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Abstract In the present work, we study, by means of a one-dimensional lattice model, the
collective excitations corresponding to intra molecular ones of a chain like proteins. It is
shown that such excitations are described by the nonlinear Schrödinger equation with satu-
ration. The solutions obtained here are the bell solitons, bubbles, kinks and crowdons. Since
they belong to different sectors on the parametric space, the bubble condensation could give
rise to some important changes of phase in this nonlinear system. Additionally, it is shown
that the limiting velocity of the solitons is the velocity of sound waves corresponding to
longitudinal vibrations of molecules.
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1 Introduction

In the present days the research devoted to the dynamics properties of the one dimensional
molecular chains have increased. The structure of a great amount of macromolecules is rep-
resented by subunits with mutually weak, slightly flexible bounds connecting them with
each other. The important biological structures of this type are RNA, proteins and DNA
polymer chains. The peculiarity of bio-polymers is that, they are heterogeneous, and their
elementary subunits have complex structures and carry long-lived nonlinear excitations. As
it is well known the propagation of energy and electrons in protein molecules is the cru-
cial factor for maintaining the life of biological systems. So, the problem of storage and
transportation of energy through protein chains arises. The energy used in biological cell
comes from the energy of liberation during the process of hydrolysis of adenosinetriphos-
phate (ATP) molecular structures. The energy of this process is of approximately 0.31 eV (or
2500 cm−1). Proteins consist of chains of hydrogen-bonded peptide groups, three of these
chains in a helical arrangement define the α-helix structure [1]. In his seminal work, Davy-
dov proposed an explanation of the fundamental transportation problem of energy released
by hydrolysis of adenosinetriphosphate and transferred to proteins in biological systems [2].
This energy remains localized and moves along the protein chains at a reasonable rate to per-
form useful biological functions. It could be trapped and transported in proteins as quanta
of the intra molecular C=O stretching mode, the so called amide-I vibration, with excita-
tion energy around 1650 cm−1. The localized spatial region where the energy is trapped can
propagate along the protein chain, in such a way that a soliton-like mechanism for energy
transport is possible. This problem of transporting energy from one point to another inside
the cell is a long-standing problem that remains of great interest.

Besides, from experimental point of view, we can also discover a lot of contributions that
are directly related to a similar phenomenon in the DNA. For instance, in the experimental
work on short DNA rings e.g., [3, 4] the kink tendency of DNA sequences were studied. In
the last years the great amount of works devoted to the nonlinear dynamics of DNA shows
that this area is an active field, for example theoretical proposals of wrapping DNA around
the nucleosome, where kinks play a great rule, were proposed in various papers, see [5–7].
Concerning the α-helical protein dynamics, some works have been dedicated to study this
system including high order excitations and different molecular interactions, in the discrete
and continuum level, [8, 9].

In this contribution we investigate soliton-like structures within the framework of a cer-
tain generalization of the Davydov’s model, considering the case of neighboring interactions
as the same class before and after a peptide group. In the next section we briefly expose the
modified Davydov’s model leading to the Hamiltonian that will be used in research. Sec-
tion 3 is devoted to derive the nonlinear cubic—quintic Schrödinger equation by a suitable
transformation from the original nonlinear Schrödinger equation with saturation. The soli-
ton structures of this equation with some specific characteristics are presented in Sect. 4.
Finally, in the last section we deliver some comments.

2 Davydov’s Model

Due to its transparency and seminal properties, Davydov‘s model continues to encourage in-
tense work regarding the research of the nonlinear treatment of molecular systems [2]. In his
pioneer works he and co-workers demonstrated that the corresponding nonlinear equations
for the molecular excitation in the quantum treatment admit solitonic structures. Indeed they
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assumed that the energy transportation in proteins is carried out by means of transportation
of amide—I vibration. In what follows we consider an infinite chain of weakly bound mole-
cules (or groups) with a mass M and a distance R from each other. Internal excitations of
molecules (electronic or vibrational) are characterized by an energy and an electric dipole
moment d directed along the chain. The internal excitation of molecules and their motion
around equilibrium positions are inseparably linked.

