

Andrew Dupont

Practical Prototype and
script.aculo.us

Practical Prototype and script.aculo.us

Copyright © 2008 by Andrew Dupont

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-919-8

ISBN-10 (pbk): 1-59059-919-5

ISBN-13 (electronic): 978-1-4302-0502-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Clay Andres, Tony Campbell, Jason Gilmore, Chris Mills
Technical Reviewer: Aaron Gustafson
Editorial Board: Clay Andres, Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell,

Jonathan Gennick, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Frank Pohlmann,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Damon Larson
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Erin Poe
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ Prototype
■CHAPTER 1 What You Should Know About Prototype, JavaScript,

and the DOM . 3

■CHAPTER 2 Prototype Basics . 17

■CHAPTER 3 Collections (Or, Never Write a for Loop Again) 31

■CHAPTER 4 Ajax: Advanced Client/Server Communication 49

■CHAPTER 5 Events . 91

■CHAPTER 6 Working with the DOM . 113

■CHAPTER 7 Advanced JavaScript: Functional Programming
and Class-Based OOP . 139

■CHAPTER 8 Other Helpful Things: Useful Methods on Built-Ins 167

PART 2 ■ ■ ■ script.aculo.us
■CHAPTER 9 What You Should Know About DHTML and script.aculo.us 193

■CHAPTER 10 Introduction to script.aculo.us Effects . 215

■CHAPTER 11 Enabling Draggables, Droppables, and Sortables 257

■CHAPTER 12 Advanced Controls: Autocompleters, In-Place Editors,
and Sliders . 277

