1

J. Phys.: Condens. Matter 19 (2007) 056202 (11pp)

Magnetic interaction between manganese (2+) atoms through aquo bridges and bifurcated cyano groups

R Martínez-García¹, L Reguera², M Knobel³ and E Reguera^{1,4,5}

- ¹ Institute of Science and Technology of Materials, University of Havana, 10400 Havana, Cuba
- ² Faculty of Chemistry, University of Havana, San Lazaro and L, 10400 Havana, Cuba
- ³ Institute of Physics 'Gleb Wataghin', UNICAMP, 13083-970 Campinas SP, Brazil
- ⁴ Center for Applied Science and Advanced Technology of IPN, Mexico, DF, Mexico

E-mail: ereguera@yahoo.com

Received 7 November 2006, in final form 22 December 2006 Published 15 January 2007 Online at stacks.iop.org/JPhysCM/19/056202

Abstract

The magnetic interaction between adjacent manganese atoms through aquo double bridges in $Mn_2[M(CN)_6] \cdot xH_2O$ where x = 8 and 2 and M = Fe, Ru, Os, was studied. Through these bridges a relatively weak antiferromagnetic interaction is established with an estimated Curie–Weiss temperature, $|\theta_{CW}|$, close to 4 K and a super exchange constant, |J|, of 0.27 cm⁻¹. When these materials are dehydrated the antiferromagnetic interaction between the Mn atoms undergoes a dramatic increase, with estimated values for $|\theta_{CW}|$ and |J|of 61 K and 4.11 cm⁻¹, respectively. Such reinforcement in the magnetic interaction is accompanied by a shift of 32 cm⁻¹ for the ν (CN) vibration towards the low frequency region while for the iron compound the Mössbauer spectrum, initially a single line, becomes a quadrupole splitting doublet of relatively low isomer shift (δ) value. The Curie constant of the involved Mn atoms shows a negative correlation with the observed shifts in ν (CN) and δ on dehydration. From the observed magnetic behaviour and the spectroscopic data a double coordination of an N end of the CN ligand to two Mn atoms is proposed. Such strong magnetic interaction through the N atom of the CN ligand could be used as a prototypical bridge to obtain high T_c molecular magnets.

Supplementary data are available from stacks.iop.org/JPhysCM/19/056202

1. Introduction

The magnetic interaction between transition metal ions in cyano complexes, mainly Prussian blue (PB) analogues, has been an active interdisciplinary research area in the last few

⁵ Author to whom any correspondence should be addressed.