Visualizando lo que varía.
Interpretación y construcción de gráficas de variación en el tiempo

Tesis que para obtener el grado de Maestro en Ciencias en Matemática Educativa

Presenta:
Eduardo Carrasco Henríquez

Directora de Tesis:
Dra. Leonora Díaz Moreno

Co-Director de Tesis:
Dr. Apolo Castañeda Alonso

México, D. F., Octubre de 2005
En la Ciudad de México siendo las 12:00 horas del día 21 del mes de diciembre del año 2005 se reunieron los miembros de la Comisión Revisora de Tesis designada por el Colegio de Profesores de Estudios de Posgrado e Investigación de la INSTITUTO POLITÉCNICO NACIONAL para examinar la tesis de grado titulada:

"Visualizando lo que varía. Interpretación y construcción de gráficas de variación en el tiempo"

Presentada por el alumno:

<table>
<thead>
<tr>
<th>Apellido paterno</th>
<th>Apellido materno</th>
<th>Nombre(s)</th>
<th>Con registro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrasco</td>
<td>Henríquez</td>
<td>Eduardo Andrés</td>
<td>A010673</td>
</tr>
</tbody>
</table>

aspirante al grado de:
Maestra en Ciencias en Matemáticas Educativa

Después de intercambiar opiniones los miembros de la Comisión manifestaron SU APROBACIÓN DE LA TESIS, en virtud de que satisface los requisitos señalados por las disposiciones reglamentarias vigentes.

LA COMISIÓN REVISORA

Director de tesis

Dra. Leonora Díaz Monroy

Codirector

Dr. Apolc Castañeda Alonso

CICUA / IPN

Dr. Estrella Vásconez Carrillo

Dr. Estrella Vásconez Carrillo

EL PRESIDENTE DEL COLEGIO

Dr. José Antonio Irán Díaz Góngora
En la ciudad de México, D.F. el día 15. del mes octubre del año 2005, el (la) que suscribe Eduardo Andrés Carrasco Henríquez alumno (a) del Programa de Maestría en Ciencias en Matemática Educativa con número de registro A010673 adscrito al Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, manifiesta que es autor (a) intelectual del presente trabajo de Tesis bajo la dirección de Dra. Leonora Díaz Moreno y cede los derechos del trabajo intitulado "Visualizando lo que varía. Interpretación y construcción de gráficas de variación en el tiempo" al Instituto Politécnico Nacional para su difusión con fines académicos y de investigación.

Los usuarios de la información no deben reproducir el contenido textual, gráficas o datos del trabajo sin permiso expreso del autor y/o director del trabajo. Este puede ser obtenido escribiendo a la siguiente dirección ecarrasco17@yahoo.com. Si el permiso se otorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuente del mismo.

Eduardo Andrés Carrasco Henríquez
A Javier y Fernando
Por la alegría de verlos jugar y crecer

A Claudia
Por su amor; su paciencia... Simplemente, por el placer de acompañarla

A Leonora y Jorge
Por el regalo de sus tiempos para compartir y construir este trabajo
Visualizando lo que varía. Interpretación y construcción de gráficas de variación en el tiempo

RESUMEN

Esta investigación surge de la constatación de dificultades en el trabajo con gráficas que requieren al tiempo como variable. Se observan con frecuencia en las producciones estudiantiles la confusión del eje de tiempo con un eje de distancia o la identificación de la gráfica de la trayectoria del móvil con la gráfica de distancia recorrida en el tiempo entre otras concepciones alternativas. Sobre la base de estas evidencias se propone indagar en los obstáculos para construir, interpretar y trabajar con gráficas de fenómenos de variación que requieren al tiempo como variable. El trabajo se corresponde con la fase de análisis previo de una ingeniería didáctica y reconoce que los sistemas conceptuales, incluso los más abstractos, se organizan sobre la base de metáforas conceptuales, metáforas que ayudan u obstaculizan el trabajo con los objetos matemáticos. La indagación histórico-epistemológica siguió elementos de visualización de fenómenos de variación, en el tiempo, así como, la concepción de la noción de tiempo. Por su parte, lo cognitivo se estudia a partir del análisis de producciones estudiantiles y de la determinación de sus representaciones y vivencias cotidianas del tiempo. Por su parte, el discurso curricular sobre el manejo de gráficas que se propone para el trabajo del aula, se documenta con la revisión de textos de estudio entregados a las escuelas por el Gobierno de Chile.

El propósito del estudio es identificar las metáforas conceptuales necesarias para interpretar las gráficas distancia-tiempo y aquellas metáforas cotidianas presentes en los estudiantes, con el fin de establecer obstáculos para el trabajo con este tipo de gráficas. Entre otros resultados se reportan significados y representaciones diversas para el tiempo y se constata que la construcción e interpretación de gráficas distancia - tiempo no es posible sin un marco de significados y representaciones compartidas por las comunidades de especialistas y la comunidad educativa.
Visualizando lo que varía. Interpretación y construcción de gráficas de variación en el tiempo

Abstract

This investigation arises from the establishment of difficulties in the work with graphs that they require to the time like variable. The confusion of the axis of time with a distance axis or the identification of the graph of the trajectory of the moving body with the graph of whole range in the time among other alternative conceptions is observed frequently in the student productions. On the base of these evidences one sets out to investigate in the obstacles to construct, to interpret and to work with graphs of variation phenomena that they require to the time like variable. The work corresponds with the phase of previous analysis of a didactic engineering and recognizes that the conceptual systems, even most abstract, are organized on the base of conceptual metaphors, metaphors that help or prevent the work with the mathematical objects. The historical-epistemologic investigation followed elements of visualization of phenomena of variation in the time, as well as, the conception of the time notion. the cognitive studies start the analysis of student productions and of the determination of his representations and daily experiences of the time. The curricular speech on the handling of graphs that sets out for the work of the classroom, it is documented with the given text revision of study to the schools by the Government of Chile. The intention of the study is to identify the conceptual metaphors necessary to interpret the graphs present distance-time and those daily metaphors in the students, with the purpose of establishing obstacles for the work with this type of graphs. Among other results they report meaning and diverse representations for the time and are stated that the construction and interpretation of graphical distance - time is not possible without a frame of meaning and representations shared by the communities of specialists and the educative community.
<table>
<thead>
<tr>
<th align="left">ÍNDICE</th>
<th align="left"></th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">GLOSARIO</td>
<td align="left">6</td>
</tr>
<tr>
<td align="left">RELACIÓN DE CUADROS, GRÁFICAS E ILUSTRACIONES</td>
<td align="left">11</td>
</tr>
<tr>
<td align="left">INTRODUCCIÓN</td>
<td align="left">12</td>
</tr>
<tr>
<td align="left">CAPÍTULO I: EL PROBLEMA</td>
<td align="left">14</td>
</tr>
<tr>
<td align="left">Antecedentes</td>
<td align="left">14</td>
</tr>
<tr>
<td align="left">Planteamiento del Problema</td>
<td align="left">23</td>
</tr>
<tr>
<td align="left">Objetivo</td>
<td align="left">24</td>
</tr>
<tr>
<td align="left">Objetivo Específico</td>
<td align="left">24</td>
</tr>
<tr>
<td align="left">CAPÍTULO II: METODOLOGÍA</td>
<td align="left">25</td>
</tr>
<tr>
<td align="left">Marco Conceptual</td>
<td align="left">25</td>
</tr>
<tr>
<td align="left">Metodología</td>
<td align="left">27</td>
</tr>
<tr>
<td align="left">CAPÍTULO III: ESTUDIOS</td>
<td align="left">32</td>
</tr>
<tr>
<td align="left">Estudio Histórico Epistemológico</td>
<td align="left">32</td>
</tr>
<tr>
<td align="left">Experiencia subjetiva del Tiempo</td>
<td align="left">43</td>
</tr>
<tr>
<td align="left">El tiempo en los Estudiantes</td>
<td align="left">50</td>
</tr>
<tr>
<td align="left">Metáforas Estudiantiles</td>
<td align="left">53</td>
</tr>
<tr>
<td align="left">Discursos Matemáticos Escolares</td>
<td align="left">58</td>
</tr>
<tr>
<td align="left">CONCLUSIONES</td>
<td align="left">66</td>
</tr>
<tr>
<td align="left">BIBLIOGRAFÍA</td>
<td align="left">71</td>
</tr>
<tr>
<td align="left">ANEXO</td>
<td align="left">74</td>
</tr>
<tr>
<td align="left">Encuesta El Tiempo</td>
<td align="left">74</td>
</tr>
</tbody>
</table>
GLOSARIO

1. Fenómenos de variación

En este trabajo los entenderemos como aquellos fenómenos en que existan variables involucradas que cambian su valor.

2. Visualización matemática

Trata con el funcionamiento de las estructuras cognitivas que se emplean para resolver un problema. Con las relaciones abstractas que formulamos entre las diferentes presentaciones de un objeto matemático a fin de operar con ellas y obtener un resultado. Con la participación de una cultura aportanó significados y significantes a los elementos involucrados en la visualización.

3. Actividad matemática

En este trabajo la entendemos como una forma de actividad humana, orientada a la resolución de problemas matemáticos involucrando entre otras, a las estrategias cognitivas de visualización.

4. Metáforas

Este estudio recurre a dos desarrollos de la noción de metáfora. Uno de ellas descansa sobre la base de lingüística y las neurolingüística y el otro sobre la sociología del conocimiento. Ambas acepciones reconocen que la metáfora es un instrumento a la base de la elaboración de saberes.

La metáfora toma elementos de un cuerpo de saberes relativamente conocido, llamado dominio de origen, y los transfiere a un cuerpo de saberes emergente (con la acción metafórica), llamado dominio de llegada.
Lizcano, desde la sociología del conocimiento, devela los campos semánticos de origen, de saberes construidos en una cultura determinada, siendo por lo tanto su dominio de origen un saber sociocultural, históricamente situado, mientras que los desarrollos de Lakoff y Núñez dejan experiencias corporales cristalizadas en saberes más abstractos.

5. Secciones Geométricas

Partes de un dibujo geométrico. La construcción de una sección puede realizarse mediante intersección de figuras o mediante la traza o lugar geométrico que forma la intersección de dos objetos geométricos en movimiento (por ejemplo, la espiral de Arquímedes).

6. Demostraciones visuales

En esta investigación las entendemos como aquellas demostraciones que se sustentan principalmente en argumentos propios a registros icónicos y/o gráficos y por tanto no responde solo a un registro algebraico.

7. Cualidades

La rocción de cualidad y la figuración de su devenir son utilizadas por Oresme como herramientas para argumentar en problemas de variación. Oresme entiende el término cualidad de modo amplio: "La calidez puede ser una cualidad, del mismo modo que la velocidad o el calor. Una cualidad se caracteriza por su grado, por su intensidad. Un cuerpo no es caliente o frío, sino que es más o menos frío, o, de la misma manera más o menos caliente."
8. Nociones de una visión de la experiencia del tiempo

a. El tiempo en la experiencia de vida

No está “ahí afuera” sino que la persona se lo representa desde su propia posición temporal de presencia.

b. El Ahora

Refiere a la condición de la persona de hallarse posicionado temporalmente de una manera permanente. Se recoge en la vivencia de sentirse “uno mismo” en cada instante aunque a la vez sepáramos que nuestra corporalidad cambia instante a instante.

c. Momento presente

Momento que se vivencia en su fugacidad, en el que distinguimos ser distintos al momento anterior. Da sentido al pasado y futuro.

d. Protecciones y retenciones

El ahora, vértice que se mantiene siempre en el mismo lugar articula la distensión temporal, acercando futuro al pasado o separándolos. Dando origen, según se proyecte la extensión intencional del sujeto hacia el pasado o el futuro de los fenómenos de “retensión”, extensión de la conciencia al pasado y “protensión”, extensión al futuro de la conciencia, conformando la conciencia temporalizadora, experimentando el sujeto el transcurso de la acción.
e. Campo de presencia

La noción de “campo de presencia” pone en juego un fenómeno conjunto de retención y proyección intencional por medio del cual la vivencia originaria en la que el tiempo y sus diferentes dimensiones aparecen ante el sujeto. Se perfila como tener aún a la mano el campo de presencia pues el tiempo no es una línea, sino una red de intencionalidades. Vincula el momento presente con el pasado y el porvenir. Estos tres elementos se disponen en el campo de presencia a modo de dimensiones intencionales con las que el sujeto siempre cuenta y trazan de antemano, cuando menos, el estilo de lo que va a venir.

Esta capacidad de la conciencia, denominada distensión, de sacarnos del presente mediante la orientación de intencionalidades hacia el pasado o futuro -lo que no hace de manera simétrica ni estandarizada- nos constituye en sujetos temporales.

f. Tiempo como metrización

A partir de las relaciones de Anterioridad, simultaneidad y posterioridad entre sucesos, basta considerar un concepto métrico del tiempo y el correspondiente un reloj, o mejor dicho un cronómetro. Así el tiempo es asociado con una variable t, bajo la forma de una parametrización, cuya sola orientación, no obstante, es incapaz de otorgar cualidad temporal a los sucesos, e indica únicamente el sentido o disminución de la variable algebraica t.
g. Temporalidad en la experiencia personal

Constituye la experiencia subjetiva del tiempo. Una síntesis integrada de la (dimensión proyectiva cualitativa) y a la metrización del tiempo (dimensión cualitativa)
Fig. 1: Representación Geométrica de propiedad distributividad	14
Fig. 2: Gráfica estudiantil de la caída en el tiempo de un objeto.	21
Fig. 3: Gráficas de Variación en el tiempo.	22
Fig. 4: Representación estudiantil de un movimiento pendular en el tiempo afectada por la posición del observador.	22
Fig. 5: Levantamientos de gráficas para el desplazamiento del profesor en la Sala (Arrieta 2002)	23
Fig. 6: Espiral de Arquímedes.	35
Fig. 7: Representación geométrica de la variación en el tiempo de una cualidad, por Oresme	37
Fig. 8: Representación de la trayectoria de una bala de cañón por Tartaglia	38
Fig. 9: Representación gráfica de la intensidad de la velocidad de la caída libre de un cuerpo. Galileo	39
Fig. 10: Representación gráfica de la intensidad de la velocidad de dos cuerpos por Galileo	41
Fig. 11: Gráfica de variación en el tiempo de Newton	42
Fig. 12: Estructura retensita-protensiva de la percepción del tiempo	47
Fig. 13: Esquema de percepción del tiempo por Maurice-Ponty	50
Fig. 14: Temporalidad del Sujeto. Síntesis de parametrización y distensión	51
Fig. 15: Representaciones intuitivas de la caída de una pelota. de estudiantes de 15 años.	55
Fig. 16: Facsimil página 93, texto de estudio de matemática para primer año medio, República de Chile	64
Fig. 17: Facsimil página 95, texto de estudio de matemática para primer año medio, República de Chile	64
Fig. 18: Facsimil página , texto de estudio de física para primer año medio, República de Chile	67
Fig. 19: Facsimil página , texto de estudio de física para primer año medio, República de Chile	65
Fig. 20: Facsimil página , texto de estudio de física para primer año medio, República de Chile	65
Fig. 21: Esquema de factores de la interpretación de gráficas	69
Fig. 22: grafica tiempo-Distancia	70
INTRODUCCIÓN

Este estudio indaga obstáculos que presentan los estudiantes para trabajar con gráficas distancia tiempo. Gráficas que están en la base del trabajo con fenómenos de variación los cuales han de estudiarse desde una perspectiva dinámica, que responda a los nuevos desafíos de la ciencia y en especial de la matemática, dejando atrás la “concepción estática de la naturaleza” (Ilya Prigogine, 1994; citado en Díaz, 1995) y avanzando en el manejo de fenómenos variacionales en los cuales “ya no podemos seguir hablando únicamente de “leyes universales extrahistorícas” sino que además debemos añadir “lo temporal y lo local” (Ilya Prigogine, 1994) con el fin de comprender y controlar, mediante el manejo de condiciones iniciales, el futuro.

