Determinación del mecanismo de oxigenación del CdTe obtenido por rf Sputtering reactivo con magnetrón en un plasma de Ar-N₂O

F. Caballero-Briones, A. Zapata-Navarro, P. Bartolo-Pérez, R. Castro-Rodríguez, M. Zapata-Torres, W. Cauich y J.L. Peña
Departamento de Física Aplicada, CINVESTAV-Instituto Politécnico Nacional, Unidad Mérida
Apartado postal 73, Cordemex, 97310 Mérida, Yucatán, México.

Se estudió la incorporación de oxígeno al CdTe, para preparar óxidos de CdTe en forma de película delgada usando un plasma controlado de Ar-N₂O, en un sistema de rf sputtering reactivo con magnetrón. Se estudió la influencia de la variación en la presión de oxígeno, la potencia del plasma y la posición del sustrato. Se preparó un blanco que fue sometido a bombardeo con y sin oxígeno, estudiándose en ambos casos su superficie por espectroscopía de electrones Auger. Se demuestra que la oxigenación del material tiene lugar principalmente en el sustrato, formándose una capa amorfica de CdTeO en su superficie. Se encontró que el CdTe incorpora oxígeno sin oxígeno, debido a los gases residuales. Se monitoreó cada proceso in situ mediante espectrometría de masas. Las películas obtenidas se estudiaron por espectroscopía de electrones Auger y difracción de rayos X. Se demuestra la oxigenación del blanco depende de la presión de N₂O y de la potencia del plasma y que tanto la oxigenación del CdTe, como la razón de depósito, dependen de las interacciones de éste con el N₂O, en el blanco, así como en las paredes de la cámara de vacío. Se propone un mecanismo para la incorporación del oxígeno a este material.

Descriptors: CdTeO, N₂O, mecanismo de reacción; rf sputtering

In this work we did studies to determine the oxidation site and incorporation mechanism of oxygen to CdTe, when preparing CdTeO thin films by rf reactive magnetron sputtering, using a CdTe target and a controlled plasma of Ar-N₂O. We study the influence in the oxygen content in films due to the variation of N₂O partial pressure, plasma power and substrate position. We monitored the process in situ by mass spectrometry to determine the variation of present compounds when varying the N₂O partial pressure and plasma power. Thin films composition was determined by Auger electron spectroscopy and their structure by X-ray diffraction. We demonstrate that oxygen incorporation has place mainly in the substrate, forming an amorphous CdTeO film. We found that exists CdTe oxidation without using nitrous oxide, may be due to residual atmosphere. We demonstrate that CdTe oxidation depends on nitrous oxide partial pressure and plasma power. We found that deposition rate of CdTeO thin films depend on nitrous oxide interactions with CdTe in the target and on the chamber walls. We propose a reaction mechanism to explain the oxygen incorporation to CdTe.

Keywords: CdTeO, N₂O, reaction mechanism: rf sputtering

PACS: 82.30.-b; 82.65.Jv; 82.40.Ra; 81.15.Cd

1. Introducción

Una de las técnicas de obtención de nuevos materiales con mayores aplicaciones en la industria, es la erosión catódica. Cuando alguno de los elementos que compone al material que se desea depositar está en fase gaseosa, el proceso se conoce como sputtering reactivo. La reacción del gas con el material del blanco puede ocurrir en la superficie del blanco, en la superficie del sustrato, en el plasma y/o en las paredes de la cámara de trabajo [1]. Usando la técnica de rf sputtering reactivo, se obtienen películas delgadas de CdTeO utilizando un blanco de CdTe puro y como agente oxidante N₂O. Los óxidos de telururo de cadmio (CdTeO) son excelentes candidatos para la obtención y fabricación de dispositivos, especialmente ópticos y optoelectrónicos por sus características de absorción óptica en diferentes regiones. Las películas que se obtienen van desde películas de CdTe hasta películas de CdTeO₂ [2–4], aunque el mecanismo por el cual el oxígeno se incorpora al CdTe aún no ha sido estudiado, lo que dificulta la obtención de películas con propiedades reproducibles. Para determinar el mecanismo por el cual se incorpora el oxígeno al CdTe se estudia el proceso in situ mediante espectrometría de masas (MS) y por otro lado, se estudian los materiales obtenidos por difracción de rayos X (XRD) y espectroscopía de electrones Auger (AES). Se propone un mecanismo para la reacción del CdTe con el oxígeno.