In the case of a one-dimensional chain, only interactions between neighbor molecules
are taken into consideration. Below, we follow the modeling done by Davydov and his co-
workers. If the intramolecular excitation has the energy ε, the collective excitations of this
model can be described by the Davydov’s Hamiltonian:

H =
∑

n

[
(ε − Dn)B

+
n Bn − J

(
B+

n+1Bn + Bn+1B
+
n

)] + T + U, (1)

where index n labels the molecule that occupies position rn in the chain, while B+
n and

Bn are creation and annihilation of intramolecular excitation boson operators. The quantity
J = 2d2R−3 characterizes the transition of intramolecular excitation due to the resonant
interactions while d is the electric dipolar moment. The last two terms in (1), as usual,
correspond to the kinetic and potential energies of the longitudinal displacements.

When the i-th molecule is excited, the static interaction with neighboring molecules of
this molecule changes. This is reflected by the introduction of the function Dn. The dis-
placement ρn from the equilibrium distance R in the state |�〉 is defined by the expression

ρn = R − (rn − rn−1). (2)

In the state |0〉 without intramolecular excitation, the chain has periodicity and the inter-
molecular distances are R.

Let us now consider the function Dn, which in the nearest neighbors interaction limit has
the following form

Dn = Dn (|rn−1 − rn|) + Dn (|rn − rn+1|)

≈
(

1 + β

R
ρn + βγ

2R2
ρ2

n

)
D, (3)

where D ≡ 2Dn(R), β , γ are parameters of the theory.
The potential energy of the molecules in the non excited chain is chosen in a harmonic

approximation under the assumption that the constant spring ω is the same for all of them.
In this case we can express the potential energy as

U = 1

2
ω

∑

n

ρ2
n,

and the kinetic energy can be written as

T = 1

2
M

∑

n

(ṙn)
2 = 1

2
M

∑

n

( ∑

−∞>l≤n

ρ̇

)2

,

where dot over the letter represents temporal derivative, ρ̇ ≡ dρ

dt
. According with the quan-

tum mechanics treatment the collective interactions of interest can be described by the wave
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function

|�〉 =
∑

n

ψn (t)B+
n |0〉 ,

where coefficients ψn(t) are normalized as
∑

n |ψn(t)|2 = 1. These coefficients characterize
the distribution of excitations along the molecular chain, ψn being the probability of finding
the quantum system in the site n or |ψn(t)|2 being the density of probability of finding the
excitation. The equation for determining these wave functions can be obtained from the
Schrödinger equation

i�
∂

∂t
|�〉 = H |�〉,

that can be reduced, using the explicit form of the operator H , and the fact that the func-
tions B+

n |0〉 correspond to different values of n and are orthogonal each other, to obtain the
following system of equations

i�
∂ψn

∂t
=

[
ε + T + U −

(
1 + β

R
ρn + βγ

2R2
ρ2

n

)
D

]
ψn − J (ψn+1 + ψn+1) . (4)

The functional i.e. the Hamiltonian that can be associated with this equation of motion can
be written as F = 〈�|H |�〉

F =
∑

n

{[
ε + T + U −

(
1 + βρn

R
+ βγρ2

n

2R2

)
D

]
ψ∗

nψn − Jψ∗
n (ψn+1 − ψn−1)

}
.

Following Toda [10], it is convenient to associate the displacements ρn with their canonically
conjugate variables sn = ∂T

∂ρ̇n
= −M

∑
l≥n ṙl . Then the kinetic energy can be expressed in

terms of these new variables as

T = 1

2M

∑

n

(sn − sn−1)
2 .

In the next section we will show the derivation for the nonlinear Schrödinger equation
(NSE) with a saturation term.

3 NSE Equation with Saturation

Now, we can derive the equation of motion for the displacements and for their canonical
conjugate variables sn.

First, we consider that

ρ̇n = ∂F

∂sn

= 1

M
(2sn − sn+1 − sn−1) ,

ṡn = − ∂F

∂ρn

= −ωρn + βD

R
|ψn (t)|2 + βγD

R2
ρn |ψn (t)|2 .

(5)

After eliminating the variables sn from the preceding system of equations, we find the equa-
tion for the displacement

ρ̈n = − ω

M
(2ρn − ρn+1 − ρn−1) + βD

RM

(
2 |ψn|2 − |ψn+1|2 − |ψn−1|2

)
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+ βγD

R2M

(
2ρn |ψn|2 − ρn+1 |ψn+1|2 − ρn−1 |ψn−1|2

)
. (6)

The system of equations (4) and (6) defines the collective excitations and deformation of a
chain.

