bahía Concepción (Fig. 8).

INTERACCIÓN EDAD - GRUPO GENÉTICO

La interacción edad-grupo genético, la cual determina si existen tasas de crecimiento significativamente diferentes entre los cuatro grupos genéticos, considerando el promedio de ambos medios ambientales, resultó significante solo para el caracter peso total (Fig. 9), en donde se puede observar un aumento de peso similar entre los grupos genéticos hasta la edad de 5 meses, sin embargo a partir de esta edad y hasta el final del cultivo la cruz Fl-MC presentó un incremento en tasa de crecimiento para peso total mayor que los otros grupos genéticos, en donde los grupos Concepción y Fl-MC fueron intermedios, y la población Magdalena presentó el menor crecimiento.

INTERACCIÓN GRUPO GENÉTICO - MEDIO AMBIENTE

La interacción grupo genético-medio ambiente indicó respuestas fenotípicas diferentes en crecimiento para los grupos genéticos dependiendo del medio ambiente en el que se cultivaron, lo cual se observó en todos los caracteres evaluados. Así, la población Concepción cultivada en Bahía Magdalena, o no presentó diferencias significativas con la población Magdalena (altura, peso total, biomasa) o fue ligeramente menor que Magdalena (convexidad). Solo para el caracter longitud la población Concepción cultivada en Bahía Magdalena tuvo un crecimiento promedio mayor que la población Magdalena. Por otro lado esta misma población, Concepción, presentó el mayor crecimiento en Bahía Concepción, y fue significativamente diferente que el crecimiento observado para la población Magdalena. En lo que respecta a las cruzas recíprocas, el crecimiento de estas fue en Bahía Magdalena, similar o mayor que la población Magdalena y en Bahía Concepción, similar 0 mayor que la población Concepción (Tabla 11, Fig. 10).
Fig. 8. Interacción edad-medio ambiente sobre crecimiento en cada característica biométrica evaluada. BM: Bahía Magdalena; BC: Bahía Concepción.
Fig. 9. Interacción edad-grupo genético: Crecimiento de los cuatro grupos genéticos considerando el promedio de ambos medios ambientales. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1 CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.
Fig. 10. Interacción grupo genético-medio ambiente sobre crecimiento para las distintas características evaluadas. BM: Bahía Magdalena; BC: Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruzas recíprocas Magdalena/Concepción; F1CM: Cruzas recíprocas Concepción/Magdalena, donde paterno/materno.
<table>
<thead>
<tr>
<th></th>
<th>BAHIA MAGDALENA</th>
<th>BAHIA CONCEPCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) LONGITUD (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>34.69 ± 1.93 a</td>
<td>28.79 ± 0.96 c</td>
</tr>
<tr>
<td>FI-CM</td>
<td>35.96 ± 1.81 b</td>
<td>31.88 ± 1.11 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>36.22 ± 1.82 b</td>
<td>33.01 ± 1.09 e</td>
</tr>
<tr>
<td>Concepción</td>
<td>36.15 ± 1.73 b</td>
<td>32.71 ± 1.16 ed</td>
</tr>
<tr>
<td>b) ALTURA (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>34.42 ± 1.82 a</td>
<td>29.46 ± 0.91 d</td>
</tr>
<tr>
<td>F1-CM</td>
<td>35.42 ± 1.67 bc</td>
<td>32.26 ± 1.01 e</td>
</tr>
<tr>
<td>FI-MC</td>
<td>35.83 ± 1.69 c</td>
<td>33.56 ± 0.97 f</td>
</tr>
<tr>
<td>Concepción</td>
<td>34.82 ± 1.55 ab</td>
<td>33.11 ± 1.05 f</td>
</tr>
<tr>
<td>c) CONVEXIDAD (mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>18.18 ± 1.13 b</td>
<td>14.43 ± 0.52 c</td>
</tr>
<tr>
<td>FI-CM</td>
<td>18.24 ± 1.02 b</td>
<td>15.21 ± 0.56 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>18.04 ± 0.99 b</td>
<td>15.68 ± 0.54 e</td>
</tr>
<tr>
<td>Concepción</td>
<td>17.39 ± 0.95 a</td>
<td>15.21 ± 0.55 d</td>
</tr>
<tr>
<td>d) PESO TOTAL (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>15.58 ± 1.95 ab</td>
<td>7.54 ± 0.56 c</td>
</tr>
<tr>
<td>FI-CM</td>
<td>15.40 ± 1.79 a</td>
<td>9.17 ± 0.69 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>16.51 ± 2.01 b</td>
<td>10.23 ± 0.75 e</td>
</tr>
<tr>
<td>Concepción</td>
<td>14.81 ± 1.69 a</td>
<td>9.59 ± 0.74 de</td>
</tr>
<tr>
<td>e) BIOMASA (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>5.14 ± 0.71 a</td>
<td>1.65 ± 0.11 b</td>
</tr>
<tr>
<td>FI-CM</td>
<td>5.58 ± 0.68 a</td>
<td>2.29 ± 0.16 c</td>
</tr>
<tr>
<td>FI-MC</td>
<td>4.69 ± 0.73 a</td>
<td>2.49 ± 0.17 c</td>
</tr>
<tr>
<td>Concepción</td>
<td>5.26 ± 0.63 a</td>
<td>2.48 ± 0.17 c</td>
</tr>
<tr>
<td>f) MUSCULO (g)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>2.48 ± 0.20 a</td>
<td>0.53 ± 0.02 b</td>
</tr>
<tr>
<td>FI-CM</td>
<td>2.54 ± 0.14 a</td>
<td>0.78 ± 0.03 c</td>
</tr>
<tr>
<td>FI-MC</td>
<td>2.53 ± 0.21 a</td>
<td>0.85 ± 0.03 c</td>
</tr>
<tr>
<td>Concepción</td>
<td>2.55 ± 0.14 a</td>
<td>0.92 ± 0.03 c</td>
</tr>
</tbody>
</table>

1 Medias de la misma característica con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p<0.05).

Tabla II. Medias geométricas (± error estándar) por grupo genético considerando todas las edades para cada característica motométrica en cada medio ambiente.
Resumiendo; en solo una de las características evaluadas (convexidad) en Bahía Magdalena, donde las diferencias entre grupos aunque significativas, son pequeñas, los grupos que alcanzaron el mayor crecimiento promedio fueron ambas cruzas recíprocas y Magdalena, en tanto que en Bahía Concepción el grupo con el menor crecimiento promedio fue Magdalena, además de observarse un crecimiento significativamente mayor para la población de Concepción y las cruzas recíprocas no solo en una, sino en todas las características evaluadas para definir el crecimiento (Tabla II).