2. Detalles experimentales

Las muestras fueron crecidas en una evaporadora CVE 301, usando un blanco de CdTe de 2" de diámetro, Ar como gas de trabajo y N₂O como agente oxidante, con pureza 99.999. Como sustratos se empleó vidrio Corning. Se crecieron las siguientes muestras: 13 películas a una potencia de plasma fija, variando la presión parcial de N₂O desde cero hasta 2 × 10⁻⁴ Torr (T0–T12); tres películas a 9 × 10⁻⁵ Torr de N₂O (P1–P3) y tres más sin N₂O (P4–P6) aumentando la potencia del plasma; y tres, colocando los sustratos a 0°, 45° y 90° y equidistantes respecto al blanco (X1–X3). Se preparó una pastilla de CdTe y se puso sobre el magnetrón a modo de blanco. La muestra se bombardeó primero con un plasma de argón (B1) y posteriormente con un plasma con 1 × 10⁻⁴ Torr de N₂O (B2). Las muestras fueron caracterizadas por AES en un equipo ESCA-SAM PHI 580, utilizando los siguientes
3. Resultados y discusión

Las películas obtenidas varían de un color gris oscuro característico del CdTe, hasta transparente, pasando por café claro y amarillo pálido [2, 3]. En la Fig. 1 se observa que el contenido de oxígeno aumenta con la presión parcial de N₂O. Se distinguen tres zonas: la “zona de dopaje” de cero a 1.2 x 10⁻⁵ Torr, la “zona de transición” entre 1.2 x 10⁻⁵ y 6 x 10⁻⁵ Torr y la “zona de saturación”, arriba de 6 x 10⁻⁵ Torr de N₂O.

La primera zona, donde el contenido de oxígeno aumenta ligeramente, puede considerarse como una región donde la cantidad de oxígeno incorporado es cercana a la de las muestras crecidas sin N₂O [5]. En la segunda zona, se observa el aumento abrupto del contenido de oxígeno y la disminución tanto del cadmio como del telurio. En esta región el material pasa de ser una película primordialmente de CdTe, a una de CdTeO₃ [5]. En esta región se da un cambio en el estado de oxidación del telurio de Te²⁻ a Te⁴⁺ que origina un aumento fuerte en la cantidad de oxígeno que el material es capaz de incorporar [6]. Después de esta zona, el contenido de oxígeno aumenta muy lentamente hasta que se alcanza la saturación del material y se forma CdTeO₃ estequiомétrico a 2 x 10⁻⁴ Torr de N₂O. En este punto, todo el telurio se encuentra como Te⁴⁺ y por tanto el material ya no es capaz de incorporar una cantidad de oxígeno mayor que el 60%. El análisis AES de la muestra T12, preparada sin N₂O y sin pre-sputtering, fué del 17.3%, lo que sugiere que la superficie del blanco se encuentra oxigenada debido al depósito anterior.

En la Fig. 2 se muestran los espectros de rayos X tomados a las muestras preparadas a 5 x 10⁻⁴ Torr de N₂O, a 3 x 10⁻⁵ Torr de N₂O y a 1 x 10⁻⁴ Torr de N₂O. Se observa que ninguno de los espectros de XRD que se obtuvieron de estas muestras presentó picos resueltos sino “panzas” correspondientes a materiales amorfos. Estos materiales amorfos pueden nombrarse en general como a-CdTeO₃ [4].

Sin embargo, se aprecia que la “panza” correspondiente al CdTe que aparece en el primer espectro, empieza a aparecer en el segundo espectro junto con otra a su derecha que corresponde a la “mezcla” entre a-CdTe y a-CdTeO₃ que se da mientras el estado de oxidación de todo el telurio no ha cambiado [6]. En el tercer espectro se aprecia solamente la “panza” correspondiente al a-CdTeO₃ obtenido en la “zona de saturación” cuando todo el telurio del material se encuentra como Te⁴⁺.

En la Fig. 3 se observa que conforme el contenido de oxígeno aumenta en las muestras el espesor, relacionado con la razón de depósito, disminuye bruscamente de 3 µm a 0.25 µm.

Se puede observar que el espesor disminuye desde concentraciones superiores al 50%, y la caída en el espesor es abrupta entre 55 y 60% de oxígeno incorporado. Esta reducción puede deberse por un lado, a un resputtering que destruya la película formada [7] y por otro, a la formación de CdTeO₃ en la superficie del blanco [5, 8], que modificara la razón de erosión del material.