Las dificultades que han mostrado nuestros alumnos a la hora de reconocer cómo y qué varía, con el fin de dar descripciones sobre el devenir de las variables involucradas en la situación, se erige como un obstáculo en su aprendizaje matemático, en particular la confusión en la interpretación y construcción de gráficas distancia-tiempo, con gráficas de la trayectoria del móvil, dan cuenta de una lectura de un gráfico distancia-distancia. Lecturas coherentes con epistemología de trabajo que conciben el tiempo acoplado al movimiento, sin hacer la necesaria distinción entre la variables métrica y las otras variables presentes, así como el no reconocer la covariación entre ellas.

La visualización de una gráfica involucra interpretación y traducción de las relaciones del gráfico en las situaciones y viceversa. Lo anterior implica compartir, por parte de la comunidad que usa esta herramienta, significados sobre los elementos que constituyen el gráfico. Por tanto la indagación en los obstáculos para el trabajo con gráficas distancia-tiempo se focaliza en las significaciones y representaciones que nuestros estudiantes comparten o no con la comunidad matemática que institucionalizó las gráficas distancia-tiempo.

1 Premio Nóbel de Química, en conferencia es el encuentro interdisciplinario internacional de Nuevos paradigmas, Cultura y Sociedad, Organizado por INTFRAI, Buenos Aires Argentina.
Un tiempo que fue constatificado en el desafío de buscar la evolución del sistema en estudio y por tanto de la necesaria centricación en 'a manera de variar. En este proceso el tiempo se considera isotrópico, independiente de los fenómenos, consideraciones que el siglo XX comenzó a redefinir. La teoría de relatividad, obliga a ‘cambiar nuestras ideas de espacio y tiempo, debemos aceptar que el tiempo no está completamente separado e independiente de espacio, pero que se combina con él para formar un objeto llamado el espacio-tiempo’ (Hawkins, 1960), más aún la mecánica cuántica con su principio de incertidumbre y la imposibilidad de un observador externo a la situación -si iluminamos una partícula para ver su velocidad, la dotamos de energía y por tanto esta se acelera- junto a los procesos caóticos han ido mostrando la necesidad de un nuevo paradigma que atienda a las nuevas complejidades e interrelaciones de variables que hoy se consusan y que una mirada reduccionista no logra modelar adecuadamente.

Al centro de este cambio epocal ha estado el tiempo. Un tiempo que en la práctica matemática se ha metrizado, concebido como reversible en un proceso de ’reducción de la naturaleza a las leyes deterministas y temporalmente reversibles constituyendo la eliminación de la flecha del tiempo. Flecha del tiempo que hoy se visualiza necesaria, a la luz de las necesidad nuestra de vivir con el pasado y el futuro. Como señala Prigonine 1995 “en la mayoría de los fenómenos que examinemos, especialmente en el nivel macroscópico (ya sean parte de la química o la biología) el pasado y el futuro juegan un papel diferente. En torno de nosotros hay por doquier una flecha de tiempo” Flecha del tiempo que no está presente en el trabajo de la matemática y la física, por tante la pregunta que se hace Prigonine ¿Cómo puede emergir esta flecha del tiempo de un no tiempo?” y en particular, ¿como un estudiante puede representarse un tiempo métrico desde una representación sin tiempo?.
CAPÍTULO 1: El problema

Antecedentes

Miguel de Guzmán refiere una anécdota de Norbert Wiener quien "se encontraba ante su clase del MIT (Massachusetts Institute of Technology) en medio del desarrollo de una complicada demostración. La pizarra estaba llena a rebosar de intrincadas fórmulas. De pronto se atascó, se quedó mirando fijamente la última fórmula y pareció convertirse en estatua por un buen rato. Todos pensaban, conteniendo el aliento, que estaba en un callejón sin salida. Pero Wiener, sin decir una sola palabra se dirigió al rincón de la pizarra, donada había todavía un pequeño espacio libre, trazó unas pocas figuras que nadie pudo ver pues estaban ocultas por su propia espalda. De pronto se le iluminó su rostro. Sin decir una sola palabra borró sus figuras misteriosas y volvió al punto en que se había atascado para continuar ya, impecablemente y sin problema alguno".

La importancia de la visualización matemática, entendida como la imagen mental que nos formamos sobre las ideas matemáticas y que involucra íconos, dibujos, gráficas entre otros, se ha constituido en una herramienta de construcción de ideas maestras, pero no como una herramienta de la matemática formal. A partir de Euclides, se impuso el deber de la matemática de ser deductiva, de ir desde una verdad a otra, y en este fluir de verdad desde las premisas básicas – axiomas, postulados– las imágenes, diagramas y dibujos han sido desestimados como herramientas principalmente por la desconfianza que se atribuye a los sentidos como medios para observar la realidad.

Dieudonné2 llega al extremo de declarar en la introducción de su obra sobre Álgebra lineal y geometría: "Me he permitido también no introducir ninguna figura en el texto,...", "Es deseoable liberar al alumno cuanto antes de la camisa de fuerza de las "figuras" tradicionales hablando lo menos posible de ellas (exceptuando, naturalmente, punto, recta y plano)".

Sin embargo, las imágenes han sido parte fundamental en la actividad matemática. Como no mencionar la Antigüedad Geométrica de Euclides, que hoy se retoma en la práctica de aula (ver Fig.1).

Particularmente “El cálculo del siglo XVII nace con una componente fundamentalmente visual y así se mantuvo en su desarrollo en los siglos siguientes, en interacción constante con los problemas geométricos” (Miguel de Guzmán, op. cit.). Oresme (1320) introduce la primera pregunta ¿Cómo dibujar lo que varía?, comenzando un proceso de construcción de herramientas de visualización de variaciones. Descartes (1600) y la geometría analítica dan importantes pasos para visualizar variaciones como secciones de curvas geométricas y finalmente Newton (1642) construye el cálculo a partir de estrategias geométricas sobre curvas que son “trazadas” por un “punto que se desplaza” (Lakoff y Nuñez). Más aún, Gauss en el siglo XIX, reconoce que “La matemática es la ciencia del ojo”, y a principios de siglo Hilbert destaca que “las figuras geométricas son fórmulas gráficas y ningún matemático puede prescindir de ellas”.

En resumen, las herramientas visuales son parte del hacer matemático y han sido fundamentales en el desarrollo del pensamiento matemático y en especial del pensamiento variacional. Si bien las críticas hacia esta herramienta, que aducen su fallibilidad a la hora de asegurar la verdad, no consideran que la actividad matemática involucre el trabajo en diversos registros, como el algebraico, geométrico, tabular entre otros. Es a través de esta articulación y el reconocimiento de las diversas posibilidades que ofrece cada uno de ellos en cuanto a las posibilidades de construir saber, argumentar y justificar que la visualización mediante el uso de gráficas e iconografías han mostrado ser muy fértil a la hora de construir saber y resolver problemas, pues, como señalará Pascal, “La razón nos hace dar pasos seguros, pero es el corazón quien nos permite dar saltos”.

El avance de las Tecnologías de la Información y las Comunicaciones (Tic’s) entre otras razones, ha vuelto a focalizar el interés de investigadores en la visualización
matemática, reconociéndola como una importante herramienta del pensamiento. Al respecto, Miguel de Guzmán (1996) señala que "una consideración de lo visual como argumento hermético, ayuda en el trabajo informal, guía de inspiración,... se trata de avanzar hacia una concepción más seria de los valores probativos y demostrativos de los procesos de la visualización". Proceso que abarca más que la simple imagen de un objeto, sino que se refiere a la construcción mental que hace un individuo sobre una teoría, situación o problema que se desea enfrentar. Hitt (1998) señalaba que "la visualización matemática requiere de la habilidad para convertir un problema de un sistema semiótico de representación a otro" y que "investigaciones recientes sobre los sistemas semióticos de representación han puesto de manifiesto la importancia de la articulación entre diferentes representaciones de conceptos matemáticos para el aprendizaje de la matemática". Y en esta área las gráficas son un elemento privilegiado para la actividad matemática profesional, lo que ha generado y validado a las gráficas en el hacer matemático, junto con restricciones y acuerdos diferenciándolas de los iconos o dibujos, aún cuando el valor de verdad de una conclusión o propiedad sigue fuertemente radicado en los dominios de la lógica. Con mayor rigor podemos decir que la visualización considera las relaciones y los cambios que la persona puede realizar en su mente para la búsqueda de los modelos e invarianzas presentes en una determinada situación. Más aún, Cantoral y Montiel señalan que la "visualización Matemática trata con el funcionamiento de las estructuras cognitivas que se emplean para resolver un problema, con las relaciones abstractas que formulan entre las diferentes presentaciones de un objeto matemático a fin de operar con ellas y obtener un resultado y sobre todo, de la participación de una cultura particular al compartir símbolos y gráficas" (2001)

Particularmente, Cantoral y Farfán (1998) señalan que para acceder al pensamiento y lenguaje variacional se precisa entre otras cosas del manejo de un universo de formas gráficas extenso y rico en significados por parte del que aprende. Por lo se ha de asumir que: previo al estudiante del cálculo se precisa de la adquisición de un lenguaje gráfico que posibilite, esencialmente, la transferencia de campos conceptuales virtualmente ajenos a causa de las enseñanzas

1 Página web
tradicionales, estableciendo un isomorfismo operativo entre el álgebra básica y el estudio de curvas, mejor aún, entre el lenguaje algebraico y el lenguaje gráfico (Cantoral, Farfán y otros, 2000, pág. 151), permitiendo de este modo una articulación entre diversos registros de representación, articulación no sencilla ni fácil de lograr, Vinner (citado en Hitt 1998) reporta que sus alumnos (de nivel universitario) tuvieron una tendencia a la evasión de consideraciones para resolver un problema, es necesario la articulación libre de contradicciones entre las diferentes representaciones semióticas utilizadas en la resolución del mismo.

Más aún, Cordero (2001) señala la importancia de trabajar con situaciones de transformación, específicamente en argumentos sobre el comportamiento tendencial de las funciones en que "la modelización de la transformación de funciones (y=f(x) ⇒ Y= Af(Bx+X)+D) lleva a la construcción de significados (comportamientos gráficos y patrones algebraicos y gráficos), haciendo procedimientos (variació de coeficientes) construyendo procesos y objetos (conciendo la función como una instrucción que organiza comportamientos)". Esta aproximación a los fenómenos de variación, sobre la base del comportamiento tendencial de las funciones está en la articulación de propiedades locales y globales en las cuales hay variación y comportamiento con cierta tendencia.

Desde una perspectiva psicológica cognoscitiva (Janvier, 1987), el manejo e interpretación de gráficas, es un proceso de traducción desde un gráfico en otro gráfico o una situación (la descripción verbal) en otra situación (descripción

4 Cordero 2001, Distingue tres posibles construcciones del cálculo, y que cada una de estas genera argumentos que permiten constuir nuevo conocimiento. Una primera construcción en base a situaciones de aproximación, en que por ejemplo se pide a la clase, hallar la ecuación de la recta tangente en el punto P de la curva y=f(x). Una segunda en base a situaciones de Variación, en que se pide, por ejemplo, a la clase "sea f(x) y f'(x); condiciones iniciales de cierta posición L de un móvil. Predecir por tanto la siguiente posición f(x'+h²)" y Finalmente una tercera en base a situaciones de transformación, en que a la clase se le pregunta por ejemplo, Determine el valor de coeficientes A, B, C y D para que la curva Y=f(x) se parezca a la recta L en un intervalo I.
verbal), llamado esto transposiciones (op. cit., 1987) y conformando una estructura conceptual que permite la traducción. Estructura que es relativa a mundos particulares de vida (Wolff-Michael Roth) y por tanto la actividad de leer gráficos, que ha sido tradicionalmente enmarcada como “interpretación”, es ahora entendida como la “acción por la cual un estudiante construye sentidos olevanta significados desde un gráfico (o porción de un gráfico)” (Leinhardt et al., 1990, pág. 8). Por su parte, desde la fenomenología y perspectivas semánticas, se destaca que toda lectura involucra interpretación y traducción de las relaciones del gráfico en las situaciones y viceversa, implicando, por tanto, el conocimiento de símbolos y contextos que sean compartidos por los estudiantes que lean el gráfico y por el constructor, en este sentido, “el ser las gráficas otras formas de signos, tienen relaciones arbitrarias pero convencionales para las cosas que representan y que no pueden ser elaboradas sin conocer esas convenciones” (Preece & Janvier, 1992), más aún, “las gráficas contienen pequeñas unidades de información circunstancial, y luego construir una descripción de una situación desde un gráfico puede se una tarea inherentemente indeterminada a partir de la información que solo esta disponible en la gráfica”.

Leinhardt (1990), muestra “como la confusión de “la inclinación” / “la altura”, se levanta cuando los estudiantes les preguntan sobre la rapidez relativa de dos objetos en el contexto de un gráfico que muestra la distancia-tiempo. En lugar de identificar la velocidad relativa (desde la inclinación de la curva) muchos estudiantes comparan las alturas relativas de ambas curvas (a menudo líneas) presentadas. Junto a ello destaca como la interpretación icónica incluye todos esos errores cuando los estudiantes inapropiadamente relacionan rasgos topológicos en la situación (por ejemplo, una curva la conceptualizan como la huella de una traza) y en rasgos topológicos similares en la representación correspondiente (por ejemplo una curvatura en el gráfico de una línea)”. Incluso en un estudio experto-experto (Roth & Bowen, 2003), se documenta como un grupo de expertos en el lugar de trabajo presentan importantes dificultades para interpretar gráficos encontrados en los cursos de pregrado y en libros de texto:

3 Emergence of Graphing Practices in Scientific Research Wolff-Michael Roth University of Victoria
usados en la formación de su área, es decir, no distinguen entre los gráficos y los fenómenos que para ellos se han vuelto transparentes (Roth, 2003a; Williams, Despiértete & Boreham, 2001), mostrando ‘as dificultades de interpretación de gráficas cuando no se esta familiarizado con ellas”.

Específicamente Dolores y otros (2002) muestran las siguientes concepciones alternativas en estudiantes y profesores sobre los elementos que componen las gráficas distancia tiempo. Cabe destacar, la representación

a) de velocidad media con la magnitud de la ordenada o con el intervalo de mayor longitud. No encontró en su estudio a estudiantes y maestros que en caso de gráficas horizontales, reconocieran la velocidad como 0 d/t

b) De la velocidad inicial, se reconoce como aquella que comienza en el tiempo 0 pero cuya ordenada es mayor,

c) Respecto de la velocidad negativa, la mayoría la reconoce como aquellas gráficas cuya ordenada en negativa

d) Y la gran mayoría asocia la gráfica con la trayectoria del móvil (Fig. 2)

e) Reconoce la altura de la coordenada “y”, como la inclinación de la curva

f) Asocia el signo de f(x) al concepto de función creciente o decreciente.