INTERACCIÓN EDAD - MEDIO AMBIENTE - GRUPO GENÉTICO

En lo que respecta a la triple interacción: edad-medio ambiente-grupo genético, esta se presentó en todos los caracteres a excepción de músculo en el cual solo se contó con muestreos los dos últimos meses de cultivo. De la triple interacción se infiere la existencia de distintas tasas de crecimiento entre los grupos genéticos las cuales no son independientes del medio ambiente ni de la edad o mes de cultivo. El crecimiento de los grupos genéticos dependió de si estos eran grupos poblacionales o cruzas y en que medio ambiente se evaluaban, se observó que al mes y medio de iniciado el cultivo (4 meses de edad) no se presentaron diferencias significativas entre los grupos genéticos dentro de cada ambiente, (Tabla 12, Tabla 13) pero a lo largo del cultivo, las diferencias en crecimiento se acentuaron dependiendo del medio ambiente e incluso del mismo grupo genético. Al final del cultivo, en ambos ambientes se dieron diferencias significativas entre los grupos genéticos en determinados caracteres. En Bahía Magdalena, únicamente en los caracteres convexidad y peso se dieron diferencias significativas, en donde los grupos con el mayor crecimiento al final del cultivo fueron ambas cruzas recíprocas y el grupo Magdalena, sin ser este último diferente de Concepción, a excepción de convexidad (Tabla 12). En cambio, en Bahía Concepción, en todas las características evaluadas los grupos con el mejor crecimiento al final del cultivo fueron Concepción y ambas cruzas recíprocas, estas últimas sin ser significativamente diferentes entre sí (Tabla 13). De la figura 11 a la figura 15 se presenta el crecimiento comparativo de los cuatro grupos genéticos para los caracteres evaluados a lo largo del cultivo en ambos medios ambientes.
<table>
<thead>
<tr>
<th>Característica</th>
<th>Edad 4 meses</th>
<th>Edad 5 meses</th>
<th>Edad 6 meses</th>
<th>Edad 7 meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) LONGITUD (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>19.43 a</td>
<td>32.22 b</td>
<td>40.70 c</td>
<td>48.33 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>20.46 a</td>
<td>33.55 b</td>
<td>40.97 c</td>
<td>48.60 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>20.53 a</td>
<td>33.21 b</td>
<td>41.77 c</td>
<td>49.36 d</td>
</tr>
<tr>
<td>Concepción</td>
<td>20.91 a</td>
<td>34.24 b</td>
<td>40.98 c</td>
<td>48.49 d</td>
</tr>
<tr>
<td>Heterosis</td>
<td>1.62 %</td>
<td>0.23 %</td>
<td>1.27 %</td>
<td>1.17 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0863</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) ALTURA (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>20.01 a</td>
<td>32.26 b</td>
<td>40.00 c</td>
<td>47.21 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>21.06 a</td>
<td>33.22 b</td>
<td>40.15 c</td>
<td>47.01 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>21.27 a</td>
<td>33.03 b</td>
<td>40.96 c</td>
<td>48.08 d</td>
</tr>
<tr>
<td>Concepción</td>
<td>21.18 a</td>
<td>32.95 b</td>
<td>39.13 c</td>
<td>46.00 d</td>
</tr>
<tr>
<td>Heterosis</td>
<td>2.76 %</td>
<td>1.52 %</td>
<td>2.57 %</td>
<td>2.08 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) CONVEXIDAD (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>9.04 a</td>
<td>17.13 b</td>
<td>21.85 d</td>
<td>25.86 f</td>
</tr>
<tr>
<td>FI-CM</td>
<td>9.37 a</td>
<td>16.97 b</td>
<td>21.31 cd</td>
<td>25.16 ef</td>
</tr>
<tr>
<td>FI-MC</td>
<td>9.31 a</td>
<td>16.63 b</td>
<td>21.41 cd</td>
<td>24.83 ef</td>
</tr>
<tr>
<td>Concepción</td>
<td>8.97 a</td>
<td>16.22 b</td>
<td>20.31 c</td>
<td>24.06 e</td>
</tr>
<tr>
<td>Heterosis</td>
<td>3.70 %</td>
<td>0.85 %</td>
<td>1.55 %</td>
<td>0.36 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.087</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) PESO TOTAL (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>2.02 a</td>
<td>10.13 b</td>
<td>18.81 c</td>
<td>31.36 de</td>
</tr>
<tr>
<td>FI-CM</td>
<td>2.24 a</td>
<td>10.64 b</td>
<td>18.69 c</td>
<td>30.03 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>2.34 a</td>
<td>10.12 b</td>
<td>20.01 c</td>
<td>33.58 e</td>
</tr>
<tr>
<td>Concepción</td>
<td>2.20 a</td>
<td>10.05 b</td>
<td>17.98 c</td>
<td>29.03 d</td>
</tr>
<tr>
<td>Heterosis</td>
<td>8.84 %</td>
<td>2.72 %</td>
<td>5.33 %</td>
<td>5.58 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0133*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) BIOMASA (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>0.72 a</td>
<td>3.47 b</td>
<td>6.18 c</td>
<td>11.54 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>0.77 a</td>
<td>3.64 b</td>
<td>6.42 c</td>
<td>11.29 d</td>
</tr>
<tr>
<td>FI-MC</td>
<td>0.81 a</td>
<td>3.46 b</td>
<td>6.47 c</td>
<td>11.76 d</td>
</tr>
<tr>
<td>Concepción</td>
<td>0.77 a</td>
<td>3.53 b</td>
<td>6.05 c</td>
<td>10.69 d</td>
</tr>
<tr>
<td>Heterosis</td>
<td>6.07 %</td>
<td>1.09 %</td>
<td>5.47 %</td>
<td>3.59 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0559</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) MUSCULO (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>1.81 a</td>
<td>3.26 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI-CM</td>
<td>2.01 a</td>
<td>3.07 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FI-MC</td>
<td>1.96 a</td>
<td>3.22 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concepción</td>
<td>2.02 a</td>
<td>3.07 b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterosis</td>
<td>3.73 %</td>
<td>0 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.7203</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Medias de la misma característica con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p<0.05).
* Indica que es significativo al nivel establecido (p<0.05).

Tabla 12. Medias geométricas por grupo genético para cada característica morfométrica y los valores de heterosis durante el cultivo en Bahía Magdalena.
<table>
<thead>
<tr>
<th>Característica</th>
<th>Edad 4 meses</th>
<th>Edad 5 meses</th>
<th>Edad 6 meses</th>
<th>Edad 7 meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) LONGITUD (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>19.69 a</td>
<td>29.19 c</td>
<td>32.90 d</td>
<td>33.38 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>21.04 ab</td>
<td>32.78 d</td>
<td>36.36 e</td>
<td>37.34 ef</td>
</tr>
<tr>
<td>FI-MC</td>
<td>22.38 b</td>
<td>33.80 d</td>
<td>37.36 ef</td>
<td>38.50 ef</td>
</tr>
<tr>
<td>Concepción</td>
<td>21.67 ab</td>
<td>32.94 d</td>
<td>37.55 ef</td>
<td>38.67 f</td>
</tr>
<tr>
<td>Heterosis</td>
<td>4.98 %</td>
<td>7.16 %</td>
<td>4.64 %</td>
<td>5.26 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) ALTURA (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>20.74 b</td>
<td>30.13 c</td>
<td>33.37 d</td>
<td>33.60 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>22.41 ab</td>
<td>33.14 d</td>
<td>36.26 e</td>
<td>37.22 ef</td>
</tr>
<tr>
<td>FI-MC</td>
<td>24.05 b</td>
<td>34.37 d</td>
<td>37.40 ef</td>
<td>38.40 f</td>
</tr>
<tr>
<td>Concepción</td>
<td>22.85 b</td>
<td>33.90 d</td>
<td>37.44 ef</td>
<td>38.26 f</td>
</tr>
<tr>
<td>Heterosis</td>
<td>6.58 %</td>
<td>5.44 %</td>
<td>4.03 %</td>
<td>5.23 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) CONVEXIDAD (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>9.36 a</td>
<td>15.02 b</td>
<td>16.57 cd</td>
<td>16.77 cd</td>
</tr>
<tr>
<td>FI-CM</td>
<td>9.77 a</td>
<td>15.84 bc</td>
<td>17.27 de</td>
<td>17.98 e</td>
</tr>
<tr>
<td>FI-MC</td>
<td>10.42 a</td>
<td>16.11 bc</td>
<td>17.80 e</td>
<td>18.38 e</td>
</tr>
<tr>
<td>Concepción</td>
<td>9.84 a</td>
<td>15.80 bc</td>
<td>17.31 de</td>
<td>17.90 e</td>
</tr>
<tr>
<td>Heterosis</td>
<td>5.19 %</td>
<td>3.65 %</td>
<td>3.49 %</td>
<td>4.87 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) PESO TOTAL (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>2.28 a</td>
<td>7.53 b</td>
<td>10.03 d</td>
<td>10.31 d</td>
</tr>
<tr>
<td>FI-CM</td>
<td>2.78 a</td>
<td>9.05 bc</td>
<td>11.82 de</td>
<td>13.06 ef</td>
</tr>
<tr>
<td>FI-MC</td>
<td>3.16 a</td>
<td>10.04 cd</td>
<td>13.16 e</td>
<td>14.55 f</td>
</tr>
<tr>
<td>Concepción</td>
<td>2.73 a</td>
<td>9.45 bcd</td>
<td>12.52 e</td>
<td>13.65 ef</td>
</tr>
<tr>
<td>Heterosis</td>
<td>18.51 %</td>
<td>12.42 %</td>
<td>10.73 %</td>
<td>15.18 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) BIOMASA (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>0.66 a</td>
<td>1.70 b</td>
<td>2.24 bcd</td>
<td>2.00 bc</td>
</tr>
<tr>
<td>FI-CM</td>
<td>0.79 a</td>
<td>2.35 bc</td>
<td>3.11 cf</td>
<td>2.92 cdg</td>
</tr>
<tr>
<td>FI-MC</td>
<td>0.93 a</td>
<td>2.65 cddeg</td>
<td>3.33 fg</td>
<td>3.16 cfg</td>
</tr>
<tr>
<td>Concepción</td>
<td>0.85 a</td>
<td>2.68 cddeg</td>
<td>3.22 ffg</td>
<td>3.33 fg</td>
</tr>
<tr>
<td>Heterosis</td>
<td>14.58 %</td>
<td>13.98 %</td>
<td>14.20 %</td>
<td>20.77 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0001</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) MUSCULO (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magdalena</td>
<td>0.58 ac</td>
<td></td>
<td></td>
<td>0.49 cd</td>
</tr>
<tr>
<td>FI-CM</td>
<td>0.82 ab</td>
<td></td>
<td></td>
<td>0.74 abd</td>
</tr>
<tr>
<td>FI-MC</td>
<td>0.86 ab</td>
<td></td>
<td></td>
<td>0.85 ab</td>
</tr>
<tr>
<td>Concepción</td>
<td>0.94 b</td>
<td></td>
<td></td>
<td>0.89 b</td>
</tr>
<tr>
<td>Heterosis</td>
<td>10.16 %</td>
<td></td>
<td></td>
<td>15.11 %</td>
</tr>
<tr>
<td>Significancia de la heterosis</td>
<td>0.0389</td>
<td>1*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Media de la misma característica con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p<0.05).
*Indica que es significativa al nivel establecido (p<0.05)