Second, for an analytical treatment, we turn to the analysis in the continuum limit. For
doing this, let us introduce the dimensionless variable ξ = r

R
and the continuous functions

as usual ρ(ξ, t) and ψ(ξ, t) such that

ρ (n, t) = ρn (t) , ψ (n, t) = ψn(t).

Expanding ρ(ξ ± 1) and ψ(ξ ± 1) in series in the standard manner

ρ (ξ ± 1, t) ≈ ρ (ξ) ± ∂ρ (ξ, t)

∂ξ
+ 1

2

∂2ρ (ξ, t)

∂ξ 2
,

ψ (ξ ± 1, t) ≈ ψ (ξ) ± ∂ψ (ξ, t)

∂ξ
+ 1

2

∂2ψ (ξ, t)

∂ξ 2
,

|ψ (ξ ± 1, t)|2 ≈ |ψ (ξ, t)|2 ± ∂

∂ξ
|ψ (ξ, t)|2 + 1

2

∂2

∂ξ 2
|ψ (ξ, t)|2 ,

and keeping terms up to second order of magnitude, we transform (4) and (6) to the following
system of two equations:

i�
∂ψ (ξ, t)

∂t
=

[
λ − βD

R
ρ (ξ, t) − βγD

2R2
ρ2 (ξ, t)

]
ψ (ξ, t) − J

∂2ψ (ξ, t)

∂ξ 2
and

∂2ρ (ξ, t)

∂t2
− v2

a

∂2ρ

∂ξ 2
+ βD

RM

∂2

∂ξ 2
|ψ (ξ, t)|2 (7)

+ βγD

M

(
ρ

∂2 |ψ |2
∂ξ 2

+ 2
∂ρ

∂ξ

∂ |ψ |2
∂ξ

+ ∂2ρ

∂ξ 2
|ψ |2

)
= 0,

with

λ ≡ ε + T + U − D − 2J,

T + U = M

2

{∫ ∞

−∞
dξ

(∫ ∞

−∞
dη

∂

∂t
|ψ (η, t)|2

)2

+ v2
a

∫ ∞

−∞
dξ |ψ (ξ, t)|4

}
,

(8)

and va = (ω/M)
1
2 , where vaR = Va is the acoustic longitudinal velocity in the chain.

We will look for traveling solutions moving along the chain with some velocity V = vR.

In this case, we use the following transformation

ρ (ξ, t) = ρ (ξ − vt) , ψ (ξ, t) = �(ξ − vt) exp {iθ (ξ, t)} . (9)

Replacing (9) into (7) and after integrating, we obtain

ρ = βD

RM

(
|ψ |2

G − γ
βD

MR2 |ψ |2
)

, (10)

with G = (v2
a − v2).
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Finally, we substitute (10) into (7) and obtain the nonlinear equation

i�
∂ψ

∂t
+ J

∂2ψ

∂ξ 2
−

[
λ − k1 |ψ |2

G − k3 |ψ |2 − k2 |ψ |4
(G − k3 |ψ |2)2

]
ψ = 0, (11)

with the values

k1 ≡ β2D2

R2M
, k2 ≡ γ

β3D3

2R4M2
, k3 ≡ βγD

MR2
.

Rewriting these parameters in terms of the exciton-phonon coupling constant χ = βD

R
, we

have k1 ≡ χ2

M
, k2 ≡ χ3 γ

2RM2 . Equation (11) is the well known NSE with saturable nonlin-
earity. This equation arose earlier in various branches of physics, particularly in nonlinear
optics and simulated saturation (decrease) effects of the nonlinear response of a medium in
large electromagnetic fields [13].

Let us simplify (11), assuming that the nonlinearity is not higher than 0(b|ψ |2), and k2 

k1k3, we obtain for the distribution of excitations the Cubic–Quintic Nonlinear Schrödinger
Equation (CQNSE)

i�
∂ψ

∂t
+ J

∂2ψ

∂ξ 2
− λψ + k1

G
|ψ |2 ψ + k2

G2
|ψ |4 ψ = 0. (12)

As known, nonlinear equations similar to (11) possess interesting structures when the
attractive and repulsive terms could compensate each other. So, in the next section we report
some solutions that appear as natural excitations along the molecular chain.