En particular, en practicas de alta, estudiantes de primer año de pedagogía en matemáticas –que ya habían cursado un primer curso de cálculo- se les pidió que señalaran que fenómeno podía describir un censro que generaba las gráficas de la Fig. 3 - usadas por Buendía y Cordero (2002), sus respuestas evidenciaron la asociación de la gráfica con la trayectoria del móvil, una especie de persistencia de la imagen de un fenómeno por sobre la comprensión de los elementos que variaban, en especial, el transcurso del tiempo. Los estudiantes identificaron el gráfico de la izquierda como la trayectoria de una persona subiendo las escaleras (más bien la escalera), mientras que el gráfico de la derecha los asocian con la traza que dejan marcas de un patinador mirado desde arriba, dando cuenta de un
desplazamiento distancia/distancia, pese a estar escrita en el eje de las abscisas la dimensión de tiempo, mostrando un tiempo que no es desacoplado desde el movimiento.

Esta dificultad se documenta en Ávila y Carrasco, (2002). A estudiantes de segundo semestre de la carrera de pedagogía, se les pide que a partir del movimiento de un péndulo, explicitar la imagen del fenómeno elegido, dibujando la situación desde tres puntos de vista distintos: Mirada frontal, lateral y superior, con el fin de recabar evidencias del efecto que produce la persistencia de la imagen en la construcción de la gráfica. Posteriormente se les solicitó construir la gráfica altura/tiempo desde los mismos puntos de vista, para explorar si los estudiantes lograban representar el fenómeno cuya gráfica debería ser la misma, independiente del punto de vista del observador, a diferencia de las gráficas distancia/tiempo. Los resultados no variaron del mostrado en la Fig. 4. A partir de ello, se puede conjugar que primó - a la hora de graficar - la imagen espacial que se tenía del fenómeno, dejando un tiempo implícito en el movimiento, mostrando la dificultad asociar una gráfica pertinente a un fenómeno cuando se requiere trabajar con variables que no están explícitas a la vista como lo es el tiempo. Es decir el tiempo parecía ser desplazado por las distancias visibles.

Por su parte Arieta (2004) obtuvo las siguientes representaciones gráficas estudiantiles del desplazamiento de un profesor por la sala.
En la Fig. 4a el tiempo marca solamente las detenciones del profesor, en una representación sin ejes, en la cual el tiempo está sobrepuesto a la representación espacial de las detenciones. Por su parte, la figura 4b, más avanzada en la situación didáctica trabajada por Arrieta, se presentan un eje para el tiempo y otro para el número e pasos dados - no para la distancia recorrida. El tiempo nuevamente no es usado de modo único, sino que establecen dos mediciones paralelas para dos fenómenos diferentes: un tiempo T_1 para los medir la duración de los desplazamientos y un tiempo T_2 para medir la duración de los momentos de detención.

Ambas gráficas evidencian un tiempo que marca eventos particulares - detenciones del profesor, avances del profesor, intervalos de avance, y que no es incorporado como variable continua que co-variación con las demás y por tanto factible de ser abscisa en un gráfico.

Arrieta documenta las dificultades que presentan los estudiantes:

- "Confunden la gráfica de la trayectoria del móvil con la gráfica distancia - tiempo. Una línea recta con pendiente no cero, en algunos casos, es interpretada como un objeto moviéndose con algún ángulo.
- No asocian una gráfica horizontal con un objeto estacionario.
- No interpretan que cuando la posición de la gráfica retorna al eje horizontal, el objeto retorna al origen físico."
* Confunden el origen físico con el origen de la gráfica distancia -
tiempo.

Parece subyacer en este conjunto de antecedentes, en la interpretación y
construcción de gráficas de fenómenos de variación en el tiempo con ejes
de dimensiones espaciales por parte de los estudiantes, y donde el tiempo,
o los tiempos, van implícitos en el "punto" que traza la gráfica en las
diversas situaciones. Conjeturamos que estas interpretaciones levantadas
por los estudiantes pueden responder a partir de las siguientes
representaciones:

a) Avanzar una distancia es un número positivo y retroceder es un
número negativo

b) La curva ha sido pintada por el móvil que se mueve

c) El tiempo va superpuesto al movimiento, y no es representado como
variable separada del movimiento

Por tanto el tiempo, como la variable del eje de las abscisas, es invisibilizado en
las representaciones, y es reemplazado por dimensión espacial.
Planteamiento del Problema

Este trabajo indaga en los obstáculos para construir, interpretar y trabajar con gráficas y esquemas que requieren al tiempo como variable. La variación en la grafica altura-tiempo de un péndulo, varía según la posición del observador (Ávila-Carrasco, 2002). La altura en el tiempo de un objeto que cae, representado en la figura 2, identificar la gráfica como las marcas de un patinador que se desplaza lateralmente, dan cuenta de una lectura del eje de las abscisas como un eje de distancia y no como el avance en el tiempo.

Así de una lectura de distancia del eje tiempo, volver al punto origen de la gráfica es representado como volver al punto de partida, identificando como señala Arrieta el origen físico del movimiento con el origen de la gráfica distancia- tiempo. Es decir, la grafica distancia-tiempo, esta siendo significada como la traza de una trayectoria bidimensional, en la cual el tiempo, esta implícito en el acto de moverse del objeto que describe el movimiento representado.

Por su parte, las representaciones del tiempo que portan los estudiantes al enfrentar el trabajo con este tipo de gráficas, parece no ser única y más bien esta fuertemente ligada al fenómeno. La presencia de tiempo documentada en las producciones de estudiantes (Arrieta 2002), dan cuenta de un tiempo que solo se hace explícito en momentos acotados, el tiempo de detención incorporado en la iconografía (fig. 4a) o tiempo separados en los ejes, para desplazamientos o detenciones. En definitiva tenemos un tiempo que no se puede “aislar y hacer abstracción, para elaborarlo de las relaciones espaciales y cinemáticas, es decir de las velocidades” (Piaget, 1946) y por consiguiente necesitamos intencionar intervenciones didácticas que permitan construir un tiempo que pueda “ser concebido como un sistema diferente, y aún ello no resulta posible sino a velocidades pequeñas” (Piaget, 1946)
Profundizar en la construcción de gráficas de fenómenos de variación, más específicamente en relación a los obstáculos para construir, interpretar y trabajar con gráficas y esquemas que requieren al tiempo como variable, es un campo problemático para la didáctica actual. Aportar a la construcción de situaciones didácticas que permitan a los estudiantes construir las herramientas de visualización gráfica de fenómenos de variación, y reversiblemente poder levantar conjeturas respecto de posibles fenómenos que respondan a las gráficas, a la luz de las evidencias con que se cuenta, requiere de estudiar en profundidad las representaciones de tiempo que son puestas en juego por los estudiantes al gráficas. Asimismo, revelar aquellas representaciones que dieron origen a las significaciones matemáticas del tiempo, involucradas en la construcción histórica de la herramienta gráfica para la actividad matemática y además las representaciones del tiempo que subyacen en el discurso del texto escolar.

Objetivo

Reconocer las representaciones puestas en juego al trabajar con gráficas distancia tiempo, tanto por la comunidad matemática como por los estudiantes, al trabajar con el tiempo, identificando resonancias y disonancias para el trabajo matemático escolar con gráficas distancia - tiempo

Objetivo Específico

- Identificar elementos en el devenir Histórico Social que motivaron la incorporación del tiempo a las gráficas, reconociendo metáforas subyacentes en el trabajo con gráficas distancia tiempo.
- Reconocer los elementos que conforman la experiencia del tiempo por parte de los estudiantes.
- Identificar las metáforas usadas en el manejo del tiempo por parte de los estudiantes, revelando representaciones del tiempo.
- Describir las significaciones de las gráficas distancia-tiempo y sus elementos en los textos escolares.
CAPÍTULO II: Metodología

Marco Conceptual

La investigación se construye sobre la base de entender la matemática como una producción humana y social, la cual se aprende a partir del desarrollo de la actividad matemática por parte del estudiante, actividad inserta en entornos sociales, su aula y en la cual el estudiante pone en juego no solo los conceptos previos que haya construido en un experiencia escolar previa, sino, que confluyen una amplia gama de ideas previas, construidas a partir de su biografía de vida y especialmente de su vida escolar. Por tanto, es importante reconocer las representaciones subyacentes en el trabajo con fenómenos que involucran el tiempo. Varela destaca que en “diversas situaciones enactamos sistemas conceptuales”, es decir, no son puestos en juego sistemáticamente incompletos y ansiosos de llenarse, sino que estructuras complejas que entran a interactuar en la situación generando acoplamientos estructurales que les han permitido resolver los problemas que enfrentan y que por tanto se han ido validando como esquemas exitosos en las diversas situaciones tanto escolares como de vida que enfrentan los estudiantes. Esquemas que no están completamente predefinidos, sino que emergen a partir de cómo nos movemos, tocamos, respiramos y comemos o interactuamos con la situación.

Por su parte, la lingüística cognitiva y en especial el trabajo de Lakoff y Nuñez (2002) nos muestran que una importante herramienta de este proceso de construcción son las metáforas conceptuales, entendidas como el llevar conceptos propios de un campo de saber conocido en un campo distinto que se quiere conocer. Así, cuando decimos que la “vejez es el ocaso de la vida”, estamos usando nuestro conocimiento sobre ciclo de 24 horas del día para conocer el proceso vital. Esto determina las formas de conocer y de este modo las posibilidades o imposibilidades presentes en el dominio de llegada, el ocaso de la vida es un avance hacia la oscuridad y el peligro de la noche y por tanto es algo angustiante y malo, marca el fin de la luz.
Por su parte la metáfora es una herramienta no reversible, pues a diferencia de la analogía, que supone el conocimiento de ambos dominios conceptuales, la metáfora lleva desde un dominio conocido en nuestro ejemplo el día, su estructura conceptual hacia el dominio desconocido, el ciclo vital. Este carácter orientado nos permite definir el dominio de partida o lo “sabido” y un dominio de llegada, dominio no suficientemente conocido, el cual mediante los contenidos y perfiles prestados por la metáfora desde el dominio de partida, nos permite aclarar y conocer.

La metáfora como herramienta cognitiva se activa por igual en el hombre de la calle ante el problema de conceptualizar un olor que en el físico teórico que se enfrenta a la “materia oscura”. “Pero la particular solución que cada individuo o grupo arbitre para el problema inicial resulta socialmente cargada con esa tupida red de adherencias evocativas y connotativas que se han condensado en el símbolo y que provienen tanto de la experiencia, creencias y expectativas personales del sujeto de la interogación, como de la experiencia, creencias y expectativas colectivas de la cultura o grupo a los que pertenece”. (Lizcano 2004)

Así por ejemplo, reconocer la resta como “quitar 5 a 10” para obtener un resto de 5, nos remite a la resta como quitar, más aún “expresión que selecciona el matemático griego es el verbo aphaireó, cuyo modo de operar se nombra como aphaireis. En griego común este tipo de expresiones se utilizaban para actividades como ‘extraer’, ‘sacar’, ‘arrancar’, ‘privar’, etc” (Lizcano 2004). Esta metaforización de la resta, usada en la enseñanza primaria, nos reporta al acto de extraer, así como el escultor saca del la piedra. Permitiendo dar luz y significación a la resta matemática. Si bien es muy útil, la metáfora no solo porta aquellos aspectos que la hacen relevante, sino que subyacen en ella las posibilidades e imposibilidades que el dominio de partida establece, así la resta entendida como quitar, imposibilita la existencia de los números negativos, no se puede tener menos que nada dirá René Descartes.

Esta metáfora subyacente en la actividad matemática, “ha sido construida y es usada por un sujeto social, un sujeto concreto —histórica y socialmente situado— que se dirige a un oyente concreto en una situación concreta, un sujeto que, para construir sus conceptos y articular su discurso, selecciona unas metáforas y
desecha otras en función de factores sociales (presupuestos culturales, intereses o aspiraciones de grupo o clase, alianzas o exclusiones, características de los destinatarios, prestigio social de los discursos que son fuente de los préstamos metafóricos, etc.) (Lizcano, 2004). Como tales viven procesos de establecimiento en la matriz conceptual del grupo social que la usa, transformándolas en hechos establecidos y ocultando en su uso su origen metafórico, hoy la resta es entendida como un acto literal, es al decir de Lizcano, una metáfora muerta, más bien Zombi, pues sigue actuando.

Particularmente, en esa investigación el tiempo, como concepto cotidiano y a la vez matemático es trabajado por los estudiantes en su mundo cotidiano y a su vez es trabajado por la comunidad matemática, esto implica la existencia de formas de conocer el tiempo que no necesariamente son coherentes entre lo cotidiano y lo matemático, formas que son enactadas por los estudiantes a la hora de trabajar con gráficas distancia-tiempo.

Metodología

La investigación se enmarca en la ingeniería didáctica, entendida en su carácter investigativo, en su fase de análisis preliminar, la cual nos brinda la posibilidad de desarrollar una acción racional en la complejidad del salón de clases. Como metodología de investigación, se caracteriza fundamentalmente porque sus productos son construidos a partir de un esquema experimental basado en las realizaciones didácticas en clase, es decir, sobre la concepción, realización, observación y análisis de secuencias de enseñanza; y también porque se ubica en los registros de los estudios de caso y cuya validación es interna, es decir, basada en la confrontación entre el análisis a priori y a posteriori (Artigue, 1995).

Este método contempla tres grandes fases (Ferrari 2002) **Análisis Preliminar**, en el cual se inserta este trabajo y en el cual se analiza y determina, desde una aproximación sistémica, todos y cada uno de los actores del sistema didáctico y de las relaciones entre los mismos, en torno a los objetivos de la investigación. La fase de **Análisis a priori** y diseño de la situación didáctica en la cual se realiza el diseño y elección de las variables macro y micro didácticas, estableciendo las hipótesis
de trabajo de la interacción con los estudiantes. La experimentación, que es la puesta en escena de la situación diseñada y finalmente la fase de Análisis a posteriori y validación en el cual se realiza una exhaustiva revisión de los sucesos acaecidos durante la puesta en escena de la situación diseñada, confrontando las hipótesis definidas en el análisis a prion y se determina en qué medida las expectativas fueron alcanzadas o cuanto se desvían los resultados de lo que se esperaba.

En particular este trabajo se centra en la etapa de análisis preliminar y pretende indagar en los obstáculos que presentan los estudiantes al trabajar con gráficas distancia-tiempo. Busca profundizar en las representaciones y los aspectos que se ponen en juego a la hora de trabajar con el tiempo en gráficas. Atendiendo a un estudio histórico epistemológico sobre la incorporación del tiempo en la construcción de gráficas, un estudio cognitivo sobre las representaciones del tiempo que portan los estudiantes y el análisis de textos escolares, como una muestra válida del discurso matemático escolar promovido por la reforma educativa que vive Chile.

El estudio Histórico-epistemológico, se realiza mediante el análisis de textos histórico, en busca de elementos de visualización de fenómenos de variación. Siguiendo a los autores Oresme, Galileo y Newton, se pretende reconocer los principales momentos en la construcción de gráficas distancia-tiempo. Junto a ello se indaga en la evolución histórica de la concepción del tiempo que acompaña las construcciones gráficas, en orden a reconocer las metáforas puestas en juego en la actividad de las ciencias.

La aproximación a los aspectos cognitivos que intervienen en la interpretación de gráficas distancia tiempo, se realiza a partir de un análisis de contenido, en el cual se pretende reconocer las metáforas cotidianas sobre el tiempo que estructuran la red de significados con la cual el estudiante enfrenta el aprendizaje y trabajo con gráficas distancia tiempo. Para ello se establece un estudio cualitativo de los discursos estudiantiles, en una esfuerzo recursivo, en el cual en su primera etapa recurrió a la codificación abierta de las textualidades en torno a "distinguir unidades de sentido en las respuestas de los estudiantes" (Diaz fordeyct). Para recoger los discursos estudiantiles sobre el tiempo así como representaciones
icónicas de fenómenos de variación en el tiempo se opta por un diseño de estudio de caso, se selecciona un curso de 31 alumnos de décimo año escolar de nivel socioeconómico medio bajo. Se les aplica un cuestionario que recopila frases y oraciones libres sobre el tiempo, así como los dibujos por medio de tres reactivos. Los dos primeros buscan galatar la construcción de las frases que den cuenta de su entendimiento del tiempo y el tercero que galote la construcción de una representación gráfica de la caída de una pelota en el tiempo.

