Índice general

Lis	sta de	e símbolos xv	II	
Ín	dice d	le figuras X	IX	
Ín	dice d	le tablas X	XI	
1.	Intro	oducción		
	1.1.	Motivación	1	
	1.2.	Objetivos	2	
		1.2.1. Objetivo general	2	
		1.2.2. Objetivos específicos	2	
	1.3.	Planteamiento del problema	3	
	1.4.	Hipótesis	3	
	1.5.	Aportaciones	4	
	1.6.	Limites y alcance de la tesis	4	
	1.7.	Organización de la tesis	4	
2.	Esta	do del Arte	7	
	2.1.	Antecedentes y desarrollo de las pinzas ópticas	7	
		2.1.1. Descripción general	8	
		2.1.2. Composición básica de una pinza óptica	10	
		2.1.3. Aplicaciones	10	
	2.2.	Fundamentos teóricos	13	
		2.2.1. Teoría de Lyapunov	13	
		2.2.2. Platitud diferencial	18	
3.	Físic	ca de la pinza óptica	21	
	3.1.	Fuerzas ópticas	21	
		3.1.1. Origen de las fuerzas de captura óptica	22	

	3.2.	Model	os teóricos	24
		3.2.1.	Modelo de la óptica de rayos o geométrica	25
		3.2.2.	Modelo de campo electromagnético	25
	3.3.	Model	o de la trampa óptica	25
		3.3.1.	Modelos elementales	25
		3.3.2.	Modelo base	27
4.	Con	trol mee	liante platitud diferencial	31
	4.1.	Introdu	ıcción	31
	4.2.	Model	o dinámico de la pinza óptica	32
4.3. Estrategia de control retroalimentado		gia de control retroalimentado	34	
		4.3.1.	Enfoque de asignación de polos basado en platitud di- ferencial	35
	ΔΔ	Result	ados de la simulación	37
	т.т.	4 4 1	Seguimiento de una línea recta	37
		442	Seguimiento una travectoria elíptica	38
		4.4.3	Manipulación desde una posición inicial en reposo a	50
			una posición final en reposo	38
5.	Con	trol en j	presencia de ruido térmico	41
	5.1.	Introdu	ucción	41
	5.2.	Model	o dinámico no lineal de la pinza óptica	42
	5.3.	Estabil	ización del sistema de la pinza óptica	44
		5.3.1.	Estrategia de control donde el coeficiente de amortigua- miento es conocido	44
		5.3.2.	Estrategia de control donde el coeficiente de amortigua-	
			miento es desconocido	46
	5.4.	Simula	ciones numéricas	49
		5.4.1.	Simulación del primer enfoque	49
		5.4.2.	Simulación del segundo enfoque	50
		5.4.3.	Estabilización en presencia de ruido térmico	52
6.	Conclusiones			57
	6.1.	Conclu	siones del Capítulo 4	57
	6.2.	Conclu	siones del Capítulo 5	58
	6.3. Conclusión			58

А.	Demostra	aciones, pruebas y comentarios	59
	A.1. Der	nostración del Lema 4.3.1	59
	A.2. Der	nostración de la Proposición 4.3.1	60
	A.3. Prue	eba de estabilidad de los sistemas (A.6) y (A.7)	61
	A.4. Imp	elementación del método Newton-Raphson	61
	A.5. Con	sideraciones del método Newton-Raphson	62
	A.6. Der	nostración del Lema 5.3.1	62
B.	Publicaci	iones y congresos	65
	B.1. Pub	licaciones en libros	65
	B.2. Pub	licaciones en revistas	65
	B.3. Part	cicipación en congresos	66
	B.4. Part	ticipación en simposios	66
C.	Distinció	n derivada del proyecto de investigación	67
	C.1. Dist	tinción del Instituto Politécnico Nacional	67
Gl	Glosario		
Bil	Bibliografía		