4 Soliton Structures

For solving the equation of motion presented in the previous section we have to consider
physically boundary conditions. Since we are interested on the fact that the displacements
of the perturbed units show a disturbed local character, it is proposed that at long distances
from the occurring perturbations, displacements are very weak and practically the distribu-
tion of excitations at long distance vanishes i.e. at “infinity” it is zero. The second boundary
condition is considered when the displacements take constant values at infinity. These re-
strictions of our chain at “infinities” could be fixed for the time evolution of the perturbations
along the chain.

4.1 Trivial Boundary Condition

For simplicity, let us analyze the case when k2 < 0 and k1 > 0. If this is done, the last term
in (11) represents the repulsive part of the nonlinearity and the 4th term the attractive one.
Further, if we make the variable transformation τ = t

�
, z = √

κ
J
ξ , μ = λGM

χ2 , ν = −χ
γ

2MRG
,

we finally obtain:

i
∂ψ

∂τ
+ ∂2ψ

∂z2
− μψ + (|ψ |2 − ν |ψ |4)ψ = 0. (13)

The CQNSE (13) was studied from various points of view, here we follow the results and
conclusion obtained in the works [11, 12, 14].
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The corresponding solution of the CQNSE with trivial boundary condition

ψ → 0 for x → ±∞,

is the so called drop-type soliton that is not a topological soliton because the vacuum also
has the same asymptotic value. This implies that for (12), we have the static non-topological
soliton [11]. The non-topological soliton solutions are those of which boundary conditions
at infinite are the same that vacuum state. However, topological solitons have boundary
conditions different from the vacuum. This means in particular, that states of degenerated
vacua might exist. It is to say that soliton “will be moored” by its boundary conditions. An
example of topological soliton solution is a step or kink. For our case we have the drop
soliton

ψ = eiθ0
√−4α

(
1 +

√
1 + 16α

3
cosh

(√−α (x − x0)
)
)− 1

2

, (14)

with

α = −μν = − λγ

2βD
. (15)

The traveling soliton should be obtained using the Galileo transformation:

θ0 → V

2
x − V 2

4
t + θ0,

cosh
(√−α (x − x0)

) → cosh
(√−α (x − V t − x0)

)
.

The soliton solution (14) has the normalized motion integral named the “number of par-
ticles”

∫
dx |ψ |2 = 1, calculating this integral we find

16α

3
= 1

cosh[1/
√

3] − 1.

The approximate value for the parameter α ≈ −0.051. Replacing this value in the relation
(15) we obtain the restrictions of the main parameters λγ

βD
= 0.102. The quintic part of the

nonlinear equation produces the effect of counterbalance the attractive forces between “two
particles” in the mechanical analogy method represented by the cubic nonlinearity.

By substituting (14) into (10) we obtain the distribution of changes in the relative distance
between molecules:

ρ(ξ, t) =
(

1 − σ

σγR

)
1

1 + η cosh[√−α(ξ − ξ0)] , (16)

with σ = 1 + 4αBγD

MG
= 1 − 2λγ 2

MG
, η =

√
1+ 16α

3
σ

.

Some numerical representations of this solutions with different values of the main para-
meters are represented in Fig. 1.

In the particular case when the parameters satisfy the relation

8

3βD
= γ

MG

(
1 − λγ 2

MG

)
,
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Fig. 1 Displacement of the
molecules represented by (16)
around the equilibrium position
for λ = 2.5, σ = 0.1, γ = 2.3,
R = 1.2

we have the solution

ρ(ξ, t) = λγ

R(1 − 2λγ 2

MG
)

1

cosh2[ 1
2

√−α(ξ − ξ0)]
, (17)

which is the new distribution of changes in the relative distance between particles.
The maximum deviations d1 and d2 for solutions (16, 17) respectively are

d1 = 2λγ

MGR
(
1 − 2λγ 2

MG
+

√
1 − 8λγ

3βD

) ,

d2 = λγ

R(1 − 2λγ 2

MG
)
.

From these equation we can see that the displacement due to the appearance of solitons
corresponding to (16) is greater compared with the similar equation (17). This means that
the strong “damage” will be caused by the soliton represented by (17). We can see, that
the presence of solitons leads to the pronounced deviation of the peptide groups from their
equilibrium position and the second one should produce a breakage of the chain system

when 2λγ 2

MG
= 1.