Tabla 13. Medias geométricas por grupo genético para cada característica motformétrica y heterosis durante el cultivo en Bahía Concepción.
Fig. 11. Crecimiento comparativo en LONGITUD entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.

Fig. 12. Crecimiento comparativo en ALTURA entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.
Fig. 13. Crecimiento compartivo en CONVEXIDAD entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.

Fig. 14. Crecimiento compartivo en PESO TOTAL entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.
Fig. 15. Crecimiento compartivo en BIOMASA entre Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.

Para el caracter peso total, en el cual se presentaron todas las interacciones, incluyendo edad-grupo genético, los grupos presentaron diferentes patrones de crecimiento en cada medio ambiente a pesar de las diferencias tan pequeñas entre grupos observadas en Bahía Magdalena, la cruza Fl-MC presentó un mayor crecimiento que la población Concepción los dos últimos meses de cultivo, en tanto que en Bahía Concepción ambas cruza recíprocas y Concepción presentaron un mayor incremento en peso que la población de Magdalena a lo largo del cultivo (Fig.14). En los caracteres longitud, altura y biomasa, la presencia de una triple interacción significativa se debió básicamente a que en Bahía Concepción uno de los grupos genéticos mostró un crecimiento mayor los dos últimos meses de cultivo: el grupo Concepción presentó esto para longitud y altura, y la cruza Fl-MC en biomasa, en tanto que en Bahía Magdalena el comportamiento del crecimiento a lo largo del cultivo fue similar para estos caracteres. Contrariamente a lo anterior, la triple interacción significativa observada para convexidad, se debió a una mayor convexidad de la concha para los organismos del grupo Magdalena los dos últimos meses en Bahía Magdalena en relación a los organismos de Concepción, mientras que ambas cruza recíprocas se situaron intermedias (Fig. 13), en tanto que en...
Bahía Concepción ambas cruzas recíprocas y el grupo Concepción presentaron una mayor convexidad al final del cultivo.

Supervivencia

En el modelo global de supervivencia (Tabla 14) se observó un efecto significativo de todos los factores principales (edad, medio ambiente y grupo genético), así como de las interacciones entre estos, al igual que en el caso de crecimiento. Estas interdependencias (en forma de interacción) se describen a continuación.

<table>
<thead>
<tr>
<th>FUENTE DE VARIACION</th>
<th>G.L.</th>
<th>CM.</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo genético</td>
<td>3</td>
<td>476.90</td>
<td>0.000 1</td>
</tr>
<tr>
<td>Medio ambiente</td>
<td>1</td>
<td>1136.59</td>
<td>0.000 1</td>
</tr>
<tr>
<td>Edad</td>
<td>2</td>
<td>4939.48</td>
<td>0.000 1</td>
</tr>
<tr>
<td>Edad X M. amb.</td>
<td>2</td>
<td>1868.89</td>
<td>0.000 1</td>
</tr>
<tr>
<td>Edad X G. gen.</td>
<td>6</td>
<td>69.01</td>
<td>0.0024</td>
</tr>
<tr>
<td>M. amb. X G. gen.</td>
<td>3</td>
<td>364.10</td>
<td>0.0001</td>
</tr>
<tr>
<td>Edad X M. amb. X G. gen.</td>
<td>6</td>
<td>75.62</td>
<td>0.001 i</td>
</tr>
<tr>
<td>Error</td>
<td>189</td>
<td>19.49</td>
<td></td>
</tr>
</tbody>
</table>

* Indica que los efectos son significativos al nivel establecido.

Tabla 14. Análisis de varianza para el modelo global (Bahía Magdalena-Bahía Concepción) de supervivencia. Cuadrados medios (CM) y valores de P.

INTERACCIÓN EDAD - MEDIO AMBIENTE

La interacción edad-medio ambiente nos indicó la existencia de diferentes tasas de mortalidad a diferentes edades entre ambos sitios de cultivo: a partir del sexto mes de edad se presentó una elevada mortalidad en Bahía Concepción, mientras que en Bahía Magdalena no hubo una mortalidad significativamente diferente del quinto al septimo mes de edad (Fig. 16); además de que la supervivencia global fue significativamente mayor en Bahía Magdalena.
INTERACCIÓN EDAD - GRUPO GENÉTICO

La interacción edad-grupo genético indicó que existen diferentes tasas de mortalidad al paso del tiempo entre los grupos genéticos considerando el promedio de ambos medios ambientales, ya que se observó una tasa de mortalidad similar hasta la edad de 6 meses, y posteriormente un aumento en la tasa de mortalidad de los grupos Magdalena y ambas cruzas recíprocas del sexto al séptimo mes de edad, en tanto que el grupo Concepción presentó la mejor supervivencia (Fig. 17). Cuando analizamos esta interacción, podemos ver que esta se debió principalmente a la mortalidad diferencial ocurrida al séptimo mes de edad entre grupos genéticos, en donde Magdalena y las cruzas recíprocas fueron las do mayor mortalidad a esa edad.

Fig. 16. Interacción edad-medio ambiente en supervivencia. BM: Bahía Magdalena; BC: Bahía Concepción.
INTERACCION GRUPO GENETICO - MEDIO AMBIENTE

La interacción grupo genético-medio ambiente nos indica, al igual que en el crecimiento, que en cada sitio evaluado fueron distintos grupos los que presentaron los mayores valores de supervivencia (Tabla 15). En Bahía Magdalena, la supervivencia promedio del grupo Magdalena no fue significativamente diferente de la supervivencia de los grupos Concepción y F1CM, mientras que el grupo F1MC presentó la menor supervivencia promedio y fue significativamente diferente del resto de los grupos. Por otro lado, en Bahía Concepción la supervivencia promedio del grupo Concepción fue alta y significativamente mayor a la supervivencia de ambas cruzas recíprocas y a la del grupo Magdalena, sin ser diferentes estos tres últimos grupos (Fig. 18).

Fig. 17. Interacción edad-grupo genético: Supervivencia de los cuatro grupos genéticos considerando el promedio de ambos medios ambientes. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena; donde paterno/materno.
<table>
<thead>
<tr>
<th></th>
<th>BAHIA MAGDALENA</th>
<th>BAHIA CONCEPCION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magdalena</td>
<td>98.80 ± 0.15 b</td>
<td>92.78 ±1.47 a</td>
</tr>
<tr>
<td>Fl-CM</td>
<td>98.37 ± 0.15 b</td>
<td>92.19 ± 0.93 a</td>
</tr>
<tr>
<td>Fl-MC</td>
<td>93.58 ± 0.20 a</td>
<td>92.57 ± 0.60 a</td>
</tr>
<tr>
<td>Concepcion</td>
<td>97.84 ± 0.17 b</td>
<td>98.25 ± 0.45 b</td>
</tr>
</tbody>
</table>

Medias con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p>0.05).

Tabla 15. Valores promedio porcentuales de supervivencia (%) (± error standar) para cada grupo genético considerando todas las edades en cada medio ambiente.

INTERACCIÓN EDAD - MEDIO AMBIENTE - GRUPO GENÉTICO

La triple interacción indica la existencia de distintas tasas de mortalidad entre los grupos genéticos que no fueron independientes del medio ambiente ni de la edad (o mes de cultivo) (Fig. 19). En Bahía Magdalena, desde el inicio del cultivo y hasta la edad de 7 meses se dieron diferencias mínimas en mortalidad entre los grupos genéticos (Tabla 16). En cambio, en Bahía Concepción mientras que en el quinto al sexto mes se observaron diferencias mínimas en supervivencia entre los grupos genéticos, del sexto al séptimo mes se presentó una baja en supervivencia para las cruzas recíprocas y en la población Magdalena fue significativamente mayor que para la población de Concepción (Tabla 17).
Fig. 19. Supervivencia de los cuatro grupos genéticos en Bahía Magdalena y Bahía Concepción. M: Población Magdalena; C: Población Concepción; F1MC: Cruza recíproca Magdalena/Concepción; F1CM: Cruza recíproca Concepción/Magdalena, donde paterno/materno.

<table>
<thead>
<tr>
<th>Edad 5 meses</th>
<th>Edad 6 meses</th>
<th>Edad 7 meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magdalena</td>
<td>99.78 b</td>
<td>98.55 b</td>
</tr>
<tr>
<td>F1-CM</td>
<td>99.67 b</td>
<td>98.51 b</td>
</tr>
<tr>
<td>F1-MC</td>
<td>96.01 a</td>
<td>92.77 a</td>
</tr>
<tr>
<td>Concepción</td>
<td>99.48 ab</td>
<td>97.62 ab</td>
</tr>
</tbody>
</table>

Eeeterosis
-1.15% -1.97% -2.62%
Significación de la heterosis 0.003 106*

*Medias con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p>0.05).
*Indica que es significativa el nivel establecido.

Tabla 16. Valores promedio porcentuales de supervivencia (%) por grupo genético y heterosis a lo largo del cultivo en Bahía Magdalena.

<table>
<thead>
<tr>
<th>Edad 5 meses</th>
<th>Edad 6 meses</th>
<th>Edad 7 meses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magdalena</td>
<td>99.95 a</td>
<td>97.47 bc</td>
</tr>
<tr>
<td>F1-CM</td>
<td>99.07 a</td>
<td>96.62 b</td>
</tr>
<tr>
<td>F1-MC</td>
<td>98.48 a</td>
<td>95.98 bd</td>
</tr>
<tr>
<td>Concepción</td>
<td>99.93 a</td>
<td>99.75 ac</td>
</tr>
</tbody>
</table>

Eeeterosis
-1.15% -2.64% -6.23%
Significación de la heterosis 0.00016*

*Medias con la misma letra no son estadísticamente diferentes (Prueba de Tukey, p>0.05).
*Indica que es significativa el nivel establecido.

Tabla 17. Valores promedio porcentuales de supervivencia (%) por grupo genético y heterosis a lo largo del cultivo en Bahía Concepción.
Heterosis

Crecimiento

A manera general la heterosis a lo largo del cultivo fue mayor en Bahía Concepción (Tabla 13) que en Bahía Magdalena (Tabla 12) para todos los caracteres merísticos evaluados, además de ser una heterosis estadísticamente significativa para todos los caracteres en Bahía Concepción y solo para altura y peso total en Bahía Magdalena. En Bahía Magdalena los valores de heterosis tan bajos se debieron a que ambas cruzas recíprocas no fueron significativamente superiores a uno o ambos grupos poblacionales, por lo que al promediarlas (F1) es poco el incremento que se obtiene (Fig. 20). En Bahía Concepción la heterosis se debió a que ambas cruzas recíprocas fueron por lo menos significativamente superiores a uno de los grupos poblacionales (Magdalena), aunque no fueron diferentes del grupo de Concepción (Fig. 20).

Supervivencia.

No se observó heterosis en supervivencia al final del cultivo en ninguno de los dos medios ambientales. En Bahía Magdalena, la ausencia de heterosis se debió a que las supervivencias fueron iguales entre los grupos parentales (Magdalena y Concepción) y la cruza Fl-CM, mientras que la cruza Fl-MC presentó una menor supervivencia (Tabla 16). En Bahía Concepción se debió principalmente a que la población nativa presentó mayor supervivencia que ambas cruzas recíprocas las cuales presentaron una supervivencia tan baja e igual a la del grupo Magdalena (Tabla 17).
Fig. 20. Valores promedio de las diferentes características evaluadas y la respectiva HETEROSIS para cada caracter a la edad de 7 meses en cada ambiente, considerando a las poblaciones Magdalena (M), Concepción (C), y ambas cruzas reciprocas promediadas (F1).
DISCUSSION

De los resultados antes presentados, se ha derivado la caracterización fenotípica de las dos poblaciones y adicionalmente, la caracterización de diferentes efectos genéticos y el entendimiento del efecto que el medio ambiente tiene sobre los mismos. Así, se interpreta el significado del efecto materno, las posibles causas de la diferenciación genética entre las poblaciones estudiadas, el efecto que el medio ambiente tuvo sobre la expresión del genotipo y la discordancia en la heterosis resultante del cruzamiento poblacional cuando esta es evaluada en los distintos ambientes.

1- Efecto materno

Se sabe que el medio ambiente al que se somete a las hembras (reproductores) puede causar efectos maternos. Los efectos maternos en su mayoría son producidos tanto por el genotipo de las hembras como por factores no genéticos sobre las hembras en maduración (Pirchner, 1983). A nivel larval y para ambas características, longitud y supervivencia, cada una de las cruzas recíprocas se asemejó más a la población de la cual se derivó el huevo. De hecho, en el análisis realizado la significancia del efecto de origen de huevo indicó un efecto materno significativo en la supervivencia total evaluada al día 17 de edad y en la longitud hasta una edad entre 11 y 15 días. Newkirk et al. (1977) reconocieron un efecto materno significativo en supervivencia larval hasta una edad de 6 días al comparar dos poblaciones del ostión americano (Crassostrea virginica) y sus cruzas recíprocas, disipándose tal efecto cuando se evaluó la supervivencia del día 6 al 16 de edad. En nuestro caso, debido a que en el diseño de muestreo solo se contempló estimar supervivencia hasta el final del periodo larval, cabe la posibilidad de que las mayores mortalidades se hayan presentado tempranamente durante el periodo de cultivo tal como en el caso de Newkirk et al. (1977) y que el efecto materno haya sido sobre la viabilidad inicial de las larvas.

Los efectos maternos observados pueden ser explicados considerando el efecto potencial que tienen las reservas energéticas contenidas en el huevo proveniente de cada población sobre el abastecimiento inicial de nutrientes para el desarrollo. La acumulación de estas reservas energéticas está en función de las características
genéticas de la hembra (p.e. eficiencia metabólica), nutrición y otras condiciones ambientales durante la maduración sexual en sus respectivos medios ambientes (Barber y Blake, 1991). Para especies de moluscos ha sido demostrado que la cantidad de lípidos en las reservas energéticas determina el éxito de los primeros estadíos del desarrollo larval (Cragg y Crisp, 1991). En nuestro caso, es posible que la gametogénesis inicial y el proceso de vitelogénesis que se dió durante la maduración de los reproductores en el campo en sus respectivos ambientes, haya resultado en diferencias cualitativas o cuantitativas en las reservas de los huevos. Es importante señalar que, mientras que en el trabajo de Newkirk et al. (1977) el efecto materno observado pudo haber sido “inducido”, a consecuencia de que los organismos de una población se acondicionaron en campo, en tanto que los de la otra población en laboratorio, en el caso presente, ambas poblaciones fueron transportadas al mismo tiempo al laboratorio donde estas desovaron al llegar y se mantuvieron bajo las mismas condiciones ambientales durante los 15 días de acondicionamiento. Por tanto, el efecto materno observado se pudo deber a diferencias genéticas/ambientales en el tamaño del huevo entre las dos poblaciones y/o a un efecto en la calidad de huevo, causado por diferentes condiciones ambientales en los dos sitios. En otras investigaciones paralelas a la presente se evaluó el tamaño del huevo (resultados sin publicar), y se encontró que cuando las dos poblaciones (Magdalena y Concepción) son cultivadas en Bahía Magdalena no hay diferencias interpoblacionales en el tamaño del huevo, lo cual podría indicar que las diferencias no son genéticas en origen. Estas dos poblaciones están sujetas a condiciones ambientales muy diferentes durante la temporada de maduración gonádica, en donde Bahía Concepción es el ambiente con la menor concentración de clorofila a (Acosta-Ruiz y Lara-Lara, 1978; Martínez-López y Gárate-Lizárraga, 1994), por lo que tales diferencias ambientales debieron propiciar diferente calidad de huevo durante la re-maduración, la cual se reflejó en un efecto materno al inicio del desarrollo larval.