Lista de símbolos

- a, b Parámetros concernientes a la dimensión de la cintura del rayo.
 - *d* Diámetro de la partícula.
- e_x Error de seguimiento para la componente x.
- e_y Error de seguimiento para la componente y.
- E_p Energía potencial.
- E_c Energía cinética.
- k_1, k_2 Ganancias.
 - k_B Constante de Boltzman = 1.38×10^{-23} J/K.
 - *m* Masa de la partícula.
 - p_0 Profundidad del pozo.
 - r_T Radio de la trampa óptica.
 - T Temperatura absoluta.
 - x Posición en el eje x de la partícula.
 - y Posición en el eje y de la partícula.
 - β Coeficiente de amortiguamiento.
 - η Señal de ruido blanco.
 - λ Longitud de onda.
- $det(\cdot)$ Determinante de una matriz.
- $\sigma_M(\cdot)$ Función de saturación.
- $sign(\cdot)$ Función signo.
 - $V(\cdot)$ Función candidata de Lyapunov.
 - □ Designación para el fin de las pruebas.
 - $f'(\cdot)$ Primera derivada de la función f.
 - \forall Para todo.
 - \in Pertenece a.
 - \subset Subconjunto de.
 - \rightarrow Tiende a.
 - \Rightarrow Implica.
 - ||x|| Norma de x.

LISTA DE SÍMBOLOS

- |a| Valor absoluto de a.
- máx Máximo.

exp, e = 2.71828.

Superíndices

- [·] Primera derivada.
- " Segunda derivada.

Acrónimos

ADN Ácido desoxirribonucleico.

- CL Respuesta en lazo cerrado (CLose loop).
- OP Respuesta en lazo abierto (OPen loop).
- PO Pinza óptica.
- SEM Microscopio electrónico de barrido.
- TEM Microscopio electrónico de transmisión.

Índice de figuras

1.1.	TEM (a, b, y c) imágenes de nanopartículas de sílice mesoporo- so con un diámetro exterior promedio de: (a) 20nm, (b) 45nm, y (c) 80nm. SEM (d) la imagen que corresponde a (b). Las in- serciones tienen un gran aumento de las partículas de sílice me-	
	soporoso.	6
2.1.	Una pinza óptica es un dispositivo capaz de manipular micro o nanopartículas con gran precisión y sin infringirles daño	9
2.2.	Composición básica de una pinza óptica	11
2.3.	En los extremos de una molécula de ADN son adheridas esferas de látex las cuales son atrapadas y manipuladas usando pinzas	
	ópticas.	13
3.1.	Esquema general de una pinza óptica.	21
3.2.	Fuerzas involucradas en la captura óptica	22
3.3.	Levitación óptica	24
3.4.	La pinza óptica se puede modelar como un resorte	26
4.1.	Diagrama de bloques para el control de la pinza óptica para la manipulación de partículas de escala nano y micrométrica	32
4.2.	Seguimiento retroalimentado de una línea recta	38
4.3.	Controlador retroalimentado para el seguimiento de una trayec- toria elíptica.	39
4.4.	Respuesta de lazo cerrado del controlador retroalimentado para la manipulación de posición.	40

5.1.	Respuesta de la primera estrategia de control del sistema de la	
	PO en lazo cerrado. Por comparación, la respuesta en lazo abier-	
	to correspondiente es mostrada como una línea punteada. Como	
	se esperaba, la respuesta en lazo cerrado supera la respuesta en	
	lazo abierto.	51
5.2.	Respuesta de la segunda estrategia de control del sistema de la	
	PO en lazo cerrado en una tarea de estabilización. Como po-	
	demos ver es sistema efectivamente alcanza la posición final,	
	$(x_f = 0, y_f = 0)$	52
5.3.	Respuesta en lazo cerrado del sistema de la PO para la primera	
	estrategia de control con la correspondiente respuesta en lazo	
	abierto (línea punteada), donde el sistema de la PO es sujeto a	
	fuerzas térmicas externas.	54
5.4.	Respuesta en lazo cerrado del sistema de la PO para el segundo	
	controlador en comparación con la correspondiente respuesta en	
	lazo abierto (línea punteada), donde las fuerzas térmicas exter-	
	nas se presentan en el modelo.	54
5.5.	Comparación de la respuesta en lazo cerrado de las dos estrate-	
	gias de control para el cambio de posición de la PO en presencia	
	de ruido térmico.	55

Índice de tablas

4.1.	Transformaciones escalares.	33	
4.2.	Parámetros para la simulación del experimento de manipulación		
	desde una posición inicial a una final en reposo usando el enfo- que de <i>platitud diferencial</i>		
5.1.	Parámetros del sistema físico	50	