■CHAPTER 13 Prototype As a Platform . 297

■INDEX . 315

iii

Contents

About the Author . xiii

About the Technical Reviewer . xv

Acknowledgments . xvii

Introduction . xix

PART 1 ■ ■ ■ Prototype

■CHAPTER 1 What You Should Know About Prototype,
JavaScript, and the DOM . 3

About JavaScript . 3

Everything Is an Object . 4

About the DOM. 8

It’s Hard to Write Multiplatform JavaScript . 8

It’s Hard to Debug Multiplatform JavaScript . 9

About This Book. 9

Firefox Is Used for Nearly All Examples . 9

First Theory, Then Practice . 10

About Prototype . 10

Prototype’s Philosophy . 10

Prototype’s Purpose and Scope . 11

Prototype’s Web Site . 11

Contributing to Prototype . 11

Getting Started with Prototype. 12

Summary . 16

v

■CHAPTER 2 Prototype Basics . 17

Getting Started. 17

The $ Function . 18

$ Can Take Either Strings or Nodes . 19

$ Can Take Multiple Arguments . 19

$ Enhances DOM Nodes with Useful Stuff. 20

Object.extend: Painless Object Merging . 21

$A: Coercing Collections into Arrays . 24

The arguments Variable . 25

DOM NodeLists. 25

$$: Complex Node Queries . 26

Summary. 29

■CHAPTER 3 Collections (Or, Never Write a for Loop Again). 31

The Traditional for Loop . 31

Functional Programming . 32

Prototype’s Enumerable Object. 34

Using Enumerable#each. 34

Finding Needles in Haystacks: detect, select, reject, and partition 35

Using Enumerable#detect . 35

Using Enumerable#select. 36

Using Enumerable#reject . 36

Using Enumerable#partition. 36

Sorting Collections: min, max, and sortBy . 36

Using Enumerable#min and #max . 37

Using Enumerable#sortBy . 37

Advanced Enumeration: map, inject, invoke, and pluck. 38

Using Enumerable#map and Enumerable#inject 38

Using Enumerable#pluck and Enumerable#invoke 40

Other Collections That Use Enumerable . 41

Hash . 41

ObjectRange . 45

Turning Collections into Arrays . 46

Using Enumerable in Your Own Collections . 46

Summary . 48

■CONTENTSvi

■CHAPTER 4 Ajax: Advanced Client/Server Communication. 49

Ajax Rocks . 49

Ajax Sucks . 50

Prototype’s Ajax Object. 50

Ajax.Request. 52

Ajax.Updater . 56

Ajax.PeriodicalUpdater . 60

Controlling the Polling . 60

Advanced Examples: Working with Dynamic Content. 62

Example 1: The Breakfast Log. 62

Example 2: Fantasy Football . 74

Summary. 89

■CHAPTER 5 Events. 91

State of the Browser (Or, How We Got Here) . 91

Pre-DOM, Part 1. 91

Pre-DOM, Part 2. 92

Events: The Crash Course . 94

Using Event#stopPropagation, Event#preventDefault,

and Event#stop . 99

A Further Example . 101

Events and Forms . 102

Client-Side Validation . 102

Cleaning It Up . 107

Custom Events . 108

The First Custom Event. 109

Broadcasting Scores . 109

Listening for Scores. 110

Summary. 111

■CHAPTER 6 Working with the DOM. 113

About the DOM API . 113

Node Genealogy. 113

■CONTENTS vii

■CONTENTSviii

Prototype’s DOM Extensions . 115

Modifying. 115

Traversing and Collecting. 128

Creating Nodes. 132

Putting It Together. 135

Summary. 137

■CHAPTER 7 Advanced JavaScript: Functional Programming
and Class-Based OOP . 139

Object-Oriented JavaScript Programming with Prototype 139

Why OOP? . 139

Remedial OOP: Namespacing . 141

Advanced OOP: Using Classes. 142

Usage: DOM Behavior Pattern . 148

Functional Programming . 158

Functions Can Have Their Own Methods. 159

Using Function#curry . 159

Using Function#delay and Function#defer . 161

Using Function#bind . 164

Summary. 165

■CHAPTER 8 Other Helpful Things: Useful Methods on Built-Ins 167

Using String Methods . 167

String Utility Methods . 167

The Template Class and String Interpolation 176

Using JSON. 180

What Does JSON Look Like? . 180

Why JSON? . 181

Serializing with Object.toJSON . 181

Unserializing with String#evalJSON . 182

Overriding the Default Serialization . 183

Using Object Methods. 184

Type Sniffing with Object.isX . 184

Using Array Methods. 188

The reverse and clear Methods. 188

The uniq and without Methods . 189

Summary. 189

PART 2 ■ ■ ■ script.aculo.us

■CHAPTER 9 What You Should Know About DHTML and
script.aculo.us . 193

Introducing the CSS Box Model. 193

Visualizing with Block-Level Elements. 194

Formatting Blocks with Inline Elements. 195

Thinking Outside the Box: Margins, Padding, and Borders 196

DHTML Properties . 198

CSS Positioning (Static, Absolute, and Relative). 199

Positioning with Offset Properties. 208

Introducing script.aculo.us. 208

Similarities to Prototype . 208

The script.aculo.us Web Site . 209

Contributing to script.aculo.us. 209

Getting Started with script.aculo.us . 209

Loading script.aculo.us on a Page . 210

Summary. 213

■CHAPTER 10 Introduction to script.aculo.us Effects 215

What Are Effects? . 215

Why Effects?. 215

When Effects Are Good . 216

The Basics of Effects . 217

script.aculo.us Effects . 220

Using Effect.Morph . 221

Other Core Effects . 228

Introduction to Combination Effects . 236

Effects Are Asynchronous. 240

■CONTENTS ix

Putting It All Together . 244

Writing the Markup . 244

Adding Styles . 247

Bringing in Help . 248

Bells and Whistles . 249

Summary. 255

■CHAPTER 11 Enabling Draggables, Droppables, and Sortables 257

Exploring Draggables . 257

Making Draggables . 260

Other Draggable Options . 262

Exploring Droppables . 264

Making Droppables . 264

Using Callbacks for Droppables . 265

Drag-and-Drop: Useful or Tedious? . 269

Exploring Sortables . 270

Making Sortables . 270

Sortable Options. 272

Summary. 275

■CHAPTER 12 Advanced Controls: Autocompleters,
In-Place Editors, and Sliders . 277

Adding Autocomplete Functionality . 277

When to Use Autocompleter. 277

Use Case: Suggesting Players . 278

Adding In-Place Editing Functionality. 287

Using Ajax.InPlaceEditor . 288

Adding Sliders . 293

Creating a Slider . 293

Summary . 296

■CONTENTSx

■CHAPTER 13 Prototype As a Platform . 297

Using Code Patterns . 297

Staying DRY with Inheritance and Mixins . 297

Solving Browser Compatibility Problems: To Sniff or Not to Sniff?. 305

Capabilities Support . 306

Quirks and Other Non-Features. 307

If You Must . 309

Holding Up Your End of the Bargain . 310

Making and Sharing a Library . 310

Make Your Code Abstract . 311

Do One Thing Well (or Else Go Modular) . 311

Embrace Convention . 311

Make Things Configurable . 311

Add Hooks . 312

Summary. 314

■INDEX . 315

■CONTENTS xi

About the Author

■ANDREW DUPONT is a UI developer living and working in Austin, Texas. He is a member
of the core development team for Prototype, the popular JavaScript toolkit. He has con-
tributed to Prototype in many different ways: writing code and documentation, offering
support, and evangelizing to colleagues. In addition, Andrew has spoken about JavaScript
at South by Southwest Interactive and other tech industry conferences.

Andrew received liberal arts and journalism degrees from the University of Texas at
Austin. He occasionally attended classes, but much preferred the time between classes,
during which he experimented with web design and learned about the emerging web
standards movement.

xiii

About the Technical Reviewer

After getting hooked on the Web in 1996 and spending several years pushing pixels and
bits for the likes of IBM and Konica Minolta, AARON GUSTAFSON founded his own web
consultancy: Easy! Designs. Aaron is a member of the Web Standards Project (WaSP)
and the Guild of Accessible Web Designers (GAWDS). He also serves as a technical edi-
tor for A List Apart, is a contributing writer for Digital Web Magazine and MSDN, and
has built a small library of writing and editing credits in the print world, including con-
tributions to AdvancED DOM Scripting (friends of ED, 2007), Accelerated DOM Script-
ing with Ajax, APIs, and Libraries (Apress, 2007), and Web Design in a Nutshell, Third
Edition (O’Reilly, 2006). Aaron has graced the stage at numerous conferences, including
An Event Apart, COMDEX, South by Southwest, the Ajax Experience, and Web Direc-
tions, and he is frequently called on to provide web standards training in both the pub-
lic and private sectors.