2 - Diferencias genéticas interpoblacionales

Una población se define como un grupo de individuos de la misma especie que habitan una misma área geográfica, que se reproducen entre sí, y que comparten un acervo común de genes (Ayala y Kiger, 1984; Hartl, 1991). Diferencias entre poblaciones
pueden ser detectadas en dos formas. En la primera se caracterizan las respuestas fenotípicas de diferentes poblaciones bajo las mismas condiciones (edad y medio ambiente), mientras que en la segunda se caracterizan las frecuencias alélicas de loci tomados al azar, y se evalúan las diferencias.

Los resultados obtenidos en crecimiento y supervivencia, tanto a nivel larval como adulto, claramente indicaron una diferenciación genética entre las poblaciones de almeja catarina provenientes de Bahía Magdalena y de Bahía Concepción al evaluarlas simultáneamente bajo las mismas condiciones ambientales. Estos resultados no fueron inesperados, ya que estas dos poblaciones están aisladas por una barrera geográfica, la misma Península de Baja California (Fig. 1). Es bien conocido que el aislamiento reproductivo entre poblaciones, derivado de este tipo de barreras puede resultar en diferenciación genética como una consecuencia no solo de la deriva genética, sino aún más importante, de procesos de selección natural y adaptación a las condiciones ambientales (Avise, 1980).

Diferentes autores han observado diferencias poblacionales en características fenotípicas a nivel larval al cultivarlas bajo las mismas condiciones, lo que indica diferenciación genética entre poblaciones, principalmente de dos especies: *Crassostrea virginica* y *Pecten maximus*. Para la primera, Newkirk et al. (1977) y Newkirk (1978) encontraron diferencias genéticas entre poblaciones para crecimiento y supervivencia larval. Para la misma especie, Mallet y Haley (1983) estudiaron tres poblaciones y encontraron diferencias entre ellas en cuanto a la longitud de la concha de las larvas. Para la segunda especie, Cochard y Devauchelle (1993) compararon el crecimiento y supervivencia larval entre cuatro poblaciones, y encontraron diferencias significativas al tamaño de pediveliger (23 días de edad) y en la supervivencia al momento de la metamorfosis. Paulet et al. (1988) llegaron a la misma conclusión, al observar que la longitud media de *Pecten maximus* fue significativamente diferente entre las dos poblaciones evaluadas al momento de la metamorfosis. En los resultados del presente trabajo en el periodo larval, desde la edad de 11 días y hasta la edad de 17 días hubo diferencias significativas entre la longitud de las larvas de Bahía Magdalena y Bahía Concepción, así como diferencias en supervivencia al final del periodo de cultivo larvario.
De igual manera, al cultivar simultáneamente las progenies de diferentes poblaciones desde juveniles a adultos bajo las mismas condiciones ambientales, varios estudios en bivalvos han demostrado la existencia de diferencias genéticas poblacionales para diferentes características. Uno de los bivalvos más estudiados a nivel de comparaciones poblacionales es el ostión americano *Crassostrea virginica*. Por ejemplo, Mallet y Haley (1983) observaron diferencias sustanciales entre tres poblaciones en los caracteres longitud, peso y supervivencia a nivel de juveniles y adultos. Hawes *et al.* (1990) observaron diferencias significativas en crecimiento entre dos poblaciones a los 7 y 18 meses de edad; Martínez y DiMichele (1992) encontraron diferencias en tasa de crecimiento entre dos poblaciones adaptadas a diferentes condiciones de salinidad. En lo que respecta a mítílidos, en varios estudios poblacionales de *Mytilus edulis*, en los que se realizaron transplantes recíprocos, se observaron diferencias interpoblacionales en supervivencia (Dickie *et al.*, 1984; Mallet *et al.*, 1987; Kautsky *et al.*, 1990).

Resulta interesante remarcar que las diferencias genéticas entre las poblaciones de Magdalena y Concepción a nivel adulto fueron más evidentes bajo determinadas condiciones ambientales. Bajo las condiciones ambientales de Bahía Concepción se logró diferenciar genéticamente a las dos poblaciones, tanto en el crecimiento en todos los caracteres evaluados como en la supervivencia, mientras que en Bahía Magdalena las diferencias poblacionales solo fueron evidentes en el carácter convexidad los dos últimos meses de cultivo. Okoshi *et al.* (1987) observaron algo similar al transplantar dos poblaciones de *Crassostrea gigas* a dos ambientes diferentes, en donde diferencias en
la altura de la concha se presentaron solamente en uno de los ambientes. En el presente estudio, la influencia del medio ambiente en la diferenciación de las poblaciones fue determinante, por lo que el efecto del mismo debe ser analizado.

3 - Efecto del medio ambiente

En cuanto al efecto que tiene el medio ambiente sobre las características larvales evaluadas, se podría pensar que bajo la temperatura de cultivo larval manejada (22°C) se estuviera favoreciendo al grupo de Magdalena. ya que la temperatura media anual de Bahía Magdalena (22°C) es similar a la temperatura de cultivo, en tanto que la temperatura media anual de Bahía Concepción (24.9°C) se encuentra por arriba. Sin embargo en ambos sitios durante el periodo de desove la temperatura del agua es muy similar, alrededor de 20°C (Villalejo-Fuerte y Ochoa-Báez, 1993; Félix-Pico, 1993), por lo que las larvas se desarrollan bajo similares condiciones térmicas.

En lo que respecta al desarrollo en campo, el efecto del medio ambiente fue el más determinante en el crecimiento de los grupos genéticos, ya que se observaron mayores diferencias entre los organismos de un mismo grupo genético cultivados en distintos medios ambiente (Bahía Magdalena v.s. Bahía Concepción) que entre los diferentes grupos genéticos dentro de un mismo ambiente (M, C, F1-CM, F1-MC). Tal efecto ambiental sobre el crecimiento se ha observado en diferentes grupos experimentales de Crassostrea virginica (Mallet y Haley, 1983; Hawes et al., 1990) y Mercenaria mercenaria (Manzi et al., 1991).

A manera general, el efecto del medio ambiente se tradujo en un crecimiento significativamente mayor y con mejores supervivencias en Bahía Magdalena que en Bahía Concepción, lo cual puede ser explicado por el efecto que tiene el rigor ambiental en cada sitio. Las condiciones ambientales en Bahía Concepción y Bahía Magdalena son muy diferentes, sobre todo en cuanto a régimen térmico y de productividad. Bahía Concepción tiene una menor productividad primaria (clorofila a 0.38-1.63 mg/m³) que Bahía Magdalena (clorofila a de 1.5 a 5.1 mg/m³)(Acosta-Ruiz y Lara-Lara, 1978; Reyes-Salinas, 1994), además de ser un ambiente más estresante debido a que presenta una
temperatura media anual alta (24.9 °C) y un intervalo más amplio (17.7-32.1 °C), mientras que en Bahía Magdalena la temperatura media anual es inferior (22 °C), con un intervalo más estrecho (20-26.6 °C) (Hernández-Rivas et al., 1993). Ambas características, temperatura y productividad, hacen de Bahía Magdalena un ambiente con mejores condiciones para el crecimiento de organismos filtradores, como es el presente caso. Es importante señalar que durante el periodo de cultivo del presente estudio (mayo-octubre 1994), se presentaron mayores temperaturas en Bahía Concepción que en Bahía Magdalena (Fig. 21), lo cual concuerda con el patrón anual de temperatura superficial para los últimos 10 años en las zonas oceánicas aledañas a ambas bahías, en el que se presentan temperaturas más extremas en Bahía Concepción a lo largo del año (Fig. 22).

![Diagrama de temperaturas](image)

Fig. 21. Temperatura superficial para los meses de muestreo (1994) en las zonas de cultivo en Bahía Magdalena y Bahía Concepción, así como el patrón anual para el mismo año en la zona oceánica aledaña (Base de datos Pesquerías-CIBNOR).
Fig. 22. Patrón anual 1986-1996 de temperatura superficial para las zonas oceánicas aledañas a Bahía Magdalena y Bahía Concepción (Base de datos Pesquerías-CIBNOR).

Entonces, es posible explicar el menor crecimiento y las elevadas mortalidades en Bahía Concepción a partir del sexto mes de edad (septiembre) con los cambios ambientales que se dieron antes y durante ese periodo, aunado con un decremento en productividad. En Bahía Concepción, adicionalmente a ser el ambiente con menor productividad primaria promedio, se ha observado que la abundancia del fitoplancton, expresada en concentración de células, disminuye gradualmente de una temporada a otra, presentándose los valores promedios mas altos en febrero ($x = 652 \times 10^3$ cel/l), intermedios en mayo ($x = 249 \times 10^3$ cel/l) y menores en octubre ($x = 101 \times 10^3$ cel/l) (Martínez-López y Gárate-Lizárraga, en prensa). Reyes-Salinas (1994) observó que, durante 1993 la concentración de clorofila a fue menor en los meses de septiembre y octubre, además de informar una estratificación de las aguas de marzo a octubre con un marcado gradiente de temperatura en el estrato profundo mayor a 10 m. En el presente estudio, los mayores efectos del ambiente sobre los grupos genéticos ocurrieron después de la exposición prolongada a altas temperaturas y baja productividad. El efecto de una exposición prolongada (6 meses) de individuos de estos cuatro grupos genéticos a temperatura de 28°C a nivel experimental, propicia elevadas mortalidades principalmente en los grupos Magdalena y ambas cruzas recíprocas (resultados no publicados), lo cual indica que los organismos no logran una aclimatación a estas
temperaturas a pesar de proporcionarles alimento abundante. Esto se debe a que estas temperaturas se asocian con incremento en tasas metabólicas que a su vez resultan en un decremento del potencial de crecimiento (marco de actividad) en forma diferente entre grupos genéticos. Por ejemplo, el marco de actividad observado para la población de Magdalena, cuando se evalúa a 28 ºC es solo un 26 % del observado cuando se evalúa a 22 ºC, mientras que para la población Concepción, el marco de actividad observado a 28 ºC fue 50 % del observado a 22 ºC (resultados no publicados). Barber y Blake (1991) postularon que la distribución latitudinal de los pectinídeos está limitada por el efecto combinado de baja productividad primaria y las tasas metabólicas dependientes de la temperatura. Entonces, es probable que las mismas limitantes, temperatura y productividad primaria, y su efecto combinado sobre la eficiencia metabólica, haya causado las diferencias observadas entre medios ambientes.

Así mismo, es muy probable que la acción conjunta de esos factores medio-ambientales interrelacionados, como alta temperatura y baja productividad, propiciaran las elevadas mortalidades en los grupos no nativos a Bahía Concepción, y permite inferir que en los organismos de la población de Concepción se ha dado una adaptación a estas condiciones de medio ambiente, ya que a pesar del menor crecimiento para todos los grupos en Bahía Concepción, la supervivencia de la población Concepción fue alta.

4 - Interacción genotipo - medio ambiente

Una suposición común y no siempre justificable es que el efecto del medio ambiente es el mismo sin importar si los genotipos son diferentes (Falconer y Mackay, 1996). Esto es, se presume que al llevar a los organismos de un medio ambiente rico a uno pobre se tendrá el mismo efecto sobre todos los individuos o genotipos que se evalúen en cada uno de esos ambientes. En los resultados del presente estudio, la significancia de la interacción genotipo-medio ambiente indicó que los dos medios ambientes evaluados afectaron en distintas formas el crecimiento y la supervivencia de los diferentes grupos genéticos. Esto es, en Bahía Magdalena no se observaron diferencias significativas en el crecimiento y supervivencia de los grupos genéticos, con excepción del carácter convexidad. Contrariamente, en Bahía Concepción la población nativa, Concepción, y
ambas cruzas recíprocas presentaron el mejor crecimiento, mientras que Magdalena presentó un crecimiento reducido. Por otro lado, en lo que respecta a la supervivencia en Bahía Magdalena, y a pesar de haber observado una menor supervivencia en una de las cruzas, la supervivencia de los cuatro grupos fue elevada y estable a lo largo del cultivo en campo. En cambio, en Bahía Concepción, el efecto del medio ambiente sobre los grupos genéticos fue diferente: la población Magdalena y ambas cruzas recíprocas presentaron una elevada mortalidad, mientras que la población Concepción presentó una alta supervivencia. Falconer y Mackay (1996) indican dos posibles causas de la interacción genotipo-medio ambiente. En la primera, la interacción ocurre a consecuencia de que medios ambientales específicos pueden tener un efecto diferencial sobre los genotipos, de tal manera que bajo determinado medio ambiente un genotipo puede ser mas afectado que otros, mientras que en otro medio ambiente todos los genotipos se comportan similarmente. En el segundo caso, la interacción ocurre debido a un cambio en el orden de mérito o desempeño de los genotipos entre medios ambientales.

En el presente estudio, la interacción genotipo-medio ambiente puede ser explicada en base a la primera causa. Esto se debe a que mientras que en el ambiente de Bahía Magdalena, los cuatro grupos genéticos no presentaron diferencias sustanciales en su crecimiento y supervivencia, en Bahía Concepción un grupo genético (Magdalena) presentó un menor desempeño, tanto en crecimiento como supervivencia. En lo que respecta a ambas cruzas recíprocas, el efecto del medio ambiente sobre su crecimiento fue el mismo que para la población Concepción, evidenciado por un crecimiento similar al observado para la población Concepción. Por otro lado, cuando consideramos supervivencia en Bahía Concepción, se observa que las cruzas recíprocas presentan un comportamiento similar al observado para la población Magdalena, presentando todos una menor supervivencia que la población Concepción, e indicando una mayor sensibilidad a este medio ambiente, y a las condiciones que lo caracterizan.

Anteriormente se discutieron las condiciones medio ambientales imperantes en cada uno de esos sitios, por lo que el medio ambiente de Concepción podría clasificarse como estresante, y el medio ambiente de Magdalena como no estresante. Entonces, las diferentes respuestas observadas entre grupos, tanto para crecimiento como para
supervivencia, pueden ser explicadas como diferentes sensibilidades de los grupos genéticos a las condiciones medio ambientales en que fueron cultivados. Tales diferencias en sensibilidad pueden ser explicadas genéticamente en base a diferentes procesos de adaptación fisiológica de las poblaciones para responder a las condiciones presentes en sus respectivos medios ambientales. La población Concepción presenta un conjunto de adaptaciones que le permiten, si no crecer al igual que en Bahía Magdalena, crecer y sobrevivir a pesar de las pobres condiciones ambientales en Bahía Concepción. La población Magdalena por otro lado, adaptada a un medio ambiente "rico", no presenta las adaptaciones requeridas para crecer y sobrevivir en un ambiente “pobre” como el de Bahía Concepción. De manera interesante, las cruzas recíprocas, al parecer heredaron la capacidad de crecer tan bien como la población Concepción en Bahía Concepción, pero no la capacidad de sobrevivir. Los resultados están en concordancia con Falconer y Mackay (1996), que indican que cuando cruzas entre poblaciones adaptadas a condiciones medio ambientales muy diferentes son producidas, las cruzas no están adaptadas a ningún medio. En este caso, esto se reflejó en la baja supervivencia de las cruzas.

Las diferentes sensibilidades de las poblaciones al medio ambiente observadas en este estudio concuerdan con lo observado por otros autores. Mallet et al. (1987) trabajaron con transplantes de *Mytilus edulis* y observaron que las poblaciones nativas de ambientes más estresantes tendieron a exhibir menores mortalidades en medios estresantes que las nativas de ambientes más estables. Ellos proponen que, en las poblaciones nativas de ambientes estresantes los individuos están adaptados a sobrevivir bajo estas condiciones y no se ven afectados en un ambiente poco estresante. Para aquellos individuos de poblaciones que se originan de ambientes de bajo estrés, no se presentan las características adaptativas y se observa sensibilidad al medio. De igual manera, Dickie et al. (1984) observaron en varias poblaciones transplantadas de *Mytilus edulis*, que la población adaptada al medio más áspero presentaba un mejor desempeño no solo en su propio medio ambiente, sino en todas las localidades probadas.