En una segunda fase se enfrenia el análisis y búsqueda de metáforas que portan los estudiantes, ello se realiza a partir de las textualidades siguiendo la sistematización propuesta por el Dr. Rivano 2004, estructurando los dominios conceptuales y sus esquemas lógicos y propiedades. Sistematización que establece los siguientes pasos:

a) Expresiones

Que se refiere a frases que involucran la temática a estudiar. Para ello se diseñea el test (anexo 1). A partir de las frases recopiladas se construyen agrupamientos del “material léxico afín, muestras de lenguaje que nos impresionan en forma preteórica, por una unidad percibida” (Rivano 2004, pág.78).

b) Nombre de la Metáfora

Mediante nuestra intuición, propia de hablantes de la misma lengua, así como la sensibilidad teórica construida a partir del marco teórico y en el desarrollo del proyecto Fondecyt 130413 en el cual se enmarca esta investigación, construimos el nombre de la metáfora que identifica la relación entre los conceptos involucrados en la metáfora.

c) Dominios Conceptuales

Se explicitan en esta etapa, los dominios conceptuales involucrados en la metáfora, señalando el dominio objetivo (META) y el objetivo de partida (Origen)
d) Escena Básica

Se busca identificar la relación básica entre el dominio de Origen y el dominio Meta. De modo de obtener un marco elemental para extraer elementos y relaciones que eventualmente importan en la metáfora del caso.

e) Lógica Esquemática

Buscamos "identificar las relaciones elementales de la escena básica, los principios inferenciales, las leyes básicas." (Rivano)

f) Propiedades

Se establecen diversas propiedades que no necesariamente como lógica esquemática (principios para la inferencia, leyes del esquema), pero pueden hacerlo. Es decir son propiedades elementales que están en la base de las relaciones lógicas ulteriores.

g) Correspondencias

Se establecen las relaciones conceptuales reales o activas que originan la expresividad inicial (las muestras lingüísticas.)

Finalmente, mediante el análisis de contenido a los textos de matemática entregados por el Ministerio de Educación de la República de Chile en los establecimientos educacionales públicos y particulares subvencionados7, que conforman el 85% de la matrícula nacional, se hace un análisis de aspectos del

7 El sistema de educación en Chile, contempla tres modalidades de dependencia administrativa. Las escuelas Municipales, las cuales dependen administrativamente del Gobierno Municipal, las Particulares subvencionadas, que dependen de Particulares privados o de corporaciones sin fines de lucro y reciben de parte del estado una subvención por estudiante que asiste a clases y las escuelas Particulares propiamente tales, financiadas por los propios padres y apoderados solamente.
discurso matemático presente en los textos, mediante el cual se busca establecer que representaciones son favorecidas en el texto con que cuentan los estudiantes.
CAPÍTULO III: Estudios

Estudio Histórico Epistemológico

El manejo de gráficas de curvas en las matemáticas tiene un origen geométrico. El dibujo no incorpora una representación del tiempo como variable, si bien una curva puede ser construida por procesos cinéticos como la espiral de Arquímedes, que se construye como el lugar geométrico de un punto en el plano, que partiendo del extremo de una semirrecta se mueve uniformemente sobre ella, mientras que la semirrecta gira a su vez uniformemente alrededor de su extremo (Fig. 7). La construcción de esta figura muestra la utilización de movimientos temporales implicitos (desplazamiento de la recta y el punto), pero la gráfica que se analiza es estática, pues es la traza de la trayectoria, sin tiempo, es la ruta que ha seguido el punto. Font (2001) señala al respecto: “Antes de Descartes las curvas se consideraban como el resultado de hacer secciones (como por ejemplo las secciones cónicas) o bien se consideraban como el resultado de la composición de movimientos”.

En la Europa medieval nos encontramos con una profunda discusión sobre la cuantificación de las formas variables. El más ilustre pupilo de Jean Buridans, Nicoal Oresme, introduce la discusión del péndulo en la ciencia occidental, en el año 1377 en el libro de “Heavens and the world of Aristotle”, desarrollando a través del experimento mental de la caída de un cuerpo en aguere taladrado en un lado de la tierra, a través del centro, y que sale al otro lado de la tierra, señala Oresme que el cuerpo puede eventualmente detenerse en el centro de la tierra Oresme gusta asociar este experimento a la caída de una cuerda larga que va de un lado a otro, cada momento pierde un poco de su altura inicial. Oresme busca por tanto describir como ocurre la “adquisición de medida de una cualidad y velocidad”. Esta adquisición de una cualidad lineal es imaginada como el movimiento de un punto que fluye sobre la línea, la adquisición de la cualidad de
superficie por el movimiento de una línea “dividiendo la parte de la superficie alterada desde la otra parte que no ha sido alterada. Similarnamente, la adquisición de una cualidad corporal es imaginada por el movimiento de una superficie.

“Dividiendo la parte alterada desde la parte no alterada.”

Oresme (Fig. 6) plantea la pregunta: “Por que no hacer un dibujo de la manera en que las cosas varían” (Boyer, 1969), logrando un adelanto sustancial en la construcción de gráficas. Oresme explica en el libro “la tractatus de configurationibus qualitatum et motuum Oresme”, su representación de las cualidades en el apartado “De l’adéquation des figures”, estableciendo la doctrina de la longitud y la latitud. En la cual el tiempo ha sido representado a lo largo de la línea horizontal, que ha llamado longitud, y la velocidad en varios tiempos, por la línea vertical, que ha llamado latitud… siguiendo la tradición griega para representar cantidades mesurables: Los números pueden ser representados por líneas y superficies.

“Toda cualidad lineal, puede simbolizarse por una figura plana, representada perpendicularmente a la cualidad lineal cuya altura es proporcional a la intensidad de la cualidad. Una figura levantada recta en una cualidad se dice de altura proporcional a la intensidad de la cualidad, si las alturas de dos trazos cuales quiera que están perpendicularmente rectos de la base hasta la cúspide de la cara o superficie entre ellos en la misma forma que las intensidades a los primeros puntos

Por ejemplo el trazo AB sobre la cual se construye la superficie ABCD y sean EF y GH dos rectas sobre la base. Entonces si, la razón de EF en GH es igual al razón de la intensidad en el punto de E a la intensidad en el punto de
G, y de la misma manera por todos los puntos y trazos correspondientes, diré que esta superficie o cara es proporcional en intensidad y, por consiguiente que la altura de la superficie es similar a la intensidad de dicha calidad. Por consiguiente esta figura o superficie conviene de la mejor forma posible a la representación de la cualidad. Como sobre este trazo AB se pueden llevar numerosas superficies proporcionales o similares en altura, las unas mayores, las otras más pequeñas, por ejemplo ABKL es más grande y ABMN es menor, y de otros que serían similar en la altura aunque desigual, sigue que la cualidad del trazo puede desgajarse AB indiferentemente por las importaciones de n que entre ellos. (…) Si la cualidad se representa por una cualquiera de estas figuras, una cualidad doble y similar en la intensidad se designará por una figura de altura doble y similar en altura."^{8}

Este importante paso en la construcción de gráficas como una figura geométrica en que se metatiza a partir del alto de un segmento en un punto dado, la intensidad de una cualidad en un instante determinado, se acerca bastante a nuestra forma de graficar hoy, aún cuando la figura resultante tiene un tratamiento geométrico y aún está lejos de reconocer al punto como elemento central del gráfico. En esta forma de graficar vemos una asociación de la cualidad a longitudes de segmentos, lo que permite realizar actividad matemática de cálculo de áreas y longitudes apelando a la geometría proporcional, más que a una articulación con registros algebraicos, que aún no se imponía en la actividad matemática. De la misma forma su concepción amplia de la cualidad sentaba los pasos para ir asociando al tiempo como una longitud, la longitud que marca en cada punto un instante del valor de la cualidad.

Este avance gráfico en la representación de formas variables no es adoptado de modo inmediato. A modo de ilustración podemos citar, en el año 1537 la Nova Ciencia, publicada

^{8} traducción al francés de P. SOUFFRIN - J.P. WEISS (Paris : Belles Lettres. 1986) (N.B. Los breves resúmenes entre crochets f sond dus aux traducteurs.)
por el matemático Nicolo Tartaglia, en la cual se introduce la balística y trata sobre el análisis de la trayectoria del cañón, solo presenta gráficas como las de la figura 7 que muestra la trayectoria de la bala de cañón en un gráfico distancia/distancia, mostrando las dificultades que hubo para comenzar a utilizar el tiempo como variable explícita.

Posteriormente, Galileo, en su libro "Dos nuevas ciencias" (1638) estudia el movimiento local y la rapidez, recuperando los aportes de Oresme en sus instrumentos de visualización. Usa para la descripción y análisis de cuerpos en caída libre segmentos para representar el tiempo, particularmente considera la caída libre como un movimiento uniformemente acelerado y aplica el resultado del Merton College sobre el valor medio de una cantidad uniformemente acelerada, mostrando una demostración muy similar a la dada por Oresme pero cuya imagen se ve más cercana a la caída libre, veamos el teorema I, proposición 105 de su libro "Dos nuevas ciencias"

PROPOSICIÓN 105

El tiempo en que cualquier espacio es atravesado por un cuerpo que empieza en reposo y es uniformemente acelerado, es igual al tiempo en que ese mismo espacio se cruzaría por el mismo cuerpo que se mueve a una velocidad uniforme cuyo valor es la mitad de la velocidad más alta y la velocidad justo antes de que la aceleración empezara.

Demostración:

Permitamos representar por la línea AB el tiempo en que el espacio CD es cruzado por un cuerpo que empieza del resto en C y que es uniformemente acelerado; permita el valor final y más alto de la velocidad ganada durante el intervalo AB se represente por la línea EB, dibujando ángulos rectos en AB; dibuje la línea AE, entonces todas las líneas dibujadas desde
puntos equidistantes de AB y paralelas a BE representan los valores crecientes de la velocidad, comenzando en el punto A. Sea el punto F bisectando la línea EB; dibuje FG paralela a BA, y GA paralelo a FB, formando un paralelogramo así AGFB que será igual en el área el triángulo AEB, desde el lado GF que bisecta AE en el punto I; las líneas paralelas en el triángulo AEB son extendidas a GI, entonces la suma de todas las paralelas contenidas en el cuadrilátero es igual a la suma de todas las paralelas contenidas en el triángulo AEB; aquéllas en el triángulo IEF son iguales a aquéllas contenidas en el triángulo GIA. Por su parte aquéllas incluidas en el trapecio AIFB son iguales; cada uno y cada momento de tiempo en el intervalo de tiempo AB tiene su punto correspondiendo en la línea AB de modo que las paralelas van arrastrando lo puntos y están limitadas por el triángulo AEB represente los valores crecientes de la velocidad creciente, y subsecuentemente parangona contenido dentro del rectángulo represente los valores de una velocidad que no es creciente, pero constante, aparece, de la misma manera, que las velocidades adquiridas [las velocidades adquiridas] asumió por el cuerpo mudanza también puede representarse, en el caso del movimiento acelerado, el aumentando parangona del triángulo AEB, y, en el caso del movimiento uniforme, por el parangona del GB del rectángulo. Para, a que a las velocidades adquiridas puede les faltar en la primera parte del movimiento acelerado (la deficiencia de las velocidades adquirida a representándose por el parangona del triángulo AGI) es hecho a por las velocidades adquiridas representadas por el parangona del triángulo IEF.

De esta manera Galileo usa una gráfica más coherente visualmente habiendo con la situación que se esta modelando, una caída, mostrando libertad epistémica propia de un momento de creación a la hora de construir gráficas. Usando dos ejes paralelos, uno para el tiempo y otro para la distancia recorrida (dibujados ambos) y trazos perpendiculares (horizontales en este caso) para la velocidad creciente de la caída, mostrando una persistencia a estar cerca de la imagen visual. El análisis de la figura se remite nuevamente a argumentos geométricos, simbolizando el tiempo como una línea continua sobre la línea de desplazamiento.
del objeto que cae, ambos parámetros, desplazamiento vertical y avance del tiempo, están paralelos y en el sentido de la caída y ambos están presentes en la visualización de un modo equivalente, ambos son rectas paralelas y por tanto representadas por el mismo elemento: una línea que se puede recorrer.

En otra sección cuando desea levantar propiedades al comparar las velocidades de dos partículas que se mueven usa la siguiente imagen:

THEOREM I, PROPOSITION I

"Si una partícula en movimiento, llevando una velocidad uniforme y constante, los tiempos requeridos para atravesar dos distancias son tales que la razón de uno a otro es la razón de las distancias"

Demostración

Sea una particular que se mueve uniformemente con velocidad constante a través de dos distancias AB, BC, y sea el tiempo requerido para atravesar AB representado por DE; El tiempo requerido para atravesar BC, por EF; Entonces yo digo que la distancia AB es a la distancia BC como el Tiempo DE es al tiempo EF.

Fig. 10

Sean las distancias y los tiempos extendidos en ambos lados hacia G,H e I,K, permita que AG sea dividido en cualquier número de espacios cada uno igual a AB, y de la misma manera disponga en DI, exactamente el mismo número de intervalos de tiempo cada uno igual a DE. Nuevamente disponga en CH cualquier número de distancias cada una igual a BC; y en FK exactamente el mismo número de intervalos de tiempo cada uno igual a EF; Entonces la distancia BG y el tiempo el serán iguales y múltiplos arbitrarios de la distancia BA y el tiempo ED; e igualmente la distancia HB y el tiempo KE son iguales y múltiplos arbitrarios de la distancia CB y el tiempo FE...
Se observa en Galileo un apego a la representación icónica de movimientos, dando cuenta de una inestabilidad de las representaciones y visualizaciones utilizadas para el trabajo con variaciones en las cuales el tiempo es necesario, propias de su época. Inestabilidad que da cuenta de cómo la construcción de una visualización se estructura en una relación dialéctica con las imágenes de los objetos que evoca nuestra mente. Al reformular Galileo una representación presentada por Oresme para la velocidad de una variable uniformemente acelerada, el gráfico es “verticalizado” para ser más coherente con la imagen de caída libre.

De igual forma se va configurando un paradigma geométrico para entender una curva. Descartes señala: “La curva geométrica es la traza que produce un punto que se mueve por un instrumento articulado compuesto por diversas reglas, de manera que el movimiento efectuado sobre una regla es trasmitido por las diferentes reglas del instrumento y hace que el punto se mueva trazando una determinada curva”. Por su parte, Newton describe en el “tratado sobre la cuadratura de las curvas” (1704), que: “las líneas no se engendran mediante la suma de partes, sino por el movimiento de puntos; las superficies por el movimiento de líneas; los sólidos por el movimiento de superficies; los ángulos por la rotación de los lados; los tiempos, por el flujo continuo, y así otros casos semejantes”.

