

Available online at www.sciencedirect.com

SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/he

Sorption of hydrogen onto titanate nanotubes decorated with a nanostructured Cd₃[Fe(CN)₆]₂ Prussian Blue analogue

A.A. Al-Hajjaj a, B. Zamora b, D.V. Bavykin a,*, A.A. Shah a, F.C. Walsh a, E. Reguera b

^aEnergy Technology Research Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK ^bCentro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada del IPN, Unidad Legaria, Legaria 694, Col. Irrigacion, Mexico

ARTICLE INFO

Article history:
Received 17 June 2011
Received in revised form
30 August 2011
Accepted 19 September 2011
Available online 19 October 2011

Keywords:
Ferricyanide
Titanate nanotubes
Cadmium hexacyanoferrate
Hydrogen storage
High pressure

ABSTRACT

Nanostructured films of cadmium hexacyanoferrate (III), $Cd_3[Fe(CN)_5]_2$ have been deposited on the surface of titanate nanotubes (TiNT) by ion exchange with $CdSO_4$, followed by reaction with $K_3[Fe(CN)_6]$ in an aqueous suspension. The composite demonstrates a significantly higher hydrogen storage uptake than pure $Cd_3[Fe(CN)_5]_2$ and TiNT. At a temperature of 77 K and a pressure 100 bar, the hydrogen uptake for the composite is approximately 12.5 wt %, whereas only 4.5 wt % and 4 wt % are achieved for the TiNT and $Cd_3[Fe(CN)_6]_2$ respectively. Electron microscopy and infrared spectroscopy show that $Cd_3[Fe(CN)_6]_2$ is uniformly distributed on the surface of the nanotubes forming a discontinuous nanostructured film with a well developed interface, which allows efficient interaction with the support. The possible reasons for the high uptake of hydrogen in the composite are discussed.

Copyright © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights