

Memorias en extenso

Diseño de un sistema híbrido de producción de energía ecológica

B. Garay Ramírez¹ y E. San Martin Martínez¹

¹ Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional, Legaria 694. Colonia Irrigación, 11500 México D. F.

Resumen

Se plantea el desarrollo de un sistema, ecológico híbrido (solar térmico-eléctrico-químico) productor de H₂ como acarreador de energía, mediante electrólisis de agua a baja temperatura (<100°C), en un prototipo de celda de electrolisis PEM, utilizando la energía termosolar concentrada como fuente primaria, la cual es transformada en energía eléctrica para alimentar y hacer posible la electrólisis.

Introducción

Las necesidades energéticas humanas (e.g. industria, transporte, electricidad) han generado el incremento gradual de gases de efecto invernadero (GHG greenhouse gases). Dado que los GHG (CO₂, CH₄, N₂O, HFCs, PFCs y SF₆) se acumulan en la atmósfera, estos producen calentamiento neto, acentuando el "efecto invernadero natural". La energía (producción, transformación, manejo y consumo) a partir de la ignición de combustibles representa el 65% de emisiones globales de GHG de los cuales el CO2 es el constituyente principal (94% para los países de grupo Annex I, 2008). Los combustibles fósiles (petróleo, carbón y gas natural) constituyen aun la principal fuente de energía mundial (81%, 2008), habiéndose duplicado su consumo entre 1971-2008 [1]. Múltiples países están en el proceso de analizar sus fuentes de GHG y desarrollar estrategias (tecnológicas y legislativas) para reducirlas a niveles que vuelvan posible el desarrollo sustentable [2, 3]. Se vuelve inminente el desarrollo e implementación de tecnologías novedosas basadas en fuentes de energía renovables. En los últimos años, el hidrógeno (H₂) ha cobrado importancia como acarreador de energía, en particular para futuras aplicaciones en celdas de combustible para medios de trasporte, además para su reconversión en energía eléctrica [2]. Si bien el desarrollo tecnológico de celdas de combustible está en auge, la economía basada en hidrogeno sigue limitada por la producción de hidrógeno de un modo eficiente, rentable y limpio [4]; el H2 no existe naturalmente y debe ser extraído de fuentes ricas de hidrógeno como el gas natural, carbón o agua. Además, pese a que el H₂ es un recurso energético "limpio", debe considerarse la fuente y la tecnología de la que se obtiene [2, 4]. Entre las tecnologías para la producción de hidrógeno se incluyen electrolisis de vapor saturado a alta temperatura (HTSE), separación termoquímica de agua, sistemas electroquímicos, foto-biológicos [4], reformación gasificación de biomasa, reformación y gasificación de acarreadores fósiles de energía, electrólisis alcalina, electrólisis SPE (Solid Polymer Electrolyte) o PEM (Proton Exchange Membrane, Polymer Electrolyte Membrane) [2]. De los anteriores, la electrólisis PEM presenta ventajas en cuanto a la posibilidad de producir H₂ de muy alta pureza, el diseño de la celda es simple y compacto, lo cual permite la operación de la celda de manera autónoma y distribuida, a demanda en unidades pequeñas y altamente eficientes [2].

El principio gral. de la electrólisis de agua es:

 $H_2O_{(l/g)}$ +Δ H_r → $H_{2(g)}$ +1/2 O_2 ; Δ H_r , entalpía de reacción ΔH_r =-284.8 kJ/mol, equivalente a un voltaje ΔE = ΔH_r /nF=1.48 V

Se provee agua a una celda electroquímica en la cual el O₂ en el ánodo (basado en Ir), iones H⁺ migran a través de un polímero sólido conductor de protones y el H₂ evoluciona en el cátodo (basado en Pt), si un voltaje (corriente continua, DC) suficientemente alto se aplica a la celda [2]. Para aproximarse más a un sistema global ecológico se requiere alimentar la celda con energía eléctrica obtenida a partir de una fuente de energía renovable. Hasta ahora, esto se ha resuelto mediante sistemas fotovoltaicos [2], si bien estos no constituyen la única tecnología de aprovechamiento de energía renovable, por lo que otras tecnologías ya existentes, pero desaprovechadas hasta ahora para este fin, requieren mayor investigación [7].

Procedimiento Experimental

- a) Desarrollo de un prototipo de transformación de energía termosolar a eléctrica (DC). Dado que el dispositivo que se pretende utilizar nunca ha sido reportado como intermediario para la producción de H₂, reservamos el derecho de divulgar mayores detalles hasta la evaluación de factibilidad del mismo.
- b) desarrollo de un prototipo de celda de electrolisis PEM, de agua desionizada, a temperatura baja, de acuerdo al protocolo descrito por Millet [6]. La posterior caracterización de este, de acuerdo a Siracusano[5].
- c) evaluación de eficiencia del prototipo electrolizador acoplado a la alimentación DC.

Referencias

- [1] International Energy Agency (IEA), CO₂ emissions from fuel combustion, 2010, pp xiii-xxii
- [2] Stolten D., *Hydrogen and fuel cells*, (Wiley-VCH, Alemania 2010), pp 207-226, 271-288.
- [3] IEA, Dealing with climate change, 2002, pp 11-45
- [4] IEA, Hydrogen and Fuel Cells, 2004, pp 23-34, 50-61
- [5] Siracusano S., et al., *An electrochemical study of a PEM stack for water electrolysis*, Int. J. H. E. (2011), in press.
- [6] Millet P., et al., Design and performance of a solid polymer electrolyte water electrolyzer, Int. J. H. E. (1996), pp 87-93
- [7] Seminario Iberoamericano de Energías renovables 2011, Cuernavaca, México, memorias.