Luego el tiempo, construido a partir de una metáfora de flujo continuo, permite la representación del tiempo como la línea continua trazada por el flujo continuo, un flujo continuo que en su teoría Newton separa de la

Extractado de “El cálculo infnitesimal – Origen y Polémica” de José Babini (1972)
Se observa en Galileo un apego a la representación icónica de movimientos, dando cuenta de una inestabilidad de las representaciones y visualizaciones utilizadas para el trabajo con variaciones en las cuales el tiempo es necesario, propias de su época. Inestabilidad que da cuenta de cómo la construcción de una visualización se estructura en una relación dialéctica con las imágenes de los objetos que evoca nuestra mente. Al reformular Galileo una representación presentada por Oresme para la velocidad de una variable uniformemente acelerada, el gráfico es "verticalizado" para ser más coherente con la imagen de caída libre.

De igual forma se va configurando un paradigma geométrico para entender una curva. Descartes señala: “La curva geométrica es la traza que produce un punto que se mueve por un instrumento articulado compuesto por diversas reglas, de manera que el movimiento efectuado sobre una regla es trasmitido por las diferentes reglas del instrumento y hace que el punto se mueva trazando una determinada curva”. Por su parte, Newton describe en el “tratado sobre la cuadratura de las curvas” (1704), que: “las líneas no se engendran mediante la suma de partes, sino por el movimiento de puntos; las superficies por el movimiento de líneas; los sólidos por el movimiento de superficies; los ángulos por la rotación de los lados; los tiempos, por el flujo continuo, y así otros casos semejantes”.

Luego el tiempo, construido a partir de una metáfora de flujo continuo, permite la representación del tiempo como la línea continua trazada por el flujo continuo, un flujo continuo que en su teoría Newton separa de la

8 Extraído de “El cálculo infinitesimal - Origen y Polémicas” de José Bubni (1972)
realidad entendiéndolo como "eterno e infinito, omnipotente y omnisciente; esto es, su duración se extiende desde la eternidad a la eternidad y su presencia del infinito al infinito... No es la eternidad ni el infinito, sino que es eterno e infinito; no es la duración ni el espacio, pero perdura y está presente. Perdura por siempre, y está presente en todas partes; y, por el hecho de existir siempre y en todas partes, Él constituye la duración y el espacio". Configurando un tiempo independiente de los fenómenos.

En la figura 11, extractada del “Tratado sobre la cuadratura de las curvas”, muestra la gráfica abstracta de la ordenada BC, que “pase de su posición a otra cualquier B'C'”, entendiéndole su longitud como la intensidad de lo representado y la abscisa como las variaciones de tiempo en que las “cantidades engendradas, al crecer en tiempo iguales, resultan mayores o menores”.

Aquí el tiempo es ubicado como variable independiente en el eje de las abscisas y es metaforizado como una distancia, desde donde el segmento puede pasar desde un lugar hacia otro, más adelante o más atrás y desde ahí se permite mediante herramientas de geometría analítica establecer las relaciones algebraicas de las flujiones. En el texto se oculta el tiempo, y solo se refiere a la distancia entre las curvas, situación que se repite en los teoremas y propiedades equivalentes insertas en los “Principia Matemáticos”.

En este punto del desarrollo histórico de las gráficas se reconocen las siguientes premisas metafóricas presentes en la construcción de gráficas:

- El plano cartesiano, con la metáfora de Descartes en que una función matemática es una curva en el plano cartesiano.
- La caracterización geométrica del cálculo, de Newton, en términos de la secuencia de secantes con la tangente como límite.
- El entendimiento de una curva en términos de la continuidad natural del movimiento.

Y que configuran el paradigma geométrico en el cual Newton construye su cálculo de flujiones. Paradigma reconoce que una curva, que es una línea en el espacio tridimensional ya sea recta o curvada, tiene las siguientes propiedades:
- Puede ser generada por el movimiento de un punto
- Es continua
- Tiene una tangente
- Tiene longitud
- Cuando es cerrada, forma una región completamente acotada
- Esta región tiene área
- La curva no es una superficie
- Está formada por la intersección de dos superficies

Pierpont 1898, citado en Núñez y Lakoff (2000), Pág.307

Dado cuerpo a las representaciones y significaciones que conformaron el desarrollo del cálculo. Es importante destacar que la continuidad de una curva venía dada por la continuidad de un movimiento en el espacio, siendo natural para este tipo de representaciones de curvas, el movimiento.

Este paradigma, se vuelve insuficiente para poder enfrentar el análisis de las funciones de la recuadro siguiente, funciones que si bien su gráfica se visualiza continua, no cumplen con todas las exigencias del paradigma geométrico reseñadas por Pierpont (1899).

\[
f(x) = \begin{cases}
\text{sen}(1/x) & \text{para } x \neq 0 \\
0 & \text{para } x = 0
\end{cases}
\]

\[
f(x) = \begin{cases}
0 & \text{para } x = 0
\end{cases}
\]

\[
f(x) = \begin{cases}
\text{sen}(1/x) & \text{para } x \neq 0 \\
0 & \text{para } x = 0
\end{cases}
\]

\[
f(x) = \begin{cases}
0 & \text{para } x = 0
\end{cases}
\]

Estas funciones fallan las propiedades 1,3 y 4 del paradigma Geométrico.

El paradigma geométrico no puede dar sentido a estas funciones

Recuadro 1: Funciones Monstruos (Lakoff y Núñez, pág. 316-320)
El trabajo de aritmétizació iniciado por Dedekind (1870) y finalizado por Weierstrass (1872) logra resolver, las contradicciones señaladas en el recuadro, con un reemplazo metafórico, imponiendo una nueva concepción que prohibe el movimiento y el espacio. Este desafío se enfrenta a partir del reconocimiento de los siguientes cambios:

- La continuidad natural debe ser eliminada desde el concepto de espacio, plano, línea, curvas y figuras geométricas. Geométricamente se debe reconceptualizar en términos de conjuntos de puntos discretos, los cuales a su vez pueden ser reconceptualizados puramente en términos de números: puntos en una línea como números individuales, puntos en un plano, como pares de números, puntos en espacios n-dimensionales como las n-uplas de números.

- La idea de función como una curva definida en términos del movimiento de un punto debía ser completamente reemplazada: No podría haber ningún movimiento, ninguna dirección, ni aproximación a un punto. Todas las ideas debían ser reconceptualizadas en términos puramente estáticos usando solamente números reales. Esto es necesario para caracterizar el cálculo solamente en términos de la aritmética y se toma posible a partir de las siguientes metaforizaciones

- La continuidad para el espacio debía ser reconceptualizada como continuidad para números.

- Las funciones continuas también debían ser reconceptualizadas solamente en términos de números.

- El cálculo debía ser reformulado sin, ya sea, secantes geométricas y tangentes o infinitesimales. Solamente podían ser usados números reales.

Dando inicio por tanto al programa de aritmétizació del cálculo y su triunfo no solo se remite a resolver los problemas de las funciones del recuadro, sino, que en estructurar el cálculo moderno, un cálculo sin movimiento y sin espacio, un cálculo en base a las cercanías de puntos.
Lo anterior conforma una nueva metáfora para el trabajo con funciones, que las reconoce como conjuntos de puntos y que levanta nuevas representaciones a las ideas matemáticas. Estructura metafórica de la Continuidad de Weierstrass que esta dada por la cercanía de puntos y no una continuidad natural dada por el movimiento en el espacio.
Experiencia subjetiva del tiempo

El transcurs... el futuro vendría al presente y se alejaría finalmente al pasado, y por otra, como un avance progresivo del momento presente hacia el futuro, más aun... de una fecha de momentos infinitesimales que fluyen en un arroyo constante. Esta metáfora sirve de base a la construcción matemática del tiempo, el cual se termina metaforizando como un distancio, concebido isotrópico e independiente, como ya se planteó. Sin embargo, en la experiencia del sujeto esta concepción responde a razones ontológicas (Toboso, 2003) en la cual la actualidad solo es presente en un instante mínimo, que se concibe como un punto (mostrando aquí cercanía con la metaforización matemática de instante y que se configura en la necesidad de derivar en un punto) de ahí que resulte necesaria la acción imaginativa de la conciencia de obrar una prolongación de los instantes en los sentidos del "ya no" y del "todavía no", configurando de este modo, la corriente del tiempo en toda su dimensión.

Ambas variantes de pensar el tiempo, el "fluir del tiempo" o el "avance del bote", tienen directa relación con la propia visualización del sujeto en este río temporal. El sujeto como un ser permanente que concibe el futuro y pasado a través de el - A pesar de todos estos años sigo siendo yo- o como un ser inserto en un bote que avanza y cambia su posición temporal y su ser -no soy el mismo hemos cambiado por las circunstancias-, según ilustran estos asertos de nuestra habla cotidiana.

A partir de esta metáfora fluvial y sus dos acepciones reconocemos los elementos centrales en la percepción del tiempo: "El ahora" y "El momento presente", concebidos comúnmente como sinónimos, ellos presentan en su significación diferencias en torno a la posición del hablante y a partir de ellos se construyen los diversos elementos que componen la experiencia del tiempo en el sujeto.
El *ahora* refiere a la condición de hallarse posicionado temporalmente de una manera permanente "es siempre uno y el mismo, y en ello radica la simultaneidad del mundo y la posibilidad de que lo existente se encuentre en el *mismo ahora actual*" ([1] Toboso, Pág. 3), esto lo podemos reconocer al saber que en una situación nos encontramos en esencia nosotros mismos, aún cuando instante a instante hemos cambiado. Por su parte el *momento presente* es considerado como aquel momento que vivimos y que es fugaz, en el cual somos distintos al momento anterior, aún cuando estemos las mismas personas. Ya que nada cesa de cambiar y cada momento es diferente al anterior dando sentido al pasado y futuro.

El tiempo en la experiencia del sujeto, no responde a un flujo continuo, por el contrario, se explica a partir de un vórtice en este flujo. Vórtice que marca la relación entre la concepción psicológica de futuro y pasado. El *ahora* por tanto se concibe como el vórtice que se mantiene fijo mientras la corriente temporal fluye, mientras que la conciencia de ese fluir temporal que nos cambia, es denominado como el *momento presente* (ver fig. 1).

![Fig12. Estructura retentivo protensiva](image)

El *ahora* ubicado en el vórtice del flujo temporal, distinguiéndose del *momento presente* por su inmutabilidad el ahora es siempre el mismo, mientras que el momento presente es cada vez un momento diferente en el flujo.

El *ahora*, como el vórtice que se mantiene siempre en el mismo lugar es considerado como quien articula la distensión temporal, acercando futuro al pasado o separándolos, dando origen, según se proyecte la extensión intencional del sujeto hacia el pasado o futuro, de los fenómenos de "retenciones", proyección
de la extensión intencional al pasado del sujeto y, a su vez, "protensiones" entendidas como la proyección de la extensión intencional al futuro del sujeto, conformando la conciencia temporalizadora, experimentando el sujeto el transcurso de la acción.

Esta acción en el tiempo define la noción de "campo de presencia" que pone en juego un fenómeno conjunto de "retención y proyección intencional" por medio del cual la vivencia originaría en la que el tiempo y sus diferentes dimensiones aparecen ante el sujeto se perfi la como "tener aún a la mano el campo de presencia" pues "el tiempo no es una línea, sino una red de intencionalidades" (Toboso, 2003) que vincula el momento presente con el pasado y el porvenir. Estos tres elementos se disponen en el campo de presencia a modo de dimensiones intencionales con las que el sujeto siempre cuenta y trazan de antemano, cuando menos, el estilo de lo que va a venir (aunque siempre esperemos, y sin duda hasta la muerte, ver aparecer otra cosa). Finalmente es la capacidad de la conciencia de hacernos del presente, mediante las intencionalidades hacia el pasado o futuro, intencionalidades que surgen de manera asimétrica y variada, estableciéndose la "distensión temporal" que nos transforma en sujetos temporales.

Por tanto, la percepción del tiempo depende del sujeto que lo vive, así "cabe imaginar que el tiempo encuentre su fundamento en las condiciones subjetivas del conocimiento y en el modo particular de representación de los objetos de parte del sujeto. Que se concrete en la dimensión temporal de la conciencia y conlleve la posibilidad de disponerlos según las líneas intencionales que trazan la memoria, la atención y el proyect" (Toboso [2]. Pág. 6).

Por su parte, se ha construido a lo largo de la historia un tiempo medido por los relojes, tiempo que responde a reconocer las relaciones de anterioridad, simultaneidad y posterioridad entre los sucesos, construyendo una metrización del tiempo. Un tiempo objetivo que tiene su máxima expresión en el tiempo de la teoría de Newton, el cual junto con el espacio son las bases del mundo y no consecuencia de subjetividades presentes en el sujeto ante el acontecer de su vida. Este tiempo objetivo adolece de la falta de distensión temporal, constituyéndose por tanto como una superposición de estados presentes que se
puede recorrer como una distancia, hacia el presente y hacia el futuro. "una especie de parametrización temporal en términos de la variable t como una representación concreta de ese tiempo "deshumanizado" al que aludiera Bachelard" (Toboso [2]. Pág. 7). Esta concepción parametrizada del tiempo no reemplaza a la ya descrita, sino que ambas muestran sus campos de validez, la metrización que nos permite coordinarnos, medir duraciones y la otra que nos hace sujetos temporales con posibilidad de proyectarnos a un futuro desde un pasado, de esta forma una a otra se apoyan para constituir la temporalidad del sujeto.

De este modo la construcción del tiempo en el sujeto no es un ir desde una noción básica e intuitiva de seriación de sucesos hacia un tiempo métrico de reloj como estudiará Piaget, sino que es la conformación de una red compleja de intencionalidades y coordinaciones que se estructuran a partir del propio sujeto, de sus necesidades de coordinación y sus proyecciones intencionales hacia un futuro o pasado, donde la distensión temporal que permite reconocer pasado, presente y futuro y la parametrización de la variable t se complementen, aportando así la totalidad de los elementos necesarios que conforman dicha experiencia.

El trabajo de Maurice-Ponty (citado en Toboso), muestra un primer intento de comprender la experiencia del tiempo en el sujeto, desde una mirada hacia la globalidad del problema, como se muestra en la figura.

Fig. 13
Podemos apreciar como los momentos A, B y C son todos en la escala métrica, un ahora, pues cada persona, a partir de su propia subjetividad, proyectará desde cada momento, A, B y C, predicciones, por ejemplo se proyecta un futuro C_b diferente del momento B, a partir del ahora B, de igual forma recordará elementos significativos A_a para él, del momento A, configurando de acuerdo a la distensión temporal subjetiva su percepción del transcurso del tiempo en cada ahora que vive.

Es decir, por una parte, el sujeto percibe el pasado y futuro reconocido en el fenómeno de distensión, y, por otra, coordina acciones y reconoce el transcurso del tiempo medido por los relojes, que habla de la simultaneidad de los sucesos en una mirada de la evolución propia con la evolución del puntero del reloj. Lo anterior, no sin los desajustes propios de la convivencia que se producen al tener el tiempo metrizado una componente social, un acuerdo externo al sujeto de sincronía, por eso debemos ajustar nuestros relojes a partir de otros, y por tanto no necesariamente sincronizada con la mirada subjetiva, el tiempo que pasa más rápido cuando estamos alegres.

La experiencia del tiempo no está completa sino reconocemos su aspecto métrico, este no responde a su reconocimiento de presente, pasado o futuro, sino a la identificación de la anterioridad, simultaneidad o posterioridad de un evento en relación a otro. A partir de estas consideraciones, basta tener un concepto métrico de tiempo y un reloj o cronómetro que permita establecer la simultaneidad o no de los sucesos, conformando entonces un elemento metrizador a modo de parametrización del una variable t, variable cuya "sola orientación no permite otorgar cualidad temporal a los sucesos, e indica únicamente el sentido de aumento o disminución de la variable algebraica t" Toboso (defensa de su tesis pag. 7).