En la Tabla I se observa una disminución en el contenido de oxígeno en las muestras P1 a P3. Esta disminución se debe a la mayor cantidad de material erosionado, que origina que la cantidad de oxígeno que es posible incorporar a presión constante, disminuya. Sin óxido nitroso, el contenido de oxígeno disminuye casi a la mitad al triplicar la potencia del plasma. Al no haberse añadido N₂O intencionalmente, no se espera que el material sea oxigenado, pero un aumento en
la potencia del plasma (mayor erosión del blanco), produce una disminución en el contenido de oxígeno en las muestras tras [3]. Esto demuestra que el material se oxigena debido a la atmósfera residual de la cámara, o que el blanco permanece "envenenado" por procesos anteriores.

Los resultados de AES de las muestras X1–X3 mostraron en todas un contenido de oxígeno del 54%. Este resultado muestra que no hay un efecto en la cantidad de oxígeno incorporado debido a la posición del sustrato.

La muestra B1 tuvo una concentración de oxígeno de 11.4%. En la muestra B2, al intentar hacer AES, se tuvieron problemas de acumulación de cargas, asociados a la presencia de un material aislante, como el CdTeO$_3$ [4]. Sin embargo, en la periferia de la muestra, logró medirse concentración de oxígeno, que fue de 21.9%. Vuelve a observarse que, aún cuando no se incorpora óxido nitroso a propósito, existe un elevado contenido de oxígeno en el material. Los resultados demuestran que el blanco se oxida conforme la presión de óxido nitroso se incrementa, pudiendo llevarse sin embargo, parte de la oxidación en el sustrato. Al alcanzarse la presión de N$_2$O a la cual el CdTe se satura, la oxidación se lleva a cabo por completo en el blanco con la subsecuente disminución en la razón de erosión [5, 7].

En la Fig. 4 se observa que sin plasma, el pico de N$_2$O no aumenta de manera uniforme, como podría esperarse de un gas cuya presión se aumenta monotónicamente. Por debajo de 6×10^{-5} Torr de N$_2$O existe una alta razón de incorporación de oxígeno al CdTe, mientras que, a presiones superiores, el CdTe ya no es capaz de incorporar más oxígeno al ha-haberse formado CdTeO$_3$. Este resultado muestra que a presiones menores que la de saturación, el óxido nitroso se adsorbe en la superficie del CdTe antes de encenderse el plasma, de tal manera que la cantidad detectable depende de la superficie no oxigenada del CdTe [10]. A mayor presión, el pico de N$_2$O se incrementa linealmente, lo que demuestra que la reacción del N$_2$O con el CdTe no requiere activación.

Al encenderse el plasma a 30 y 60 W, se observa que la altura del pico de N$_2$O disminuye respecto a cuando no se utiliza plasma. Este resultado indica un consumo de N$_2$O a causa de la erosión, que aumenta el área disponible para la reacción. Al alcanzarse el estado estacionario del proceso a presiones elevadas de N$_2$O, su consumo debe caer, al saturarse el blanco de oxígeno. A 90 W, se observa que la altura del pico de N$_2$O se mantiene por arriba que a 30 y 60 W. A esta potencia del plasma la razón de erosión del CdTe es tan alta que la cantidad de N$_2$O no es suficiente para reaccionar con el material como a potencias inferiores. Este efecto redundaría en una oxigenación menor del CdTe.

Estos resultados demuestran que para el sistema CdTe–N$_2$O no existe un cambio abrupto en el depósito que haga cambiar con la presión de óxido nitroso, de películas de CdTe a películas de CdTeO$_3$. Este resultado se opone a los obtenidos por Berg et al. [8] en películas de TiN obtenidas por sputtering reactivo a partir de un blanco de Ti en atmósfera de nitroango, en ese trabajo se muestra un aumento abrupto en la intensidad del pico de nitroango al aumentar su presión en el sistema, este aumento está relacionado con el cambio entre el modo "metal" y el modo "compuesto" del blanco de Ti. La zona de transición mencionada anteriormente donde se dá el cambio gradual del estado de oxidación del telurio, permitiría depositar películas de CdTeO.

TABLE I. AES de las muestras preparadas con potencia de plasma variable.

<table>
<thead>
<tr>
<th>Potencia de plasma W</th>
<th>% Oxígeno</th>
<th>Torr de N$_2$O 9×10^{-5}</th>
<th>0 Torr de N$_2$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>P1 = 58.3</td>
<td>P4 = 15.7</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>P2 = 51.2</td>
<td>P5 = 10.6</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>P3 = 25.9</td>
<td>P6 = 8.4</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 3. Espesor de las películas de CdTe O preparadas a 30 W a presión creciente de N$_2$O.

FIGURE 4. Evolución del pico de N$_2$O contra la presión medida de N$_2$O, a 30, 60 y 90 W.
3.1. Mecanismo de reacción

De acuerdo a los resultados discutidos, el mecanismo que se propone para la oxidación del CdTe en un plasma de Ar-N₂O es un mecanismo de catálisis de contacto [9, 10]. Para este mecanismo se asumen los siguientes hechos fundamentales.