Algunas de las adaptaciones para sobrevivir en medios estresantes pueden estar dadas por mecanismos fisiológicos y/o alteraciones morfológicas. Por ejemplo, en bivalvos,
varios estudios han concluido que una diferente viabilidad entre organismos es debida a diferentes adaptaciones de este tipo. Kautsky et al. (1990) observaron que una población nativa de mejillón presentó una mayor supervivencia que una población transplantada, debido básicamente a que la población nativa presentaba adaptaciones morfológicas (concha más gruesa y músculo aductor más grande) que la hacían menos susceptible a la depredación. Así mismo, variantes alélicas en loci determinados han sido asociadas con adaptación. Por ejemplo, Koehn et al. (1980) observaron en Mytilus edulis que bajo determinadas condiciones ambientales (baja salinidad y altas temperaturas) aquellos genotipos que poseían una variante alélica de la enzima leucin aminopeptidasa (LAP-94), que se caracteriza por una elevada tasa de reacción enzimática, presentaban una mayor mortalidad que los organismos que no la poseían. Por ende, la tasa de reacción de esta variante alélica tiene un valor adaptativo asociado con la capacidad fisiológica únicamente bajo condiciones de alta salinidad oceánica. En forma similar, Singh y Green (1986) observaron que la actividad de distintas variantes de la enzima alcalina fosfatasa (AKP-2) tiene un valor adaptativo en una población intermareal de Macoma balthica, ya que observaron una mayor supervivencia en los organismos que poseían la variante con mayor actividad. La ventaja adaptativa de esta variante solo se refleja cuando el habitat es en la zona de marea alta, que es donde se dan las mayores temperaturas.

Las adaptaciones que se han dado en la población de Concepción para conferirle esta resistencia al medio ambiente se desconocen. La caracterización de las frecuencias génicas de estas poblaciones de almeja catarina (Magdalena y Concepción) permitirá en un futuro cercano el definir algunas de las variantes alélicas que diferencian a estas poblaciones, lo que a su vez, permitirá posteriormente estudiar la actividad enzimática de los diferentes alelos presentes.

CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS
BIBLIOTECA I.P.N.
DONATIVO

5 - Heterosis

Al realizar cruzas entre poblaciones u organismos con distintas frecuencias genéticas, la presencia de heterosis (vigor híbrido), en la progenie producida de esta forma, es
cuantificada como un incremento porcentual de estas con respecto al promedio de las poblaciones parentales que las produjeron. La heterosis, generalmente esperada cuando se cruzan poblaciones genéticamente distintas, que por lo tanto producirán progenies con un alto grado de heterocigosidad, puede de hecho no observarse. Las causas de que no se observe heterosis pueden ser: ausencia de dominancia (una relación intra-loci), o la falta de diferenciación genética entre las poblaciones parentales. En este estudio, la heterosis se observó tanto a nivel larval como en adultos, con valores significativos de heterosis solo para el crecimiento en Bahía Concepción. No se observó heterosis para supervivencia en ningún medio.

A nivel larval, adicionalmente a los efectos maternos resultantes del origen de huevo, los resultados indicaron cierta ventaja del incremento en heterocigosidad en las cruzas interpoblacionales, aunque fue hasta el día 15 de edad, casi al final del período larval, cuando la heterosis para longitud fue observada, lo cual es apoyado por la interacción observada entre origen de huevo y estrategia de apareamiento. Newkirk et al. (1977) y Newkirk (1978) observaron efectos heteróticos para crecimiento y supervivencia larval en el ostión americano, ya que algunas de las cruzas entre cuatro poblaciones al final del periodo de cultivo larval se comportaron mejor que las poblaciones parentales, aunque la expresión de la heterosis dependió de la salinidad, por lo que también observaron una interacción genotipo-medio ambiente. Esos autores observaron así mismo heterosis para supervivencia larval a pesar del efecto materno antes discutido. Mallet y Haley (1983) evaluaron diferentes cruzas producidas a partir de 6 poblaciones y observaron heterosis al inicio del cultivo la cual no se mantuvo posteriormente; desafortunadamente estos autores no pudieron determinar efectos maternos ya que las cruza recíprocas no se evaluaron en forma independiente, sino que se mezclaron para su cultivo. Cuando la supervivencia y crecimiento larval de las cruzas son evaluados, debe de considerarse a priori si se desea distinguir entre efectos maternos y heterosis. En el presente estudio, fue posible diferenciar entre efectos maternos y heterosis, además de que los resultados concuerdan con lo esperado para ambas características, donde los efectos maternos tienen mayor impacto en los primeros estadios del desarrollo, y desaparecen a edades mayores que es cuando se evidencia la heterosis. Con respecto a la heterosis del crecimiento en estadios larvales, resulta interesante observar una concordancia entre estos resultados y los resultados previamente observados de
Depresión endogámica para esta misma especie (Ibarra et al., 1995), donde las diferencias significativas en longitud entre grupos genéticos con diferente coeficiente de endogamia fueron evidentes hasta la edad de 11 días. Estos resultados fueron explicados como una consecuencia de las reservas del huevo las cuales fueron el principal determinante para el crecimiento y supervivencia inicial, pero las diferencias en eficiencia metabólica entre grupos genéticos con diferente grado de heterocigosidad en posteriores edades larvales fue posiblemente el determinante principal de la expresión de las diferencias progresivas entre grupos genéticos. En la presente investigación, la longitud larval promedio de las cruzas no fue diferente de la media de las poblaciones hasta la edad de 15 días, cuando la longitud media de la F1 fue mayor que el promedio de las poblaciones, lo que indica que la ventaja esperada debida a diferencias genéticas de las cruzas con respecto a las poblaciones parentales no fue evidente en su crecimiento hasta el final del cultivo larval, como lo indica el valor de heterosis para longitud a esa edad (15 días). Mientras que el valor de heterosis para longitud observado a la edad de 15 días (3.5 %), y el observado al final del cultivo larval, 17 días (6.77 %), no representan una heterosis útil (Falconer, 1989) a nivel de mejoramiento genético a través del cruzamiento, ya que ninguna de las cruzas fue superior a la mejor población (Magdalena), el incremento en heterosis a lo largo del cultivo larvario nos indica que existe cierta ventaja en el crecimiento de las cruzas con respecto a la media de las poblaciones. Esto puede ser un reflejo de una mejor eficiencia metabólica a consecuencia de una mayor heterocigosidad en las cruzas.

En lo que respecta a la heterosis a nivel adulto, en ambos medios ambientes esta se dio solamente al evaluar el crecimiento y no la supervivencia, además de observarse que una heterosis significativa solo ocurrió cuando los grupos se evaluaron en Bahía Concepción. Por ejemplo, los valores observados de heterosis al final del cultivo en Bahía Concepción, para características como peso total, biomasa y músculo son significativos (h>15%), e implican más de un 15 % de mejoría en las cruzas en relación al promedio de los padres. Sin embargo, en ningún momento el promedio de las cruzas fue superior a la población Concepción, lo cual se esperaría en el caso de existir una heterosis “útil”. Esta conclusión es confirmada con el análisis de heterosis para supervivencia a la edad de 7 meses, ya que, no solo no existió heterosis en ninguno de los dos ambientes, sino que las cruzas presentaron una supervivencia tan baja como la...
población no adaptada a ese medio, esto es, Magdalena (Tabla 15). Mallet y Haley (1983), observaron heterosis tanto en crecimiento como en supervivencia en una cruza interpoblacional de *Crassostrea virginica*, obteniendo valores de heterosis de 11.02% en longitud, 14.3% en peso y 14.44% en supervivencia después de 24 meses de edad, por lo que proponen como apropiado el uso de estas cruzas poblacionales. Por otro lado, Manzi et al. (1981) al evaluar dos poblaciones de *Mercenaria mercenaria*, aún cuando no estimaron valores de heterosis, observaron a la edad de 24 meses que los grupos genéticos fueron significamente diferentes, en donde las cruzas recíprocas fueron las más grandes. Desafortunadamente la supervivencia no fue estimada en ese experimento, por lo que una recomendación en cuanto al uso de cruzas no fue posible.