Finalmente, se constituye la experiencia subjetiva del tiempo, mediante una síntesis integrada de la (dimensión proyectiva cualitativa) y a la metrización del tiempo (dimensión cualitativa) como se describe el la fig.
Evidencia de lo anterior fue encontrada en el marco de una secuencia exploratoria con el objeto de que los estudiantes vivan los desafíos de la comunicación de fenómenos de variación, en ella se observó la importancia de la vivencia subjetiva del tiempo para significarlo como una variable de la situación (Díaz, 2005). En la secuencia aplicada se realizó una actividad en la que grupos observan los cambios experimentados por dos globos y luego comunican esto a otro grupo que no ha estado presente en la experiencia. Nuestro interés en el marco de ese proyecto se centró en relevar las nociones que pone en juego el estudiantado a propósito de comunicar situaciones de cambio antes de que el aula de matemática las introduzca en las herramientas del discurso curricular respectivo, suscribiendo que “el acto social del lenguaje de existencia a nuestra realidad, a nuestra cognición y por ende a nuestras herramientas (...) Consideramos la comunicación y el lenguaje en sentido amplio, donde se incluye el lenguaje natural, escrito y hablado; las gráficas utilizadas, los gestos y señas; y los movimientos que se reproducen” (Arrieta, 2003, p.140).

Las consignas de la actividad destacan a los grupos que quedan en el aula, que se trata de una observación atente y para ser comunicada. Comunicar los cambios experimentados por cada globo, de modo que sus interlocutores se formen una idea lo más cercana posible de lo sucedido. Se les invita a usar

[10] Trabajo realizado para Actividad del proyecto Fondecyt 1040313, proyecto que sirve de marco en el que se inscribe esta investigación.
gráficos, dibujos y un relato escrito, en hojas en blanco y un papelógrafo. Los grupos usan los registros verbal, escrito, icónico y tabular para comunicar la experiencia, registrándolos en el papelógrafo. Uno de estos grupos usa la tabla:

<table>
<thead>
<tr>
<th>1ro Globo</th>
<th>2do Globo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad:</td>
<td>Mucha</td>
</tr>
<tr>
<td>Tiempo:</td>
<td>Menor</td>
</tr>
</tbody>
</table>

El grupo que recibe este relato que usa, entre otros registros, esa tabla, se retira para, a su vez, registrar lo que se le expuso y comunicarlo al resto de los grupos de la sala en que se realiza la experiencia. Reconstruye la comunicación recibida en un papelógrafo en el que incluye también una tabla para comunicar lo acaecido con los globos. Realizan la siguiente tabla:

<table>
<thead>
<tr>
<th>1ro globo</th>
<th>2do globo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velocidad al desinflar</td>
<td>Mayor</td>
</tr>
<tr>
<td>Cánt. de aire en el globo antes de desinflar</td>
<td>Menor</td>
</tr>
</tbody>
</table>

En ella aparece la categoría de “velocidad al desinflar” y en el lugar del tiempo de la tabla que se les expusió, focalizan en la “cantidad de aire en el globo antes de desinflar”, categoría más cercana - por su materialidad - a sus experiencias. Al primer grupo se les solicitó observación atenta y una comunicación de cambios lo más cercana a lo acaecido. Comunican entonces la actividad recurriendo a un tiempo psicológico que les permitió ordenar sus impresiones y describir lo sucedido, evento a evento. Entre sus textualidades señalan “comenzaron a disminuir su tamaño, lo cual disminuyó rápidamente” y “se demoró menos en llegar al estado normal” destacando las velocidades de desinflado de cada globo. El segundo grupo, que no vivió la experiencia psicológica del tiempo que demora el inflado y desinflado de cada globo, luego de evocarla desde un relato de terceros no evoca tiempo sino velocidad – en su acepción cotidiana – sin reparar en la
variable tiempo de la situación relatada sino que se conecta fluidamente con la acepción cotidiana de velocidad de sus relatores" (Díaz, 2005).

Lo anterior muestra cómo es la vivencia subjetiva de distensión temporal la que genera la importancia del transcurso del tiempo en la situación de variación. El grupo que recibió un relato cronológico, es decir un tiempo matizado matemáticamente, no incorpora el tiempo a las variables de la situación, pues no hubo transcurso, sino secuencias de ahora que marcaron los diversos estados del fenómeno, mientras que aquellos que vivieron la situación y por tanto proyectaron un futuro y un pasado construyendo la distensión, incorporan el transcurso del tiempo como una variable de la situación y por tanto el tiempo como variable se incorpora en las tablas.

El tiempo en los Estudiantes

Las producciones estudiantiles mostradas en el capítulo de antecedentes, dan cuenta de la persistencia de los estudiantes a entender el tiempo en una representación implícita en el movimiento, concibiendo las gráficas distancia- tiempo como las tazas de un movimiento (Dolores, Arrieta, Avila-Carrasco) en que el tiempo aparece en el movimiento del punto y no en los ejes de coordenadas.

El tiempo no surge de modo independiente en la cognición, sino que aparece con el movimiento, es decir con las velocidades. En tanto que la idea de velocidad no ha sido adquirida bajo una forma operativa, es decir, como una relación entre el espacio recorrido (o el trabajo realizado) y el tiempo común a los diversos velocidad de diversos cuerpos y por tanto el orden temporal se confunde con el orden espacial y la duración con el camino recorrido (Piaget, pág. 271). Al decir de Piaget el tiempo “no se puede aislar y hacer abstracción, para elaborarlo de las relaciones espaciales y cinemáticas, es decir de las velocidades. Por consiguiente solo una vez construido el tiempo puede ser concebido como un sistema diferente, y aún ello no resulta posible sino a velocidades pequeñas” (Pág. 12).
Sin embargo el uso del tiempo en las gráficas distancia tiempo, exigen la abstracción de este del movimiento, en este sentido se les pide a los estudiantes del estudio que representaban un movimiento —la caída de una pelota—. Dado que no habían tenido experiencia formal en el sistema escolar con gráficas distancia-tiempo recurrirán a las herramientas que han podido construir a partir de su biografía de vida dado cuenta una natural visualización del tiempo. Los resultados de sus representaciones gráficas se resumen en la fig.3

![Diagrama](image)

Fig. 15

En todas las gráficas el tiempo superpone a la imagen que se recupera. Escenas que más que una descripción continua, son distintas imágenes con marcaciones de tiempo. El recurso más usado, es el de estilo cómics, en que son cuadros de diversos momentos del movimiento secuenciados. El tiempo no aparece en los dibujos como una variable que esté interrelacionada con la altura, sino como un ordenador de una secuencia de dibujos “como la película móvil en la que se graban los cuadros que se suceden en la función de su desarrollo” (Piaget, 1946). Ya en 1946 Piaget señalaba que “no se puede, en cambio, aislar el tiempo...
y hacer abstracción, para elaborar, de las relaciones espaciales y cinemáticas, es decir de las velocidades. Por consiguiente solo una vez construido el tiempo puede ser concebido como un sistema diferente, y aún ello no resulta posible sino a velocidades pequeñas" (pág. 12) y los dibujos muestran que el tiempo métrico como sistema diferente aún no ha sido construido o por el contrario no es enactado a la hora de representar situaciones de variación.

La representaciones (d), la secuencia de la trayectoria fue sin tiempo métrico, no apareció, sino que este fue representado por el cambio del sol en cada dibujo, más bien pareciera estar evocando un tiempo subjetivo experimentado en la mutabilidad del entorno, dando cuenta de este modo de un temporalidad integrada en el movimiento. En la representación (e), se muestra la ruta de la pelota en una sola escena y sin tiempo métrico, basta con el movimiento representado. Así mismo, las representaciones del movimiento que incorporan al tiempo (a), (b) y (c) lo evocan desde un pasado no vivido y por tanto sin distensión temporal, de modo que en las imágenes rescatadas de su imaginario, el tiempo métrico marca la secuencia de sucesos, sucesos que al ser evocados desde un pasado sin distensión temporal pueden ser presentados de modo equivalente y de este modo se constituyen en presente ordenados en una pre-metrización temporal.
Metáforas Estudiantiles

La segunda parte de este análisis se basa en las producciones lingüísticas de los estudiantes, en busca de las metáforas que nos den cuenta de las redes conceptuales que son puestas en juego al trabajar y pensar en el tiempo por los estudiantes. Se reconoce una variedad de significado presentes en los estudiantes:

a) El tiempo poseído, otorgado, objeto de negociación

"Se acaba el tiempo"

"nos dio poco tiempo para hacer la prueba"

El tiempo se concibe como una "cosa valiosa", que "se acaba", "se puede dar", "se puede comprar". Luego permite hacer intercambios, negociaciones con ella "el profesor nos dio más tiempo" o "nos dio poco tiempo". Claramente el tiempo no es parte de las variaciones y covarianzas de las variables involucradas en el hacer del estudiante. Es un marco para hacer o no hacer del alumno que tiene independencia del tiempo que demora la actividad, "nos dio poco tiempo para hacer...". Hacer la prueba es propio del estudiante, mientras que el tiempo autorizado -predeterminado- del profesor es otro que anmarca al estudiante, lo conmina a apurarse. Es un marco de control por parte del docente y a la vez un competidor con el hacer del estudiante. Por tanto el tiempo avanza hacia el momento presente del estudiante, marca minuto a minuto su protección hacia el futuro clave, entrega del instrumento, fin de la etapa, luego en una situación temporal marcada por el tiempo dado (no el usado) le permite apurar o no su hacer, "no me alcanzó el tiempo", "el profesor nos dio poco tiempo". En definitiva, no es un tiempo en covariación con las variables de una situación, sino una amplitud de distensión temporal que permite un hacer.
b) El tiempo marca el inicio, el fin de una acción y/o necesidad de cambiar

“ya es tiempo de ir a estudiar”

“El tiempo apremia”

“este es el tiempo de la lluvia”

El tiempo es un púlpito que marca un evento crítico. Un sistema ha de cambiar, uno debe cambiar su vida y, por tanto, le “llega su hora” de hacerlo. En este caso, el tiempo es concebido como un bote que nos requiere algo, pero que no obliga, “Es tiempo de ir a estudiar”, pero el sistema puede o no sufrir el cambio, se puede “siguirl viendo teia”. Actúa como un faro en el flujo temporal que marca una ruta posible pero obligatoria. El tiempo por tanto es concebido como un ícono que está en una posición fija en el flujo temporal, luego desde esta metaforización, el tiempo no va con la situación, no va en el movimiento de la pelota que cae, sino que marca el punto donde dejará de caer “ya es tiempo que pare de rebotar”, es un tiempo que permite distinciones como; “esta retrasado”, “se ha demorado mucho” o “ya se le pasó su hora”.

c) El tiempo como viajero

“El tiempo vuela”

“El tiempo no se detiene”

“Quisiera detener el tiempo, para cambiar todo”

Aquí el tiempo es metaforizado como algo que siempre está en movimiento, es un flujo que viaja rápidamente como señala Shakespeare:

“Tal como avanzan las olas hacia la pedregosa orilla,
Así nuestros minutos se apresuran hacia su fin;
Cada uno intercambiando su sitio con aquel que va adelante,
en afanosa secuela todos tienden a avanzar.”

El tiempo es autónomo, no responde a nuestro deseo, “Quisiera detener el tiempo”. El tiempo juega aparte, no interactúa con nuestra realidad y no va en nuestros fenómenos. No tiene relación con los cambios, él va por fuera de nuestra
vida. Aquí podemos reconocer como al pensar en el transcurso del tiempo nosotros no somos sujetos de cambio en él. Es un foco en la mirada del momento presente, aquel momento en que nosotros vivimos en el flujo temporal y, por tanto, nos cambia o nos mantiene en un flujo que no controlamos. Nuevamente el tiempo es metaforizado de acuerdo con la posición del hablante, no es referido a otras situaciones, sino a su experiencia, “Quisiera detenerlo” señala el estudian te quien atrapado en los cambios de la adolescencia se reconoce víctima de un viaje que no controla.

d) El tiempo como artefacto de sincronía.

Es algo que el hombre inventó para organizar el día así poder hacer algo la llegada puntual, el reloj, los horarios, la planificación de las cosas q’ uno hará en el día, etc.

un simple reloj con el que nos permite estar bien en los lugares que tenemos que estar y a la hora

Revela un aspecto central en el hacer del reloj, que es coordinar acciones y donde se conjunan metáforas de externalidad del tiempo. El tiempo concebido como lo que marca el reloj, es lo que permite llegar en el momento acordado o establecer las planificaciones adecuadas, responde a los aspectos de metrización de la experiencia del tiempo reseñadas por el modelo de Toboso. Este aspecto de la representación metafórica es muy resonante con la metáfora matemática del tiempo cuya construcción histórica está muy ligada al perfeccionamiento de los relojes en la edad media. Baste señalar que para Leibniz el tiempo era la sincronía de eventos. En todo caso, las textualidades refieren más bien a sincronías de encuentro humanas, “llegar a la hora”, “nos juntamos a las...” siendo un aspecto de nuestra vida social más que de sincronía de eventos físicos no sociales.

Las textualidades anteriores, nos remiten no a una, sino a varias representaciones humanas del tiempo: poseído, otorgado, objeto de negociación: gatillador de cambios; tiempo externo que esclaviza a la persona, posibilidades de encuentro entre otras. Tiempos que no son evocados a voluntad y que se imbrican en la vida
experimental de los estudiantes no ajeno sino interno y por tanto no es
concienciado en su continuidad, sino que en momentos de encuentro, de espera.
Reconocemos tanto un tiempo propio a partir del "ahora" (ver 14), nos permite ser
siempre los mismos en el transcurso de la situación y es el cual se acorta y alarga
según el proceso de distensión vivido y cuya duración es evocada solo en
momentos de espera o mediante un acto conciente e intencionado, y como un
tiempo marco, metrizado y medido por los relojes, externo y que puede competir
con el tiempo interno "nos dijó poco tiempo para la prueba", "me quedé en el primer
problema y no sentí que pasara tanto tiempo", señala un joven para el cual el
tiempo interno necesario para desarrollar el examen es mayor que el intervalo de
tiempo metizado para realizar la prueba, señalado por el profesor.
Se recurre por tanto a dominios experenciales diversos para significar y trabajar
con el tiempo por parte de los estudiantes. A partir del propio trabajo y por tanto
de sus propias sujetividad, dadas por la distensión temporal que reporta la
actividad el tiempo va siendo conceptualizado. El tiempo poseído, que responde a
la coordinación necesaria para realizar actividades escolares y que en nuestra
sociedad es cada vez más escaso, aporta desde el dominio de nuestra
experiencia en la duración de nuestras actividades, la tensión por cumplir un
plazo. Por otra parte, el tiempo marca el inicio, el fin de una acción luego en la
acción solo esta presente la sujetividad del campo de presencia dada por la
experiencia el nuevo evento que marcará un cambio, "el profesor pedirá el informe",
"el final del semestre" y entonces el tiempo se conceptualiza como el momento, en
que el estatus quo ha de cambiar, no es en la sujetividad del estudiante una
parámetro que vaya avanzando en la situación, es el límite de hacer.
Al concebir el tiempo como viajero, remite a la sujetividad de conocer nuestro
momento presente, el tiempo es el flujo de eventos que nos van cambiando y
sobre el cual no podemos actuar, es la sucesión de cambios que nos afectan.
Junto a ello el tiempo como artefacto de sincronía, se imbrica como una medida
externa del tiempo, y ellos la refieren entonces a la necesidad de articular eventos,
de coordinar situaciones. Es como señalará Toboso, un definir lo anterior, lo
simultáneo y lo posterior entre dos eventos. Para ello se recurre al reloj, no esta
presente en las textualidades la comparación de esta comparación de un solo evento con el reloj, como se torna necesario al describir la evolución en el tiempo.