Using the expression (8), we can obtain the values of the total energy of the peptide group
displacement as follows:

E1 = 16
(√

16
3 α

)3

√−αJ

k

(
Jν

�k
+ 4α2

0

)
arctan

(√
1 + 16

3 α

(√
16
3 α

)3

)
.

4.2 Condensate Boundary Conditions

We can suggest also, that there are very specific restrictions that could cause soliton ex-
citations to appear along the protein chain. Besides the natural or well known bell soliton
excitation it is also very possible the appearance of other types of solutions. For example,
there could surge topological or non topological solitons because the CQNSE supports them.
It is well known that (12) supports kinks and bubble type of solitons. For this case, we will
use the well reported results obtained by many authors specifically we mention [11].
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Let us see the case of regular solutions of the CQNSE (12) in 1 + 1 dimensions of the
space-time. We rewrite this equation in a slightly different form by using the ground states
and putting them in the equations. In order to visualize the ground states, we will use the
following form of the CQNSE:

iϕτ + ϕςς − (
3 |ϕ|2 − (2A + σ0)

)(|ϕ|2 − σ0

)
ϕ = 0. (18)

This version permits us to find the soliton solutions in explicit form. It can be demon-
strated that (18) could be generated from the relation (13) with the help of the following
scale transformations

ϕ (ζ, τ ) =
√

3

2ν(A + 2σ0)
ψ (x, t) ,

τ =
(

9

8

)
1

ν
(A + 2σ0)

−2 t, ζ = 3

2

1√
2ν

(A + 2σ0)
−1 x.

Where the parameters A and σ0 satisfy the relation

A

σ0
= −2 + 3

4

1

μν

(
1 + √

1 − 4μν
)
. (19)

Without loss of generality it is possible to fix the value of σ0 = 1, because properties of
the solutions depend easily on the parametric relation (A/σ0). Here the parameter A can be
both positive or negative based on the physical requirement we could impose on the system.
Further, the variables ζ and τ will be treated as if x and t were the customary variables.

4.2.1 Bubble Solitons

For obtaining gray or bubble solitons when the degenerated vacuum is not absolute, it is
imposed the boundary condition

x → ±∞ and ϕ → κ3

with κ3 =
√

2A+1
3 . For this case, the solution of (18) takes the form

ϕb =
√

4 − A√
3

e(iθ) cosh[2√
a(y − y0)]√

1 + 4−A
2A+1 sinh2[2√

a(y − y0)]
, (20)

with y = ζ − vτ and

a = 1

4

(
v2

s − v2
) = 1

4

(
4

3
(A − 1)(1 + 2A) − v

)
.

This bubble is a non topological solution and consequently its topological charge is equal to
zero, Qb = 0. Here the parameter A satisfies 1 < A < 4. For the displacement ρ according
to (10) and (20) we obtain the expression

ρ = 3R

2γ

[
cosh2[2√

a(y − y0]
α1 + α2 sinh2[2√

a(y − y0]
]

(21)
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Fig. 2 This displacement is
similar to the well known
“classical bubble” solution in
field theory, but for our case it
represents the agglomeration of
units in the molecular chain and
for this reason it is named
“crowdon” (21)

being

α1 = α2 + 9G
(A − 1)

(2A + 1)(4 − A)
,

and

α1 = 3G

4 − A
− κ, α2 = 3G

2A + 1
− κ,

while

κ = mγβD

M
, m = 2ν(A + 2)

3
. (22)

In the case when the α1,2 are both positive, it is easy to see that α1 > α2 since for this
case 4 > A > 1. The displacement corresponding to the bubble like soliton excitation ϕb

is a typical gray soliton and it is depicted in Fig. 2. Apparently this type of solution is
similar to others obtained for nonlinear classical models. But in contrast to the well known
feature, in our case we have not a bubble displacement, instead we have an agglomeration of
molecules that travels along the chain i.e. we have here a typical crowdon solution forming
the agglomeration of molecules. This agglomeration is traveling along the chain like an
accumulation of molecules conserving velocity and profile.

This result is linked to solutions that are moving slowly with less velocity in comparison
with the sound velocity, i.e. when v2

s − v2 > 0. But when the opposite occurs, i.e. when the
soliton velocity is greater than the sound velocity we have soliton solution on the step or on
the background. This type of solution is presented in Fig. 3.