- El óxido nitroso es capaz de adsorberse tanto físico como químicamente en la superficie del CdTe a temperatura ambiente.
- A la presión de 2×10^{-6} Torr permanece óxido nitroso adsorbido físicamente en la cámara, que es capaz de contribuir a la oxidación del material cuando se enciende el plasma sin introducir intencionalmente N₂O en la cámara.
- El óxido molecular generado en el plasma no es capaz de oxigenar directamente al CdTe, aunque en el plasma puede producirse N₂O por combinación de N₂ y O₂ provenientes de la atmósfera residual o de fugas.

Para explicar la oxidación del CdTe por N₂O se propone las siguientes ecuaciones:

- **a) Reacción general**
 \[
 \text{CdTe} + N₂O \rightarrow \text{CdTe} : O + N₂O \rightarrow N₂O
 \]

- **b) A presiones bajas de N₂O**
 \[
 \text{CdTe} + N₂O \rightarrow \text{CdTe : ON}_2 \rightarrow \text{CdTe} : O + N₂O
 \]

- **c) A presiones altas de N₂O**
 \[
 \text{CdTe} + N₂O \rightarrow \text{CdTe} : O + N₂O + N₂O \rightarrow \text{CdTe} : ON₂ \rightarrow \text{CdTe}_2 O \rightarrow N₂O
 \]

En el plasma ocurren los siguientes procesos (fundamentalmente a altas presiones):

\[
(N₂O)^+ \leftrightarrow NO + N \rightarrow (F)
\]

\[
N₂ \rightarrow N₂^+ \rightarrow (G)
\]

\[
N₂O + e^- \rightarrow N₂ + O^- \rightarrow (H)
\]

\[
N₂O + O^- \rightarrow N₂ + O₂ \rightarrow (I)
\]
4. Conclusiones

En este trabajo se estudió el lugar y el mecanismo de incorporación de oxígeno al CdTe al preparar películas delgadas de CdTe:O por rf sputtering reactivo con magnetrón, utilizando un plasma de Ar-N₂O. Se encontró que la oxigenación del material depende principalmente de la presión de N₂O y de la potencia del plasma. La posición del sustrato no afecta la cantidad de oxígeno incorporada. La composición del material depende también de la historia del sistema. El CdTe puede oxigenarse con la atmósfera residual de la cámara de vacío. El material oxigenado es un sólido amorf (a-CdTe:O), que se va haciendo transparente conforme aumenta su contenido de oxígeno. El contenido máximo de oxígeno que se logró incorporar al CdTe es de un 60%, que corresponde al CdTeO₂. La caída en la razón de erosión sugiere que con este sistema no se pueden preparar películas con más oxígeno. A bajas presiones de N₂O, el CdTe se oxigena principalmente en el sustrato. A presiones suficientes para saturar al CdTe, la oxigenación tiene lugar en el blanco formándose una capa de CdTeO₂ en su superficie, cuya razón de erosión es considerablemente más baja que la del CdTe, produciendo películas más delgadas. El N₂O se descompone en la superficie del CdTe sin necesidad de encender el plasma. El plasma favorece una mayor descomposición del N₂O al aumentar la superficie de CdTe. Se estudió indirectamente la incorporación de oxígeno al CdTe a través de la emisión de nitrógeno, encontrándose que conforme se incrementa la presión de óxido nitroso aumenta el porcentaje de incorporación de oxígeno al material hasta alcanzar una saturación, mientras que cuando se aumenta la potencia del plasma, la incorporación disminuye. La adsorción de oxígeno se ajusta a una isoterma de adsorción, donde existe una baja energía de interacción entre el CdTe y el N₂O, y una adsorción limitada por la superficie donde puede darse la reacción. Se propuso un mecanismo de reacción cualitativo que explica el comportamiento del sistema cuando se varían tanto la presión parcial de óxido nitroso, como la potencia del plasma.

Agradecimientos

Los autores desean agradecer el valioso apoyo prestado a este trabajo por: Victor Rejón, Mario Herrera, Oswaldo Gómez, Fidel Gamboa, Fabio Chávez, Daniel Pérez, Oscar Ceh y Roberto Sánchez. Este trabajo fue parcialmente financiado por CONACyT dentro del proyecto “Preparación y Caracterización Ópticas y de Estructura Local en Películas Delgadas Semiconductoras de CdTe tipo n y p” clave 2367-PE y por el Gobierno del Estado de Yucatán.