En resumen en las representaciones, metafóricas del tiempo está fuertemente marcada la posición del estudiante o hablante. El tiempo es metaforizado según el estudiante este posicionada su subjetividad en su “ahora” ó su “momento presente”, es decir, según si el se mantiene igual y siente en su distensión temporal un fluir del tiempo, que lo puede acercar a momentos críticos o que lo enmarca temporalmente a su hacer, o lo ve como coordinaciones de situaciones con un reloj.

De este modo el tiempo, es una experiencia subjetiva fuertemente ligada al campo de presencia del estudiante en la actividad, de este modo no resulta natural para él, a partir de una lectura gráfica de un tiempo métrico, que es una coordinación con los distintos estados de la variable, significar una evolución fenomécnica, pues lo que el estudiante visualiza son distintos valores en un único momento temporal de su conciencia.
Discurso Matemático Escolar

El discurso matemático escolar que se promueve en la reforma curricular impuesta, se cristaliza en los textos escolares que entrega el gobierno a los colegios particulares subvencionados\(^{11}\) y a los colegios municipales, que en nuestro país, cubre cerca del 90\(^{12}\) de los estudiantes. Por lo cual se opta por analizar los textos entregados por el Gobierno de Chile, para los cursos de 1\(^{a}\) y 2\(^{a}\) año de Educación Media (14-15 años), años en que comienza en el currículo formal el desarrollo de capacidades que le permitan “Representar información cuantitativa a través de gráficos y esquemas; analizar invariants relativas a desplazamientos y cambios de ubicación utilizando el dibujo geométrico” (Objetivo Fundamental 1\(^{a}\) Medio, sector de matemática) y “Conocer y utilizar conceptos matemáticos asociados al estudio de la ecuación de la recta, sistemas de ecuaciones lineales, semejanza de figuras planas y nociones de probabilidad; iniciándose en el reconocimiento y aplicación de modelos matemáticos” (objetivo Fundamental 2\(^{a}\) Medio, sector de matemática), involucrando formalmente los conceptos de

<table>
<thead>
<tr>
<th>1(^{a}) Medio</th>
<th>2(^{a}) Medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Gráficos de distinto tipo; interpretación y lectura. • Proporcionalidad directa e inversa; constante de proporcionalidad; su relación con un cuociente o un producto constante. • Resolución de problemas. Gráficos, tablas de valores y expresión algebraica."</td>
<td>a. Representación, análisis y resolución de problemas contextualizados en situaciones como la asignación de precios por tramos de consumo, por ejemplo, de agua, luz, gas, etc. Variables dependientes e independientes. Función parte entera. Gráfico de la función. c. Ecuación de la recta. Interpretación</td>
</tr>
</tbody>
</table>

\(^{11}\) El sistema de educación en Chile, contempla tres modalidades de dependencia administrativa. Las escuelas Municipales, las cuales dependen administrativamente del Gobierno Municipal, las Particulares subvencionadas, que dependen de particulares privados o de corporaciones sin fines de lucro y reciben de parte del estado una subvención por estudiante que asiste a clases y las escuelas Particulares propiamente tales, financiados por lo padres y apoderados solamente.

Conformando los primeros pasos en la construcción de la herramienta gráfica de funciones y su articulación, con los registros algebraico, fenoménico y otros. Además con el objeto de profundizar el análisis se da cuenta del uso de las gráficas en los textos entregados para el sector de Física, de modo de reconocer los usos contextualizados.

Tanto en el texto de Matemática de 1° año medio de Matemática como en el de segundo, se reconoce el manejo de funciones y gráficas como un conjunto de puntos en el plano. Esta conceptualización es entendida vía “una mezcla – El plano cartesiano es una mezcla. En esta mezcla, la partida y llegada de la metáfora son activadas simultáneamente, indisolublemente enlazados en la imaginación. De acuerdo a esta mezcla conceptual, las posiciones de puntos en el espacio y los pares ordenados de números son identificados como la misma cosa, y una curva o línea es entendida de igual modo como el correspondiente conjunto de pares ordenados de números.” (Lakoff y Nuñez, pág. 331), más específicamente podemos describir el proceso metafórico en la tabla:

<table>
<thead>
<tr>
<th>Dominio de Partida</th>
<th>Dominio de llegada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Espacio Con Continuidad</td>
<td>Números</td>
</tr>
<tr>
<td>Natural: La línea</td>
<td>Un Conjunto</td>
</tr>
<tr>
<td>Posiciones de puntos</td>
<td>Elemento del conjunto</td>
</tr>
<tr>
<td>Puntos son posiciones sobre la línea</td>
<td>Elementos son miembros del conjunto</td>
</tr>
<tr>
<td>Posiciones de puntos son inherente a la línea ellos</td>
<td>Los elementos existen independientemente de</td>
</tr>
</tbody>
</table>
están ubicados en ella

Dos posiciones de puntos son distintas si ellos están en diferentes lugares

Propiedades de la línea

El punto O

Un punto P que está a la derecha del punto Q

Puntos a la izquierda de O

La distancia entre O y P

Lakeoff y Núñez capítulo pág. 261

A partir de esta mezcla metafórica tiene lugar el proceso de discretización del cálculo que construye una función sin espacio ni movimiento, pues se concibe como un conjunto de pares ordenados.

Particularmente en el texto de Matemática de Primer año de Enseñanza media, entregado en el 2003-2004 por el Gobierno de Chile, sobre las gráficas –que son trabajadas en la unidad temática de proporcionalidad directa e inversa– se destaca la definición siguiente:
"Cuando dos variables están en proporcionalidad directa... La gráfica es un conjunto de puntos que están en una línea recta que pasa por el origen"

Desde esta definición podemos reconocer la gráfica como el conjunto de puntos que cumple la proporcionalidad directa, es decir el uso de la metáfora descrita. En efecto, cada punto es reconocido como par ordenado de valores que se distribuyen en una figura geométrica, la línea. De igual modo, señala el texto sobre la gráfica de la relación inversamente proporcional.

"Cuando dos variables están en proporcionalidad inversa, la gráfica es un conjunto de puntos que están en una curva denominada hipérbola" ([7] Pág. 95)

Reforzando una mirada discreta de las variables de la relación proporcional, su gráfica trata de como un conjunto de puntos sobre una figura geométrica -la hipérbola- separando nuevamente la figura geométrica de la gráfica de la relación proporcional (Fig. 15), la que es manejada y conceptualizada como un grupo de puntos discretos sobre una curva -que es asumida por el texto como conocida y, sin embargo, en el currículo escolar de Enseñanza Media solo se explicita en 4º año Medio.

Lo anterior implica la existencia de dos entidades conceptuales separadas, la Gráfica de la proporcionalidad y la línea (recta o hipérbola), la primera con los componentes metafóricos descritos como el conjunto de pares ordenados y la
segunda con movimiento y con continuidad natural cumpliendo un rol de soporte del conjunto discreto que es la gráfica. Gráfica que es posible articular, mediante el reconocer los puntos como pares ordenados de números, con el registro algebraico y los demás registros matemáticos. Más aún la recta adquiere calidad metafórica distinta al ser señalada como un objeto que posee movimiento, es "una línea recta que pasa por el origen", asociando una corporalización de la línea como figura que puede pasar o no por el origen, está separada de la gráfica.

El texto de 20 Medio, aborda la gráfica de funciones en la unidad temática "introducción a las funciones", en la cual se comienza a partir de ejemplos contextualizados de relaciones entre variables. Estas situaciones son tratadas principalmente de modo algebraico con problemas abiertos. A modo de ejemplo destacamos la siguiente situación:

"Un auto económico anda 15Km. por cada litro de combustible. El consumo de gasolina de un viaje depende naturalmente de los kilómetros recorridos. Mientras más kilómetros recorra, más gasolina consumirá."

A partir de la pregunta implícita ¿Cuánto combustible se gasta dado un kilometraje recorrido? se ven tres casos y, luego, se plantea la fórmula Litros = Distancia / 15. Con ello, se muestra un manejo puntual de la relación funcional. Solo basta asignar un valor a una variable y calcular la otra.

 Esto se ve reforzado por los ejercicios, de los cuales se destacan los siguientes

a) "¿Qué cantidad de agua contiene un estanque cúbico cuyo lado tiene una longitud de a cm? Escribe tu respuesta con una fórmula"

b) "Determinar la longitud de los lados de una parcela rectangular cuyo perímetro es de 300 metros"

Ambos problemas exigen una respuesta genérica a un problema específico, que requiere concebir la variable como un número general y le exige una actividad de...

14 Para más detalles sobre esta transformación ver: pies de Ardu, J. 303, Representaciones estudiadas de acciones ligadas a la razón de cambio.

15 Categoría de uso de la variable propuesta por Küchmann, citado en: La comprensión del concepto de variable en profesores de matemática de secundaria. Juárez, José. 16 Acta Latinoamericana de Matemática Educativa.
simbolizar oraciones generales, reglas y métodos más que un análisis tendencial o reconocer la variable en una relación funcional.

Las gráficas de la función se encuentran en un apartado titulado "El retato de una función". En él se reconoce la siguiente secuencia explicativa de la construcción de gráficas:

- Tabla de Valores
- Gráfico de Barras
- Ejercicio Función discreta (Gráfico como puntos sobre eje coordenado)

Y a partir de este apartado se trabaja con gráficas continuas de funciones lineales e hiperbólicas. No hay explicitación ni actividades propuestas para hacer el salto desde la construcción discreta a la construcción continua.

En cuanto a la enseñanza de la física, en el texto de 2º año de Enseñanza Media, entregado por el Ministerio de Educación de Chile a los colegios, se abordan las gráficas de variación en el tiempo en la unidad temática "Cinemática".

En ella, se define que el "movimiento de un cuerpo no depende del sistema de referencia desde el cual se observa. La descripción que se haga de el si depende del referente utilizado" (pág. 11) y para su descripción se dan las siguientes reglas:

"a) Para describir el movimiento de un cuerpo es necesario previamente definir un sistema de referencia que no es otra cosa que el punto en el espacio con respecto al cual se estudia el movimiento del cuerpo

b) no existe un sistema de referencia que sea absoluto, es decir, que esté en reposo en el espacio vacío. (Esto es imposible, ya que en el espacio no hay elementos fijos que puedan servir de referencia). Lógicamente entonces, si no existe un sistema absoluto, tampoco existe el movimiento absoluto, luego, todo el movimiento es relativo"
c) El movimiento de un cuerpo observado desde distintos sistemas de referencia no será el mismo en sus características a menos que ambos sistemas estén en reposo relativo entre sí. Matemáticamente a todo sistema de referencia se puede asociar un sistema de coordenadas que puede consistir en un trio de rectas mutuamente perpendiculares que se cruzan en un punto llamado origen (Fig. 16) (Sistema cartesiano de coordenadas). De esta manera puede definirse el movimiento de la siguiente forma: “Si las coordenadas de un cuerpo cambian a medida que pasa el tiempo, entonces él está en movimiento relativo en el sistema de referencia que tiene asociado dichas coordenadas” (Pág. 11-12)

A partir de aquí se dan instrucciones para construir un gráfico:

“El conjunto de marcas define la trayectoria de un cuerpo, e incluso ella estará mejor definida si se tienen muchas marcas por unidad de longitud de trayectoria. Si junto con hacer marcas, registramos la hora del día que paso el cuerpo por cada una de ellas tendremos su itinerario” y por tanto la construcción de gráficas se resume a la siguiente descripción del texto

"Para representar gráficamente esta relación de variables [marca/tiempo] En primer término hay que dibujar los ejes del gráfico y asignarle a cada uno de ellos una de las variables (se acostumbra colocar en las abscisas la variable tiempo)" (pág 13-14)

En esta descripción se resalta la importancia de la construcción de gráficas marca en el tiempo, pero la construcción se reduce solamente a la ubicación de los puntos en el plano cartesiano y no hay ninguna explicación o inducción a completar la gráfica mediante un reconocimiento tendencial, sino que se recurre —por la imagen— a la costumbre de unir los puntos con un segmento.
El uso de gráficas distancia/tiempo, rapidez/tiempo aceleración/tiempo se remite a descripciones tendenciales y en los ejercicios y problemas propuestos el trabajo apunta a una interpretación de los comportamientos tendenciales de las variables del gráfico. Lo anterior muestra una discontinuidad en el nivel de la tarea propuesta al estudiante pues no se le han ofrecido oportunidades para trabajar en torno a construir herramientas visuales que le permitan interpretar más allá de la colección de puntos.

Por su parte, se recurre al registro algebraico cada vez que requiere confirmar una afirmación, recurriendo a fórmulas y pasos algebraicos válidos, desechando argumentos visuales y minimizando el manejo de las gráficas como proveedoras de información para la deducción.

En conclusión, la concepción de la gráfica en los textos escolares la relación funcional entre variables se circunscribe a una colección discreta de valores, dando cuenta de una discretización (finita y no densa) de los fenómenos modelados por funciones como es el movimiento y los polinomios. Se reconoce por tanto, que el estudio de funciones en la escuela se basa en la definición de Bourbaki de una función como pares de puntos –en la metáfora mezclada de punio como par ordenado de números - escondiendo en el trabajo de pares ordenados y funciones que van de puntos a puntos, el movimiento y el espacio. Situación que responde al teemplazo del paradigma geométrico (Pierpont,1899) que posibilitó a Newton y Leibniz la construcción del cálculo de variaciones al permitir trabajar con la intuición geométrica (Lakoff y Núñez 2002) por el paradigma aritmético de Weierstrass.
CONCLUSIONES

La construcción e interpretación de gráficas distancia tiempo, no es posible sin un marco de significados y representaciones compartidas por la comunidad profesional que los usa, específicamente por la comunidad matemática. Convenciones que han ido constituyéndose de manera laboriosa a lo largo del desarrollo histórico de la matemática y que responden a la necesidad planteada por Oresme hacia el año 1335 de “hacer un dibujo de la manera en que las cosas varían” (Boyer, 1969). Este camino que cristaliza definitivamente en la época de Newton, va constituyéndose a partir de representar la variación de elementos como una longitud geométrica, una metaforización del tiempo en términos de distancia, estableciendo una representación de un tiempo que se puede recorrer en ambos sentidos. Lo anterior posibilitado por asumir en el trabajo con curvas sobre la base de paradigmas principalmente geométricos resumidos en las características de una función dadas por Pierpont (ver. Pág. 42).

El trabajo al seno de la comunidad matemática y científica muestra en su devenir un largo camino hacia la concepción de un tiempo separado del movimiento. A partir de la mecánica clásica, el tiempo se asume como una variable independiente desde la cual las cosas dependen, cristalizado en la teoría de Newton, quien concibe el tiempo y el espacio como los elementos primarios del mundo. Un tiempo que “fluye” de modo continuo, regular y representado como una parametrización métrica. Lo anterior implica que la construcción e interpretación de una gráfica distancia-tiempo requiere la enacción de redes de significado que reconocen un tiempo metrizable, medio por un reló, que varía en la situación como una variable separada del movimiento, en resumen representado como una distancia que puede recorrerse en ambos sentidos.

Por su parte el trabajo con las gráficas de funciones, evoluciona desde una concepción geométrica, en que la curva es dibujada por un punto que se mueve en el espacio, hacia un trabajo discreto, en el paradigma de Weierstrass, en el cual la representación gráfica se estructura a partir de la cercanía de puntos...
discretos, sin movimiento ni espacio, y que responde al concepto de función discreto de Bourbaki. Lo anterior, se ve fuertemente reflejado en el trabajo propuesto en los textos de estudios, en los cuales solo se evocan fenómenos de variación como una introducción y en el trabajo principal con gráficas estas son significadas como puntos discretos unidos por segmentos. En el cual los análisis refieren al calculo discreto sin un trabajo tendencial ni de articulación entre la gráfica y el movimiento que representa, constituyéndose de este modo en gráficas sin movimiento y por tanto sin tiempo.