He blogs at http://easy-reader.net.

xv

Acknowledgments

A number of forces conspired to help me finish this book, despite my best efforts not
to. Aaron Gustafson was a great help as technical editor and gave thoughtful code cri-
tiques. The patient, stoic folks at Apress gave me constructive encouragement through-
out the slow, arduous process. Christophe Porteneuve, having written a book on the
same subject, gave me tips on several occasions.

I am also grateful to Sam Stephenson, both for creating Prototype and for inviting
me to be a part of Prototype Core. Other team members gave critical moral support:
Thomas Fuchs, Tobie Langel, Mislav Marohnic, and Justin Palmer.

Objects, as well as people, were instrumental in the completion of this book:
a MacBook Pro, TextMate, Parallels Desktop, and sugar-free Red Bull. I thank them for
their support.

xvii

Introduction

I wrote this book for people who have some experience with JavaScript and no experi-
ence with Prototype. I mean for “experience with JavaScript” to cast a wide net: you
may love JavaScript, or hate it, or love the language but hate browser scripting, or love
both, or hate both.

Because the book assumes some JavaScript experience, it does not cover the most
basic parts of the JavaScript language itself, nor does it cover the DOM. There are
many books that can get you started on that path, but the best free resource is Quirks
Mode (www.quirksmode.org), the authoritative and exhaustive reference created by
Peter-Paul Koch.

This book is also meant to appeal to those who have some experience with Proto-
type but don’t consider themselves experts. Many have worked with Prototype indirectly
through Ruby on Rails or a similar framework. Many have used a third-party script that
depended on Prototype, but treated the code as a black box.

In the first chapter of the book, we’ll look at some aspects of the JavaScript language
that novice users may not know about. Feel free to spend as much time on Chapter 1 as
you need, since it’s crucial that you understand these concepts if you want to use Proto-
type effectively.

The screenshots in this book show Firefox running on Windows XP, but the code
examples are designed to work in all major browsers and on all major platforms. Proto-
type boasts official support for Firefox (versions 1.5 and above), Internet Explorer (6 and
above), Safari (2 and above), and Opera (9.2 and above).

I welcome your feedback, observations, and ridicule. I can be reached at
book@andrewdupont.net.

xix

Prototype

P A R T 1

What You Should Know
About Prototype, JavaScript,
and the DOM

Before jumping into the deep end, you should learn about where Prototype comes
from—its purpose, origin, and philosophy. We’ll also discuss what differentiates Proto-
type from other libraries.

First, though, we need to make sure we’re on the same page. This book assumes
a basic familiarity with JavaScript and the DOM, but that’s a vague prerequisite, and
JavaScript is a language both broad and deep.

In case you need a refresher, here’s a crash course in topics that will be built upon in
the chapters to follow.

About JavaScript
George Orwell once wrote that writing JavaScript “is a horrible, exhausting struggle, like
a long bout of some painful illness. One would never undertake such a thing if one were
not driven on by some demon whom one can neither resist nor understand.”

OK, that’s a lie. He actually said that about writing books. Keep in mind, though, that
JavaScript had not yet been created in Orwell’s time, and that a modern-day Orwell might
have eschewed prose in favor of programming, a far higher artistic pursuit.

I feel this way about JavaScript, at the very least. It’s a brilliant language with very
public flaws. It was created hastily and standardized prematurely. The JavaScript envi-
ronments within browsers vary wildly in spec compliance, language features, and speed.
It’s a language whose ideals are compromised by the imperfect state of today’s Web.

We’ll talk about ways to mitigate these flaws. But first let’s look at some of the things
that make JavaScript brilliant.

3

C H A P T E R 1

Everything Is an Object

The sooner you embrace this concept, the more quickly you’ll understand Prototype:
everything in JavaScript is an object. This has several different meanings and several
different implications, which are outlined in the following subsections.

All Data Types Have Instance Methods

Like other languages that embrace object orientation, every object can have instance
methods. This allows for flexible syntax and makes code easier to read.

["foo", "bar", "baz"].join(' ');

//=> "foo bar baz"

"foo bar baz".split(' ');

//-> ["foo", "bar", "baz"]

It also ensures that functions don’t clutter up the global namespace. What’s the use
of a generic join function, for instance, if it works only on arrays? Or a generic split that
works only on strings?

All Data Types Inherit from Object

JavaScript boasts half a dozen native data types: Object, String, Array, RegExp (for regular
expressions), Boolean (true or false), and Date.

I place Object first because it’s the root data type. When I say that everything in
JavaScript is an object, I also mean that everything in JavaScript is an Object. Confused?
Let me explain.

Object can be thought of as a blank data type, the empty canvas that all other types
start with. There is nothing Object does that another type can’t do, but then that’s the
point: Objects can bend to your will.

But back to the main point: Everything in JavaScript is an Object. We can verify this
with the instanceof operator on some core JavaScript data types:

Array instanceof Object;

//-> true

RegExp instanceof Object;

//-> true

Date instanceof Object;

//-> true

String instanceof Object;

//-> true

Function instanceof Object;

//-> true

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM4

These are the constructors for data types. But instances of these data types also
inherit from Object:

['foo', 'bar'] instanceof Object; // (Array literal)

//-> true

/.*/ instanceof Object; // (RegExp literal)

//-> true

new Date instanceof Object;

//-> true

But here’s where it gets tricky. The typical “primitives” in a programming language—
strings, numbers, and Booleans—are both primitives and objects in JavaScript. They’re
treated as one or the other depending on context.

"foo" instanceof Object; //-> false

new String instanceof Object; //-> true

5 instanceof Object; //-> false

new Number(5) instanceof Object; //-> true

true instanceof Object; //-> false

new Boolean(true) instanceof Object; //-> true

This is confusing at first, but ends up being quite helpful. It allows these types to
behave like primitives when they need to (they’re passed by value, instead of by refer-
ence), but they can still reap the benefits of JavaScript’s object-oriented functionality
(instance methods, local scope, etc.).

All Objects Have Prototypes

Although JavaScript is most certainly object oriented, it’s likely not the sort of object ori-
entation you’re used to. Strictly speaking, there is no concept of a “class” in JavaScript—
instead of outlining an abstract definition of an object, you can simply make a copy of
an existing object. Remember what we just found out:

Array instanceof Object; //-> true

new Array instanceof Object; //-> true

There is no technical distinction between Array and instances of Array. You can do
the same sorts of things to either one.

Because there are no classes in JavaScript, inheritance is based on the concept of
prototypes. Each object has its own prototype property, which serves as a template for
any new instances (copies) made from that object.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 5

This behavior isn’t limited to user-defined objects—it can be applied to the built-ins
as well. It’s quite simple to add instance methods to arrays, strings, or any other native
types:

Array.prototype.double = function() {

var newArray = [];

// inside this function, "this" refers to the array

for (var i = 0, length = this.length; i < length; i++) {

newArray.push(this[i]);

newArray.push(this[i]);

}

return newArray;

};

var exampleArray = new Array(1, 2, 3);

// inherits all the properties of Array.prototype

exampleArray.double();

//-> [1, 1, 2, 2, 3, 3]

Since exampleArray is an instance of Array, it looks to Array.prototype for inheritance.
So instead of defining a double function in the global namespace, we can define it as an
instance method on arrays. This is a big win. It makes user-written code mesh better with
native code, it reduces verbosity and the risk of naming collisions, and it lets the code
demonstrate its meaning far more plainly.

Those of you more at home with class-based inheritance need not bother with any
of this: Prototype includes a more conventional system of OOP that allows for the distinc-
tion between classes and instances—and makes dealing with prototypes unnecessary, if
that’s your bag. Prototypal inheritance isn’t something you need to be afraid of, but you
don’t need to invite it over for a beer, either.

Any Object Can Have Arbitrary Properties Set

All objects are mutable in JavaScript: they can be changed, augmented, and pruned at
any time. You can assign any property to an object, even one that already exists.

var object = new Object();

object.foo = "foo";

object.bar = "bar";

for (var i in object) console.log(i);

//-> foo

//-> bar

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM6

// Numbers have a native "toString" method

var number = 5;

number.toString(); //-> "5"

Number.prototype.toString = function() {

return String(this + 1);

};

number.toString(); //-> "6"

That last example should frighten you—yes, JavaScript’s dynamism lets you do vacu-
ously stupid things. Remember that you’re working in a shared environment—don’t do
things that will wantonly break other scripts on the page.

ABOUT CONSOLE.LOG

Many of the code examples in this book will use console.log, a function for writing to the browser
console. Supported in Firefox (through the excellent Firebug extension) and Safari, it’s far less invasive
than the popular alert function—there are no pop-up dialogs to dismiss. Think of it as JavaScript’s
print statement. You won’t ever use it in production code, but it’s handy for learning and debugging.

Even Functions Are First-Class Objects

JavaScript functions are not the downtrodden plebeians of PHP or Java. They enjoy full
citizenship. A function can be assigned to a variable, can be passed as an argument in
another function, and can be returned from a function. (You can have a function that
accepts a function as an argument and returns a function! Madness!)

You’re probably familiar with this syntax for defining functions:

function lambda() {

return "foo";

}

But here’s a lesser-used syntax that’s nearly equivalent:

var lambda = function() {

return "foo";

};

In both examples, you’re describing a function and assigning it a name of lambda. In
both examples, the function can be called by writing lambda(). And in both examples, you
can use lambda as flexibly as you’d use any other data type.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 7

The second example uses a function literal (or anonymous function): a special,
flexible syntax for creating a new function. Just like strings (quotation marks), arrays
(brackets), objects (braces), and regular expressions (forward slashes), functions have a
literal notation. (Notice also how the second example ends with a semicolon after the
closing brace, since the braces aren’t a control structure like they are in the first example.)

Prototype uses function literals all over the place. You’ll see them passed as argu-
ments into methods for working with collections. You’ll see them used as callbacks for
Ajax requests. You’ll see them used to define methods on objects.

About the DOM
The Document Object Model (DOM), an interaction model defined by an ambitious and
far-reaching set of W3C specifications, lays out the ideal set of objects, methods, and
properties to change an HTML or XML document programmatically. The segmentation
of the DOM into many different “levels” and “modules” means that the browsers you
write code for will have wildly varying levels of DOM support.

There are four major implementations of JavaScript and the DOM: Mozilla’s Spider-
Monkey, Internet Explorer’s JScript, Opera’s linear_b, and Safari’s JavaScriptCore. While
each has its strengths and weaknesses, you will discover very quickly that they are not
created equal.

It’s Hard to Write Multiplatform JavaScript

Most developers have the luxury of writing code toward one target: a compiler or
canonical interpreter that implements the given language perfectly. Writing JavaScript
for modern browsers will make you realize how much this luxury is taken for granted.
It can be an excruciating, wailing-and-teeth-grinding experience.

Most of these pains will come not from the language itself, but from what other lan-
guages would call the standard library—the APIs we have that connect JavaScript to a
web environment.

One nagging pain, for instance, comes from the different levels of DOM support.
Let’s call these “capabilities.” They’re things that some browsers can do, but that others
cannot.

A sharper, more chronic pain comes from outright incompatibilities between
browsers. The most notable is between Internet Explorer and all other browsers. In all
modern versions of Internet Explorer (currently versions 6 and 7), DOM support is mini-
mal; the gaps are filled in by Internet Explorer’s legacy API, which predates the DOM.

The most agonizing pain, akin to a daily kick in the stomach, comes from what I’ll
call “quirks.” Quirks are a diplomatic term for bugs: misimplementations of the DOM
spec, memory leaks, and other irrational behavior. These are the largest obstacles to

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM8

developer happiness; they’re hard to diagnose and hard to work around. They’ll leave you
staring at your monitor past midnight, bleary eyed and out of ideas.

JavaScript frameworks exist to smooth out these cracks. Wherever possible, Proto-
type provides a unified API that handles all the ugliness under the hood. Prototype won’t
solve all your problems, but it can definitely make the process of writing JavaScript far
less unpleasant.

It’s Hard to Debug Multiplatform JavaScript

The tools that server-side developers have come to rely on—loggers, debuggers, and the
like—are not readily available on the client side. Among the major browsers, you’ll find
that some are far more helpful than others when you need to fix problems in your code.

The best developer tool for JavaScript authors is Firebug, an extension for Mozilla
Firefox. Firebug is a dream come true: it provides a logger, a debugger, a DOM inspector,
a CSS editor, a rendered source tree, and a code profiler. It is the single biggest reason
why Firefox is the browser of choice for JavaScript development.

Of course, you’ll also need to test in Internet Explorer, Opera, and Safari. But you’ll
likely find it easiest to use Firefox while you write your code. When you get it working,
you can test in other browsers to find out if you need to make changes.

About This Book
You won’t need a legend or translation table to read this book. But there are a few things
you should know up front so that you can enjoy this book to the fullest.

Firefox Is Used for Nearly All Examples

The things that make Firefox the best browser for client-side web development also
make it the best browser for an interactive teaching process. In this book, we’ll spend
a lot of time in Firefox.

One major reason is Firebug (www.getfirebug.com/), the definitive Firefox exten-
sion for web developers. You’ll come to love how the Firebug console speeds up
trial-and-error development and lets you learn by experimentation. But another rea-
son is the stability of SpiderMonkey (Mozilla’s JavaScript engine) and its broad
support for the DOM.

Of course, this book is also about writing JavaScript in the real world, so we’ll also be
testing our examples in other browsers. But we’ll be following the approach outlined ear-
lier: develop in Firefox, and then make it work everywhere else.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 9

First Theory, Then Practice

You’ll notice that the first half of the book is heavy on abstract examples, and the second
half is heavy on concrete examples. This division mirrors the division between Prototype
and script.aculo.us: the former builds a rich set of APIs, while the latter uses those APIs
to address specific UI needs.

Even so, there are a few meanderings. Each chapter of Part 1 will highlight specific
ways that Prototype can improve the code you write. Each chapter of Part 2 will give you
specific ways to apply the examples to your own web application.

About Prototype
The origins of Prototype are shrouded in mystery—like Stonehenge, the Dead Sea scrolls,
and the universe itself. Well, that may be overstating it.

Version 1.0 of Prototype was released in March of 2005. An early README file
described the framework this way:

Prototype is a JavaScript library that aims to ease development of dynamic web
applications. Its development is driven heavily by the Ruby on Rails framework, but
it can be used in any environment.

Though Prototype has evolved considerably over the last three years, this summary is
still stunningly applicable.

Prototype’s Philosophy

The first version of Prototype was very small. It contained some of the convenience
methods that Prototype has become famous for, but most of its 335 lines of code were
designed to simplify Ajax and form interaction.

Since then, its scope has widened, but its philosophy has not wavered. There is
neither a manifesto nor a mission statement, but a handful of principles guide the
project:

The principle of least surprise: Popularized by Yukihiro Matsumoto, the creator of
Ruby, it states that a language, framework, or library should always do the “least sur-
prising” thing; it should behave the way the user expects it to. Prototype is meant to
be intuitive and easy to learn.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM10

The 80 percent rule: As an informal corollary to the famous 80/20 rule, Prototype
pledges to solve the common problems that are shared by the vast majority of devel-
opers. Proposed additions to the framework need to demonstrate widespread need.
But the common 80 percent shouldn’t exclude the unique 20 percent, either—
Prototype is designed to be easily extensible and customizable.

Self-documenting code: In the README file of Prototype 1.0, Sam Stephenson states,
“Prototype is embarrassingly lacking in documentation.” In lieu of providing plain
English documentation, Sam did the next best thing: he made the code itself easy to
read and understand. These days, Prototype enjoys exhaustive documentation, both
official and unofficial. But readability, intuitive naming schemes, and cleanliness are
still virtues of Prototype’s source code.

Prototype’s Purpose and Scope

Prototype is all about the abstract rather than the concrete. It isn’t a widget toolkit, or
a graphing library, or a form validation utility—but all these things can be built atop
Prototype. Most famously, script.aculo.us (which we’ll cover in Part 2) uses Prototype
as a basis for a rich library of effects and UI controls.

Many JavaScript toolkits, script.aculo.us included, allow you to do complex things
without knowing much JavaScript. That’s not what Prototype is for. If you don’t want to
get elbow-deep in JavaScript development, you won’t like Prototype very much.

Prototype’s Web Site

You can get Prototype, learn more about it, and read current project news at Prototype’s
web site, at www.prototypejs.org/. You’ll also learn where to go if you get stuck, how to
contribute to Prototype, and who uses Prototype in the real world.

Prototype’s download page always features the latest stable version, plus instructions
on how to build a bleeding-edge version if you’re feeling particularly daring.

Contributing to Prototype

Prototype is an open source project that bears the MIT License. In other words, do what-
ever you like with the code and use it wherever you please, as long as you give credit.
“Giving credit” is done automatically—at the top of the source code is a long comment
describing the framework and its authors.

Like other open source projects, Prototype relies heavily on the developer commu-
nity. Bug reports and patches are enthusiastically welcomed. The code itself lies in the

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 11

Ruby on Rails Subversion repository; you can browse the source code and the outstand-
ing issues at http://dev.rubyonrails.org/.

Proposed additions to Prototype are discussed on the Prototype Core mailing list.
Instructions for joining this list can be found on Prototype’s web site.

Getting Started with Prototype

Prototype can be thought of as a JavaScript supplement. Most languages have a “stan-
dard library” of code that simplifies common tasks. For instance, Ruby developers can
use require 'rexml' to help with XML parsing, and Python developers can use import
gzip to enable gzip compression in their scripts.

Similarly, you can include Prototype on a web page by loading the prototype.js script
near the beginning of the file. So let’s try it out.

Creating a Page

First, create an empty folder to hold your HTML and JavaScript files. Using your favorite
text editor, create a boilerplate HTML file like so:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>Blank Page</title>

</head>

<body>

<h1>Blank Page</h1>

</body>

</html>

Not all that interesting, but it suits our needs. Save this file as index.html.

Downloading Prototype

Fire up a web browser and go to http://prototypejs.org/. Here you’ll see an overview of
the Prototype library and a prominent Download link. Click the link, and then click the
green box to get the latest version of Prototype (version 1.6.0.1 at press time). You should
see a page that looks like Figure 1-1.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM12

Figure 1-1. The download page on Prototype’s web site

Clicking the link will likely take you to a page full of JavaScript code. This is Proto-
type. You can save a copy of this file through the File menu; you can also select all the text
and paste it into an empty text file. Either way, save the file as prototype.js in the same
directory in which you placed index.html.

Including Prototype

To load Prototype into the page environment, you need to include a script tag. Add the
following line to index.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<script type="text/javascript" src="prototype.js"></script>

<title>Blank Page</title>

</head>

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 13

<body>

<h1>Blank Page</h1>

</body>

</html>

Keep a few things in mind about script tags:

• You can include JavaScript on a page directly with the script tag, but it’s usually
a better idea to place your code in a file that gets loaded onto the page with the
src attribute instead. It makes the code more portable.

• Scripts are evaluated in the order in which they occur in the page. For this reason,
any scripts you write that rely on Prototype must be included after prototype.js is
loaded. For this reason, try to ensure that prototype.js is the very first script loaded
on any page.

• We’re placing this script tag in the head of the HTML, the same place we’d put style
sheets and define other page metadata. Because the code is evaluated as soon as
it’s parsed, it’s a bad idea for scripts you include to take immediate action, since
they’d be acting on a document that’s only partially rendered. Instead, have your
scripts define functions, and then set up those functions to run on page load or as
the result of user action.

Testing It Out

Before you take a look at this page, make sure you’ve installed Mozilla Firefox and the
Firebug extension. If you haven’t, you can visit two easy-to-remember URLs: http://
getfirefox.com and http://getfirebug.com. Both tools are free, easy to install, and avail-
able on all major platforms.

Save index.html, and then open it in Firefox. (You can simply drag the file into a
browser window, if you like.) It won’t look like much, but since you’ve included Prototype
on this page, you can use it as a playground.

Click the icon at the bottom-right side of the screen; it should be a green circle with
a check box. (If it’s a gray circle, you should click it and select “Enable Firebug for local
files.”) Firebug will pop up a windowpane with several tabs. The one you’re interested in
right now is Console; it acts as a JavaScript shell, letting you run code in the context of the
current page (see Figure 1-2).

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM14

Figure 1-2. Firebug lets you run code interactively on the current page.

Let’s try a couple of statements. Type in Prototype, then press Enter (see Figure 1-3).

Figure 1-3. The Prototype object in Firebug

The Prototype library defines a global object called Prototype, which holds metadata
about the library itself. The most reliable way to determine whether the Prototype library
has been loaded into a page is to check the type of the Prototype object; if it hasn’t been
defined on the page, then the type will be undefined. A library that depends on Prototype
might do something like this:

// raise an error if Prototype isn't loaded

if (typeof Prototype === "undefined") {

throw new Error("This script relies on the Prototype JavaScript framework.");

}

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM 15

You’ll notice that one of the properties is called Version. Type in Prototype.Version
and press Enter (see Figure 1-4).

Figure 1-4. The version number of Prototype in string form

Naturally, Prototype.Version refers to the version of the library that’s been loaded
onto the page. A lot of the code we’ll be writing in this book won’t work in versions of
Prototype prior to 1.6. Many libraries, script.aculo.us among them, check this property
and raise a helpful error message if the included Prototype version is too old.

Summary
We’ve just completed a high-level overview of JavaScript, the browser environment, and
the Prototype project. Now we’re ready to jump headfirst into the code. On the other side
of this chapter break, we’ll pick back up with a quick survey of the most important Proto-
type functions and methods.

CHAPTER 1 ■ WHAT YOU SHOULD KNOW ABOUT PROTOTYPE, JAVASCRIPT, AND THE DOM16

Prototype Basics

JavaScript libraries don’t start out as libraries. They start out as “helper” scripts.
It’s possible, but impractical, to do DOM scripting without the support of a library.

Little things will start to annoy you from day one. You’ll get tired of typing out
document.getElementById, so you’ll write an alias. Then you’ll notice that Internet Explorer
and Firefox have different event systems, so you’ll write a wrapper function for adding
events. Then you’ll become irritated with a specific oversight of the language itself, so
you’ll use JavaScript’s extensibility to write some code to correct it.

Then one day you’ll notice your “helper script” is 35 KB. When organized and divided
into sections, you’ll realize you’ve got a library on your hands. All JavaScript libraries start
out as caulk between the cracks.

For this reason, a lesson in using Prototype begins not with an in-depth look at any
particular portion, but rather with a whirlwind tour of many of the problem-solving con-
structs you’ll use most often. In this chapter we’ll take that tour.

Getting Started
Let’s keep using the web page we wrote in the previous chapter. Open up index.html and
add some content to the page’s body:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<script type="text/javascript" src="prototype.js"></script>

<title>Blank Page</title>

</head>

17

C H A P T E R 2

<body>

<h1>Blank Page</h1>

<ul id="menu">

<li id="nav_home" class="current">Home

<li id="nav_archives">Archives

<li id="nav_contact">Contact Me

<li id="nav_google"><a href="http://google.com"

rel="external">Google

</body>

</html>

We’re adding an unordered list with links as list items—the typical structure for a web
site’s navigation menu. Each li element has an ID. The final a element has a rel attribute
with a value of external, since it links to an external site. This convention will be quite
useful later on.

We’ll add more markup to this page over the course of the chapter, but this is enough
for now. Nearly all of the code examples from this chapter can be used on this page with
the Firebug shell, so feel free to follow along.

The $ Function
DOM methods have intentionally verbose names for clarity’s sake, but all that typing
gets tiresome very quickly. Prototype’s solution is simple but powerful: it aliases the oft-
used DOM method document.getElementById to a function simply named $. For example,
instead of

document.getElementById('menu'); //-> <ul id="menu">

with Prototype, you can write

$('menu'); //-> <ul id="menu">

Like document.getElementById, $ finds the element on the page that has the given id
attribute.

Why is it called $? Because you’ll use it often enough that it needs to have a short
name. It will be the function you’ll use most often when scripting with Prototype. In
addition, the dollar sign is a valid character in object names and has little chance of
having the same name as another function on the page.

It’s far more than a simple alias, though. There are several things you can do with $
that you can’t do with document.getElementById.

