The introduction of thermal diffusivity and the measurement of its properties for different materials is a crucial aspect in the study of heat transfer and thermal conductivity. The thermal diffusivity (\(D\)) is defined as the ratio of the thermal conductivity (\(k\)) to the product of density (\(\rho\)) and specific heat capacity (\(c_p\)): \[D = \frac{k}{\rho c_p} \]

In the context of bone and dental materials, the thermal diffusivity is particularly important as it affects the rate at which heat is conducted through the material. This is crucial for understanding the thermal behavior of these materials under various conditions, such as during surgical procedures or in response to external thermal sources.

The results and discussion section of the document provide a detailed examination of the thermal diffusivity properties of bone and dental materials. The data is presented in a table format, allowing for a clear comparison of the thermal diffusivity values across different samples. The table includes columns for the sample number, the measured thermal diffusivity, and additional descriptive data.

The introduction to the results and discussion section sets the stage for the detailed analysis that follows, highlighting the significance of the thermal diffusivity in the context of bone and dental materials.
REFERENCES

ACKNOWLEDGMENTS

between these materials.

The work was supported by CCF-1454170.

between these materials.

Their thermal conductivity is lower.

The results of the experiment clearly show that the thermal conductivity in LTA and LBO are lower in this form, and report thermal diffusivity determination in LTA and LBO in the materials.

By finding a good thermal conductivity among the materials studied and having a powdered form, it is possible to use the material for normalized and thermal applications.

The difference between the thermal conductivities in the materials shown in the figure (d) are caused by the solid core, the volume fraction of the material at the bottom.

Here are given the thermal conductivities of various compression samples, which represent the material properties of various compression samples.

The results of the experiment clearly show that the thermal conductivity in LTA and LBO are lower in this form, and report thermal diffusivity determination in LTA and LBO in the materials.

The work was supported by CCF-1454170.

REFERENCES

ACKNOWLEDGMENTS

between these materials.

The results of the experiment clearly show that the thermal conductivity in LTA and LBO are lower in this form, and report thermal diffusivity determination in LTA and LBO in the materials.

By finding a good thermal conductivity among the materials studied and having a powdered form, it is possible to use the material for normalized and thermal applications.

The difference between the thermal conductivities in the materials shown in the figure (d) are caused by the solid core, the volume fraction of the material at the bottom.

Here are given the thermal conductivities of various compression samples, which represent the material properties of various compression samples.

The results of the experiment clearly show that the thermal conductivity in LTA and LBO are lower in this form, and report thermal diffusivity determination in LTA and LBO in the materials.

By finding a good thermal conductivity among the materials studied and having a powdered form, it is possible to use the material for normalized and thermal applications.

The difference between the thermal conductivities in the materials shown in the figure (d) are caused by the solid core, the volume fraction of the material at the bottom.

Here are given the thermal conductivities of various compression samples, which represent the material properties of various compression samples.