La indagación en las metáforas portadas por los estudiantes revela representaciones sobre el tiempo que tienen una fuerte componente vivencial, conformando una red compleja de significados que son enactados a la hora de trabajar con el tiempo. Un tiempo que "no es una línea, sino una red de intencionalidades" (Toboso).

En particular se reconocen en este trabajo:

a) Un tiempo que es negociable, que se puede tener, dar y conseguir. Un tiempo que esta fuera de un fenómeno y que permite establecer comparaciones entre duraciones, la duración del fenómeno y el tiempo permitido, por el profesor, la autoridad o simplemente la premura autoimponen.

b) Un tiempo que marca el inicio, el fin de una acción y/o necesidad de cambiar, tiempo que podemos reconocer es marcado en la fig (Arrieta), tiempo de detención, tiempos de avance, no un tiempo continuo que covaría, sino que marca etapas y que no es único, sino que propio a la etapa temporal que describe. El tiempo de mi niñez paso más lento que el tiempo de mi vejez. Son tiempo propios al evento.

C) Un tiempo que va veloz mientras nosotros estamos quietos o vamos más lentos, aquí el tiempo reconocido como un flujo pareciera tener una mayor cercanía a la concepción matemática de un tiempo lineal que fluye isotropíicamente, sin embargo, es un tiempo que no interactúa con nuestra realidad, que no es reversible y por tanto no es naturalmente incluido a la hora de describir variaciones, pues es un tiempo vivenciado a partir de los cambios que vive el estudiantes.
c) Un tiempo como artefacto de sincronía, aquí entendido como las marcas del reloj, que nos permite coordinar acciones, llegar a la hora, planificar eventos, etc. Una motivación que responde a los contextos históricos en la construcción de concepciones de tiempo, a medida que se evolucionaba desde sociedades recolectoras y agrarias con coordinaciones astronómicas, hacia una sociedad industrial y moderna que requiere sincronías precisas y por tanto mediciones del tiempo minimales.

Ellas muestran un tiempo que permite encajes y enmarcaciones de fenómenos en una mirada principalmente cualitativa, que describe un pasado y un futuro y que se representa a partir del campo de presencia que requiere ser significado en torno a la distensión temporal vivida o evocada por el estudiante. Distensión que difiere sustancialmente de la metaphorización matemática de un tiempo matizado y representando como una distancia.

En conclusión, la complejidad presente a la hora de trabajar con gráficas que requieren al tiempo como variable, implica poner en acción sistemas conceptuales complejos que proveen las representaciones y vivencias necesarias para comprender, interpretar y predecir la situación representada en un gráfico. En este sentido y específicamente en un gráfico variable-tiempo como el de la figura, se requiere de parte del estudiante evocar a partir de un tiempo que, como variable en la situación matemática, ha sido metrizado, es homogéneo y continuo, así como, independiente y reversible. Un tiempo metaphorizado como una distancia.

De este modo el estudiante al verse enfrentado a una gráfica distancia tiempo, grafica que el estudiante ha significado en su trabajo escolar desde el paradigma de Bourbaki, respondiendo a la discretización del cálculo, en el cual cada punto de la gráfica es representado como un par de valores que remiten a las coordenadas. De modo que cada punto de la gráfica representa un par de coordenadas de distancia y por tanto cada cambio de punto es una nueva posición en el marco de dos distancias. Así, no surge de modo natural una vivencia temporal asociada a la variación descrita, siendo una sucesión de posiciones en el tiempo.
En este sentido reconocemos en el trabajo de esta tesis disonancias entre las representaciones portadas por los estudiantes ante el trabajo matemático con gráficas distancia-tiempo. Por un lado la comunidad matemática, construyó un elementos de visualización de lo que varía, mediante metáforas que ocultan el tiempo y el movimiento y transforman a esta última variable a una sucesión de valores de los cuales no puede deducirse un pasado, presente y futuro, sino solo situaciones de anterioridad, simultaneidad y posterioridad. Y las metaforizaciones del tiempo de los estudiantes que responden más a una vivencia subjetiva, cualitativa del tiempo. Así las marcas del patinador fueron hechas en una secuencia de ahora y la temporalidad de la situación no está en el eje X, el cual es significado por ser un razon de longitud, como una distancia.

Así, el trabajo con gráficas de distancia-tiempo implica la necesidad por parte del estudiante de la evocación de eventos desde su experiencia pasada, tanto escolar como cotidiana. La conciencización del tiempo en un fenómeno está fuertemente ligada a la vivencia del campo de presencia. Es decir, trádas desde un pasado que puede ser narrado o vivido pero que implican una vivencia temporal con un tiempo complejo que no es explícito, visible y uniforme, sino más bien una experiencia de protensiones y distensiones al presente y futuro vividas durante el desarrollo del fenómeno y que por tanto varían de estudiante a estudiante.

![Fig. 21](image-url)
Por su parte, construir un gráfico distancia tiempo, requiere construir un tiempo matrizado en la situación y reconocerlo como una variable que covaría, que es continua y externa al sujeto, un tiempo de sincronización de eventos en el cual el reloj va marcando los diversos eventos infinitesimales que ocurren en la situación dada.

Lo anterior implica una articulación entre dos estados de pensamiento, uno que reconoce al tiempo mediante una metáfora de distancia y otra, que lo reconoce desde un yo y un ahora, y que mediante el campo de presencia configuran una distensión que varía la homogeneidad del transcurrir del tiempo, en base a una metáfora de un fluir del tiempo asociado al movimiento. De este modo, en la experiencia cotidiana del movimiento en el tiempo, estos no se separan perceptivamente, sino que son aristas de una misma percepción. El tiempo vivenciado en la experiencia de mutabilidad de los objetos de nuestro entorno y la velocidad reconocida en la duración temporal de los cambios, conforman una complejidad imbricada que se co-definen. Y al evocar, interpretar o representar una situación en una imagen de movimiento el tiempo retoma su lugar implícito que no requiere ser expresado en el dibujo.

Finalmente, destacar el cambio que ha ido viviendo la concepción física, el cual a partir de la teoría de la relatividad vuelve a ser dependiente de la velocidad del móvil y junto a los procesos caóticos, cuyos índices de entropía altos configuran una nueva realidad con un tiempo no reversible, dependiente de las condiciones iniciales del sistema. Cambio que se expresa en gráficas en las cuales la variable métrica se vuelvea representar en el eje de las ordenadas (ver Fig. 20). Revelando nuevos consensos y concepciones teóricas que del tiempo va construyendo la comunidad que usa el gráfico.

Fig. 22. gráfica tiempo-Distancia 16.

16 tomado de la experiencia piloto cosmoeduca.

http://www.iac.es/cosmoeduca/gravedad/complementos/enlace4.htm
BIBLIOGRAFÍA

ANEXO

Encuesta El Tiempo

Curso: ____________________________ Edad: ____________________________

I) Que viene a tu mente cuando escuchas la palabra tiempo

__

__

II) Escribe tres frases con la palabra tiempo

a. ___

__

b. ___

__

c. ___

__

III) Si caces una pelota desde una ventana del 3er piso haz una gráfica o dibujo que muestre el recorrido a través del tiempo de la pelota.
<table>
<thead>
<tr>
<th>que se viene a la mente con la palabra tiempo</th>
<th>Escribe tres 3 frases con la palabra tiempo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Se me viene a la mente el avance del tiempo</td>
<td>Cuanto tiempo falta</td>
</tr>
<tr>
<td>2. Cuando escucho la palabra tiempo, inmediatamente se asocia a un lapso de minutos, segundos u horas determinados para ejercer una actividad o trabajo</td>
<td>El tiempo hoy se pasó muy rápido</td>
</tr>
<tr>
<td>3. Es una forma de enumerar o dejar cuenta de lo que está pasando cada día, minuto a minuto e ir contando todo lo que está pasando sin saber que, después pasa a ser parte de la historia</td>
<td>La historia a través del tiempo</td>
</tr>
<tr>
<td>4. Reloj – lo que corre eternamente</td>
<td>Esto tomará mucho tiempo</td>
</tr>
<tr>
<td>5. Se me viene a la mente hora, el rato que vamos a tener para hacer algo y un rato libre para hacer otras cosas</td>
<td>Tienes tiempo para que salgamos el sábado</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6.</td>
<td>Momentos de mi infancia y imágenes de mi alegre</td>
</tr>
<tr>
<td>7.</td>
<td>Es algo que hombre invento para organizar el día así poder hacer algo</td>
</tr>
<tr>
<td>8.</td>
<td>A mi se me viene a la mente la imagen de mi reloj, y algunas veces se me viene a la mente que es lo que tengo que hacer</td>
</tr>
<tr>
<td>9.</td>
<td>Lo primero que se me viene a la mente es el reloj que tiene como función damos la hora</td>
</tr>
<tr>
<td>10.</td>
<td>Cuando escucho la palabra tiempo viene a mi mente la muerte, los pensamientos y malos momentos, el surgimiento de toda esta gente que perdió su tiempo en sufrir y causar sufrimiento, pero por otra parte esta la vida, la creación de todo lo que vive y solo vive, el aprendizaje, el amor y bellos momentos todo es el tiempo, vida y muerte</td>
</tr>
<tr>
<td>11.</td>
<td>Bueno se me viene a la mente quizás apresuramiento o relajamiento dependiendo de la actividad que este realizando</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12. Cuando escucho la palabra tiempo se me viene a la mente el reloj con los números del 1 al 12 y pienso en las horas, minutos y segundo.</td>
<td>Camila llegó justo a tiempo</td>
</tr>
<tr>
<td>13. Se me viene a la mente al escuchar la palabra tiempo es como por ejemplo cuando ha pasado, en qué época estamos, ósea en resumen escuchar la palabra tiempo para mí es el acercamiento o el alejamiento de distintas etapas.</td>
<td>En qué época sucedió</td>
</tr>
<tr>
<td>14. Cuando escucho la palabra tiempo lo primero que se me viene a la cabeza es un lapso de tiempo en que uno tiene que hacer algo para sí mismo o para los demás.</td>
<td>En un tiempo de 30 min tienen que terminar la prueba</td>
</tr>
<tr>
<td>15. Para mí la palabra tiempo es algo que va transcurriendo con el paso de los segundos, minutos, u horas o también en los días, meses o años, etc.</td>
<td>El tiempo pasa y yo sigo aquí esperando</td>
</tr>
<tr>
<td>N°</td>
<td>Contenido</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>16</td>
<td>Cuando me dicen tiempo lo relaciono con que hay poco un punto de horas y me desespero o sino tiempo es oro</td>
</tr>
<tr>
<td>17</td>
<td>Cuando se me viene a la mente, el reloj esota, imagino espacio entre un reloj y otro, segundos, minutos, horas, días, meses, años.</td>
</tr>
<tr>
<td>18</td>
<td>La palabra tiempo significa mucho en que está relacionada con muchas cosas como la llegada puntual.</td>
</tr>
<tr>
<td>19</td>
<td>Dice que a cada segundo o minuto que pase una vez lo aprovechas y otras estudiar lo que es muy como</td>
</tr>
</tbody>
</table>

Nota: El contenido de la tabla es una interpretación del texto original en español y se ha resumido para facilitar la lectura.
<table>
<thead>
<tr>
<th>N°</th>
<th>Explicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>Lo que se me viene a la mente cuando escucho la palabra tiempo es un reloj con sus manecillas. No me queda tiempo. Mañana habrá tiempo. Depresión, se acaba el tiempo para hablar de eso.</td>
</tr>
<tr>
<td>21.</td>
<td>Se me viene a la mente todos los acontecimientos que han transcurrido, y a nadie le ha pasado todo el tiempo que ha transcurrido. Hace mucho tiempo que hemos tenido noticias, y me recuerda algunas áreas.</td>
</tr>
<tr>
<td>22.</td>
<td>Se me viene a la mente las cosas que he hecho en el pasado, lo que vendrá en el futuro, lo que no vendrá en el futuro. El tiempo no puede volver, pero el tiempo pasa. El tiempo es lo que nos permite estar bien en los lugares que tenemos, en casa y en el trabajo.</td>
</tr>
<tr>
<td>23.</td>
<td>Se me viene a la mente las cosas que he hecho en el pasado, lo que vendrá en el futuro, lo que no vendrá en el futuro. El tiempo no puede volver, pero el tiempo pasa. El tiempo pasa, pero no puede volver, y yo no tengo tiempo para este fin de semana, aún más triste. El tiempo es lo que nos permite estar bien en los lugares que tenemos que estar, y para eso es importante.</td>
</tr>
<tr>
<td>24.</td>
<td>Es algo que tiene que pasar y va a llegar un momento culminante de la vida (muerte). El tiempo no se acaba. El tiempo pasa, pero no puede volver, y yo no tengo tiempo para este fin de semana, aún más triste. El tiempo es lo que nos permite estar bien en los lugares que tenemos que estar, y para eso es importante.</td>
</tr>
<tr>
<td>Número</td>
<td>Descripción</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>25.</td>
<td>Cuando escuché la palabra tiempo se me viene a la mente números que con un segundo paso rápido, minutos que con el reloj pasan muy lentos.</td>
</tr>
<tr>
<td>26.</td>
<td>Ya se empieza a jugar el segundo tiempo.</td>
</tr>
<tr>
<td>27.</td>
<td>Ya no hay tiempo.</td>
</tr>
<tr>
<td>29.</td>
<td>Se me viene a la mente cuando el tiempo va pasar en hacer las cosas.</td>
</tr>
<tr>
<td>30.</td>
<td>Lo que a pasado en y transcurrido en el tiempo en las aventuras de huellas de los grandes acontecimientos.</td>
</tr>
<tr>
<td>31.</td>
<td>Un periodo de minutos, horas, días, semanas, meses, años, determinando lo que da paso siempre, siempre y aún, me estoy enojando.</td>
</tr>
<tr>
<td>32.</td>
<td>Piensas en el envejecimiento, que pasa cada vez más rápido, que el tiempo se obtiene haciendo cosas rípidamente y responsablemente.</td>
</tr>
<tr>
<td>33.</td>
<td>Vivir cada vez más centrado en el tiempo, es decir, a un ritmo solo y se viene a la mente que no hay tiempo para el partido.</td>
</tr>
<tr>
<td>34.</td>
<td>Yo creo que una forma de expresar los segundos, los minutos, las horas, días, meses, años, siglos, etc. Es el tiempo.</td>
</tr>
<tr>
<td>El tiempo es relativo.</td>
<td>Quiero tener algo más.</td>
</tr>
<tr>
<td>Pasa y pasa el tiempo y hice tiempo.</td>
<td>Tengo tiempo.</td>
</tr>
<tr>
<td>No tengo tiempo.</td>
<td>Con el tiempo...</td>
</tr>
<tr>
<td>Hay tiempo de llegar temprano para el partido.</td>
<td>Este es el tiempo de lluvia.</td>
</tr>
<tr>
<td>Esperando mucho tiempo.</td>
<td>El tiempo pasa y yo sigo enano.</td>
</tr>
<tr>
<td>35.</td>
<td>Se me viene a la mente que si el tiempo no existiese no se lo que ocurriría a lo mejor no envejeceríamos, pero mas ya de eso, quedo en blanco</td>
</tr>
</tbody>
</table>