So, the sign of G determines the type of soliton solution for the displacement that cor-
responds to the distribution of excitations. When 1 < A < 4, bubble solitons for the excita-
tions appear corresponding to displacements of both types: popular gray solitons and nor-
mal “bell” soliton on the background. In the first case for displacements we have obtained
the crowdon solution. In the last case, this displacement shows a huge separation between
neighborhoods in the molecular chain. This solution travels along the protein with velocity
v greater than the acoustic velocity. Of course, we have here a little difference of popular
bubbles of other nonlinear equations. As it is well known, the classical bubble is character-
ized by the rarefaction inside crucial region, but in this case, the feature of our solution is
contrary to this best known property of classical bubbles. Indeed, the displacements outside
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Fig. 3 Typical soliton like
perturbation on the background
that represents the displacements.
The interpretation that could be
given to this solution is that in a
real manner represents a bubble
or the region inside of which the
displacements are increasing and
this effect is contrary to the
agglomeration

the perturbed region have constant values, while inside of this region the separation between
molecules increase as shown in Fig. 3. When this displacement is strong enough, one could
observe the breaking of the protein chain and the solution could be transformed to a peak or
cusp like non-classical solution.

4.2.2 Crowdon Solutions

The “space” of our model is a line with two points as boundaries at the infinite. The existence
of topological soliton named kink, is due to the properties of the mapping between the
degenerated minimums of the potential, with the space, saying better, with its boundaries,
that in this case it is a discrete set.

Kink solitons appear when the potential supports degenerated absolute vacua in ϕ = κ3 =
2A+1

3 , when A > 4. So, the boundary conditions for this case, are

ϕ(ζ = −∞) = −κ3, ϕ(ζ = ∞) = κ3.

The kink solution has the following form

ϕk =
√

A − 4√
3

eiθ sinh[2√
a(y − y0)]√

1 + A−4
2A+1 cosh2[2√

a(y − y0)]
. (23)

For antikink, as usual, we can take the inverse signs, so when x → +∞ , the field will ap-
proach the value −κ3. Calculating the topological charge of this solution we obtain Qk = 1.
For the antikink, we have Qant = −1. In this case, the regular solutions with finite energy
are divided in 4 topological sectors. The sectors with finite energy can be characterized by
means of the following pairs of indices (−κ3, κ3), (κ3,−κ3), (−κ3,−κ3) and (κ3, κ3) that
correspond to the values of the field at infinities i.e. for ϕ(x = −∞), ϕ(x = +∞). The
kink, antikink and trivial solutions ϕ(x) = ±κ3 are the members of the 4 sectors.

Using (23) and (10) for the displacement ρ(ζ, τ ) we obtain the following expression

ρ(ζ, τ ) = mβD

RM

(
sinh2

[
2
√

a(y − y0)
]

α3 + α4 cosh2
[
2
√

a(y − y0)
]
)

, (24)
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Fig. 4 The evolution of the
displacements shows typical
characteristic of “crowd” soliton
solution. For a qualitative
representation of the solution, we
take the values
α4 = 1, α3 = 3, v = −1.2.
Apparently, this picture
represents “classical bubble”
solitons but inside the perturbed
region the displacements reduce
their values forming the
crowdons (24)

with

α3 = 3G

A − 4
+ κ, α4 = 3G

2A + 1
− κ,

and κ is defined in (22).
Considering positive values for αi when the boundaries values of displacements are fixed,

there is a possibility of emergence of crowdons that will propagate along the chain. The dis-
placements show the typical picture of “classical” bubble solitons. This bubble in the mole-
cular chains context is not a dip in the background. On the contrary, this solutions represent
the wave agglomeration of molecular units traveling along the chain. So, along the molec-
ular chain the distribution of excitations evolves like a kink soliton while its corresponding
displacement evolves like typical crowd soliton solutions, see Fig. 4.

4.3 Stability and Self-Localizations

Next, we can use some results concerning the possibility of stabilizations of those types
of solitons we have found in the Sect 4.1 for those distribution of excitations with non-
topological charges. We will follow the findings of the paper [15].

As it is well known, our system is closely related to the phi-six theory, that shows several
important behavior in nuclear hydrodynamics, ferromagnetism, phase transitions and other
branches of physics and natural sciences [11]. The equation of motion that we will analyze
in the context of self localization is (13) obtained above.