La presencia de heterosis solamente en Bahía Concepción, nos hace suponer que esta sea debida al efecto diferencial que el rigor ambiental pudiese tener sobre cada uno de los grupos. Gaffney (1986, citado por Scott y Koehn, 1990) señala que en poblaciones con ambiente moderado y/o abundante alimento, el genotipo parece tener menor efecto sobre la viabilidad individual que cuando los recursos son escasos o aumenta el rigor ambiental, por lo que las diferencias en desempeño entre genotipos son mas aparentes y mas importantes adaptativamente en ambientes que maximizan la demanda de energía sobre el metabolismo. En múltiples estudios en bivalvos se ha observado que ha mayor rigor ambiental, mayores diferencias en crecimiento, metabolismo y/o supervivencia son observadas entre organismos con distinta heterocigosidad (Koehn y Shumway, 1982; Rodhouse y Gaffney, 1984; Gentil y Beaumont, 1988; Koehn y Bayne, 1989; Scott y Koehn, 1990; Slattery et al., 1991). Estas observaciones concuerdan con lo que Berger (1976) describió como “heterosis condicionada” en la cual el valor puntual de la heterocigosidad en un locus particular no será necesariamente constante, ya que bajo determinadas condiciones ambientales en las que los genes no son expresados al máximo, el genotipo individual para ese locus no será importante en términos de heterosis.

Alternativamente a que la ocurrencia de heterosis condicionada pudiese explicar las diferencias en heterosis observada entre Bahía Magdalena y Bahía Concepción, es importante el discutir una segunda posibilidad para esas diferencias. Para esto, y para
poder definir si existe una ventaja real en las cruzas en relación a las poblaciones parentales, es necesario considerar conjuntamente el crecimiento, por ejemplo representado por la biomasa, y la supervivencia. Es interesante notar que la biomasa (peso de tejidos), además de ser el caracter en el que se observaron los mayores valores de heterosis (20%), fue el único caracter en el que se presentó una heterosis estable hasta la edad de 6 meses (alrededor de 15%) y un incremento final a la edad de 7 meses en Bahía Concepción (Fig. 23). Mientras que este caracter es el principal indicador de la capacidad fisiológica del crecimiento, la supervivencia es el principal indicador de la capacidad adaptativa del genotipo. Debido a que la capacidad fisiológica es un componente fundamental de la capacidad adaptativa, los resultados parecen caer en una incongruencia al observarse heterosis del crecimiento y no de la supervivencia. Esta incongruencia puede ser explicada si consideramos que los valores de heterosis observados en Bahía Concepción fueron en realidad causados por la sensibilidad al medio ambiente de la población Magdalena, lo cual es apoyado por la significancia observada para la interacción genotipo-medio ambiente, en donde se observó que la causa principal de esta interacción fue el bajo crecimiento de la población de Magdalena en Bahía Concepción. Cuando esto se considera, se puede observar que esa alta sensibilidad al medio ambiente resulta en un decremento en el valor medio de este grupo, y consecuentemente en una disminución del promedio de las líneas parentales, a partir de los cuales se estima la heterosis. De esta manera podemos concluir que los valores de heterosis en crecimiento en Bahía Concepción se debieron a la elevada sensibilidad de la población Magdalena al medio ambiente estresante y no a una verdadera ventaja de las cruzas.
Fig. 23. Valores de heterosis a lo largo del cultivo en ambos medios **ambientes**. BM: Bahía Magdalena; BC: Bahía Concepción.
En resumen, los resultados indican que por las razones antes expuestas no es recomendable el uso de las cruzas interpoblacionales aquí evaluadas como alternativa para el mejoramiento. Además y aún más importante, no es recomendable introducir poblaciones no nativas a Bahía Concepción, debido a que se puede afectar la composición genética que se ha logrado por procesos de adaptación, los cuales se han dado en respuesta a las condiciones medio ambientales imperantes en tal Bahía. La introducción de organismos de la población de Bahía Magdalena o cruzas poblacionales con fines de repoblamiento a Bahía Concepción, podría resultar en una reducción del éxito reproductivo de la población nativa y adaptada a tales condiciones si la reproducción de ambas poblaciones es simultánea, debido a una competencia gamética entre organismos introducidos y nativos.
CONCLUSIONES

- Se logró diferenciar genéticamente a las poblaciones de Bahía Magdalena y Bahía Concepción, tanto a nivel larval como de adulto, en base al análisis de distintos caracteres fenotípicos al cultivar a los organismos bajo un mismo ambiente.

- Los organismos de la población Magdalena presentaron un mejor crecimiento y supervivencia durante la etapa larval, bajo las condiciones de cultivo manejadas (22°C, 38 %).

- Durante el periodo larval, se observaron efectos maternos en crecimiento y supervivencia, y heterosis en crecimiento, concordando con lo esperado teóricamente en donde el efecto materno tiene mayor impacto al principio del cultivo y desaparece posteriormente, en tanto que la heterosis aumenta conforme avanza el cultivo.

- La heterosis en longitud observada al final del cultivo larval (8.77 %) no fue substancial y probablemente no importante a nivel de producción.

- A nivel de cultivo en campo se presentó un considerable efecto del medio ambiente, ya que se observó un mayor crecimiento y mayores supervivencias en todos los grupos en el medio ambiente de Bahía Magdalena que en el de Bahía Concepción.

- Se observó una interacción genotipo-medio ambiente causado por un distinto efecto del medio ambiente sobre los grupos genéticos, especialmente afectando el desempeño de la población Magdalena cuando esta se cultivó en Bahía Concepción. La población de Concepción, adaptada a un mayor rigor ambiental, presentó el mejor crecimiento en su ambiente natural y un crecimiento en la mayoría de las características evaluadas no estadísticamente diferente al de la población de Magdalena en Bahía Magdalena.

- En el ambiente con mayor rigor ambiental (Bahía Concepción) se observó una mayor diferenciación de los grupos genéticos, tanto en crecimiento como en supervivencia.
- No se observó heterosis en supervivencia en ningún momento, desde el estadio larval hasta el estadio adulto en ambos medios ambientales. La heterosis en crecimiento estimada en Bahía Magdalena no fue significante, mientras que la observada en Bahía Concepción no representa una heterosis “útil” a nivel de mejoramiento genético. Los diferentes valores de heterosis observados entre sitios de cultivo indican que esta fue posiblemente una consecuencia del efecto deletereo del medio ambiente sobre el crecimiento de la población no nativa, Magdalena, y no necesariamente una ventaja a consecuencia de un mayor grado de heterocigosidad en las cruzas.
RECOMENDACIONES

Considerando programas potenciales de mejoramiento genético para la almeja catarina el método de cruzamiento interpoblacional debe de ser manejado con cuidado. Esto se debe principalmente a la presencia de una interacción genotipo medio ambiente y a las diferencias observadas para crecimiento y supervivencia en cuanto a la heterosis. En Bahía Concepción, que es donde se observó heterosis para el crecimiento, este no fue del tipo denominado como “útil” en un contexto de producción. Adicionalmente, las altas mortalidades observadas en las cruzas bajan su rendimiento total, por lo que no existe una mejoría real al utilizar estas cruzas. Así mismo, en Bahía Magdalena no se observó una heterosis significativa en crecimiento, por lo que este método no produciría una mejoría en producción que justifique tal estrategia y sus implicaciones de manejo.

Por otro lado y enfatizando esto en específico, los programas de repoblamiento que se planteen a futuro para el Estado de Baja California Sur, deberán considerar el posible impacto deletéreo que tendría la introducción de poblaciones no nativas en Bahía Concepción sobre la ya diseminada población de Concepción. La recomendación que se desprende de estos estudios es que para el repoblamiento de Bahía Concepción solo se utilicen organismos de esa misma población, o zonas aledañas con condiciones ambientales similares.

Finalmente, y considerando la mayor inversión que implica el realizar cruzas interpoblacionales y la nula mejoría en términos de rendimiento, lo más recomendable en base a la evaluación realizada, es establecer programas de mejoramiento genético en cada localidad utilizando a la población nativa en cada sitio.
BIBLIOGRAFÍA