The main ideas of the approach developed in [11] and [15] could be summarized as fol-
lows: This method in some sense is similar to Lyapunov functional approach for analyzing
stability problems. For the general multidimensional case of spherical or cylindrical sym-
metry the dynamical system associated with the solitons NSE is:

iψt + ψrr + D − 1

r
ψr − dU(�)

d�
ψ = 0, (25)

where � ≡ ψ∗ψ , the dimension of the space is D and with suitable change of parameters
we use the potential part of the energy as

U (�) = U(�) = � + 2A� − (2 + A)�2 + �3,
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with

A = −2 − 3

4α
(1 + √

1 + 4α ),

and α is defined by (15). For our molecular system, (25) is the same equation (18) with
D = 1 [12]. The constant solutions of (18) at A = − 1

2 undergoes a supercritical bifurcation.
For analyzing the self-localizations of soliton structures we will evaluate the behavior of

the following functional B(t)

B(t) ≡ π2D−1
∫

�∗�rD+1dr = 〈r2〉N ≥ 0, (26)

where N denotes the “number of particles” integral of motions. The magnitude B(t) rep-
resents in some sense the width of the soliton solution obtained in this model. As it can be
seen from (26) the functional B(t) is proportional to the expectation value of the square of
the position. From here this magnitude is proportional to the width of the soliton solution.
For the second derivative of this magnitude we obtain

d2B(t)

dt2
= 2D−1π

{
8
∫

|ψr |2 dr + 4D
[∫ (

dU

d�
� − U

)
dr

]}
. (27)

As we are concerned with solitons in one dimensional case for the molecular system,
finally making D = 1, and evaluating the conditions under self-localization of soliton struc-
tures we finally obtain that following conditions [15]

If D = 1,
δB̈

δV
< 0, for A < 2, (28)

where V denotes the “volume” of the soliton structure. Now let us calculate the possible
values of the parameters for obtaining self localized solutions. We make α = −� and from
the condition (28) we obtain the inequality

1

�

(
1 + √

1 − 4�
)

<
16

3
(29)

with � = λγ

2βD
. As we can see from the relation (29) for all values of � < 0, the self-

localization is possible i.e. when the parameters satisfy this relation λγ

2βD
< 0. In the case

of positive region of the axis �, we can conjecture that self-localizations would occur when

0.2345 ≤ λγ

2βD
≤ 0.25. (30)

That means, we should try to find stable soliton like solutions within this sector that could
determine the possible values of the relevant parameters in real experiments.

5 Conclusions

We have taken into consideration in some sense an improved Davydov‘s model, and obtained
a nonlinear evolution equation for the displacement that in mutual coordination with the
excitation generate nontopological and topological solitons.
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When the molecular system evolves, it is of course interesting to know which types of
structures it could support during its evolution when its dynamic is modeled by the cubic
quintic nonlinear Schrödinger equation. When the boundary condition is of the trivial one,
we obtained a typical well known “bell” soliton that represents the separation of the molec-
ular units inside the perturbations. Let us make some comments about the physical meaning
of the solution obtained when we considered the condensate type of boundary conditions. In
this specific case, the molecular model subjected to both “condensate boundary conditions”,
in both directions, the displacements ρ acquires a constant value. This means that due to
multiple internal or external factors that affects the molecular system, the displacement far
from the perturbed region acquires certain values that in some sense could be considered
as established during the process of the existence. In the case, when bubble like solutions
appear as natural excitations, displacements around the central part of the perturbed region
could be of two types: the first one corresponds to the crowd solutions, that means we have
an agglomeration of units that compound the lattice i.e. a “crowdon”. This agglomeration
travels along the chain with velocity vs less than that of the sound. The second solution for
displacements is the “soliton on the step” and travels faster than sound. It represents the
increasing of distance between elemental units inside the perturbed region of the molecu-
lar chain. For the case, when the excitations reveal the typical profile of kink solutions, as
we can see from (24), the displacements apparently evolve like “classical bubble” solitons
but they represent the crowdons again, i.e. the agglomeration of units along the molecular
chain. According to the stability analysis, we also conjecture that it is possible to obtain sta-
ble solitons inside the narrow segment in the parametric domain determined by (30). Finally,
it should be interesting to check in more realistic models, the behaviors of these structures
after the inclusion of ple, dissipation term to describe the effects from water molecules sur-
rounding the molecular system.
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