CHAPTER 2 ■ PROTOTYPE BASICS18

$ Can Take Either Strings or Nodes

If the argument passed to $ is a string, it will look for an element in the document whose
ID matches the string. If it’s passed an existing node reference, though, it will return that
same node. In other words, $ lets you deal with string ID pointers and DOM node refer-
ences nearly identically. For example

var menuElement = document.getElementById('menu');

Element.remove(menuElement);

// can also be written as...

Element.remove('menu');

Either way, the element is removed from the page. Why? Listing 2-1 shows how
Element.remove is defined in the Prototype source code.

Listing 2-1. Prototype Source Code

Element.remove = function(element) {

element = $(element);

element.parentNode.removeChild(element);

return element;

};

The highlighted line is used quite often in Prototype. If the element argument is a
string, $ converts it to a DOM node; if it’s a node already, then it just gets passed back.
It makes code very flexible at a very small cost.

All of Prototype’s own DOM manipulation methods use $ internally. So any argu-
ment in any Prototype method that expects a DOM node can receive either a node
reference or a string reference to the node’s ID.

$ Can Take Multiple Arguments

Normally, $ returns a DOM node, just like document.getElementById. It returns just one
node because an ID is supposed to be unique on a page, so if the browser’s DOM
engine finds an element with the given ID, it can assume that’s the only such element
on the page.

That’s why document.getElementById can take only one argument. But $ can take any
number of arguments. If passed just one, it will return a node as expected; but if passed
more than one, it will return an array of nodes.

CHAPTER 2 ■ PROTOTYPE BASICS 19

var navItems = [document.getElementById('nav_home'),

document.getElementById('nav_archives'),

document.getElementById('nav_contact')];

//-> [<li id="nav_home">, <li id="nav_archives">, <li id="nav_contact">]

var navItems = $('nav_home', 'nav_archives', 'nav_contact');

//-> [<li id="nav_home">, <li id="nav_archives">, <li id="nav_contact">]

Prototype’s constructs for working with DOM collections represent a large portion of
its power. In Chapter 3, you’ll learn about how useful this can be.

$ Enhances DOM Nodes with Useful Stuff

Core JavaScript data types can be augmented with user-defined functions. All JavaScript
objects, even built-ins, have a prototype property that contains methods that should be
shared by all instances of that object. For instance, Prototype defines a method for strip-
ping leading and trailing whitespace from strings:

String.prototype.strip = function() {

return this.replace(/^\s+/, '').replace(/\s+$/, '');

};

" Lorem ipsum dolor sit amet ".strip();

//-> "Lorem ipsum dolor sit amet"

All strings get this method because they’re all instances of the String object.
In an ideal world, it would be this easy to assign user-defined functions to DOM

objects:

HTMLElement.prototype.hide = function() {

this.style.display = 'none';

};

This example works in Firefox and Opera, but fails in some versions of Safari and
all versions of Internet Explorer. There’s a gray area here: the DOM API is designed to
be language independent, with its JavaScript version just one of many possible imple-
mentations. So some browsers don’t treat DOM objects like HTMLElement the same way
as built-ins like String and Array. To get this sort of thing to work across browsers
requires a bit of voodoo.

Prototype takes care of this behind the scenes by defining custom element meth-
ods on HTMLElement.prototype in browsers that support it, and copying these instance

CHAPTER 2 ■ PROTOTYPE BASICS20

methods to nodes on demand in browsers that don’t. Any Prototype method that
returns DOM nodes will “extend” these nodes with instance methods to enable this
handy syntactic sugar.

Once a node has been extended once, it does not need to be extended again. But to
extend all nodes on page load would be prohibitively costly, so Prototype extends nodes
on an as-needed basis.

Let’s illustrate this in code:

var firstUL = document.getElementsByTagName('ul')[0];

firstUL.hide();

//-> Error: firstUL.hide is not a function

You’ll get this error in Internet Explorer. A node must have been extended by
Prototype before you can be sure it has these instance methods. So there are a few
options here:

• Use the generic version of the method. Every instance method of a DOM node is
also available on the Element object:

var firstDiv = document.getElementsByTagName('ul')[0];

Element.hide(firstUL);

• Instead of using the native DOM method, use a Prototype method that does the
same thing.

var firstUL = $$('div')[0];

firstUL.hide();

• Extend the node just to be safe, using Element.extend or $.

$(document.getElementsByTagName('ul')[0]).hide();

In other words, $ isn’t just an alias for document.getElementById, it’s also an alias for
Element.extend, the function that adds custom instance methods to DOM nodes. You’ll
learn much more about this in Chapter 6.

Object.extend: Painless Object Merging
The object literal is part of JavaScript’s terseness and expressive power. It allows one to
declare an object with any number of properties very easily.

CHAPTER 2 ■ PROTOTYPE BASICS 21

var data = {

height: "5ft 10in",

weight: "205 lbs",

skin: "white",

hair: "brown",

eyes: "blue"

};

But in JavaScript, it’s possible to add any number of properties to an existing object
at any time. So what happens when we want to extend this object?

if (person.country == "USA") {

data.socialSecurityNumber = "456-78-9012";

data.stateOfResidence = "TX";

data.standardTaxDeduction = true;

data.zipCode = 78701;

}

We can’t define new properties en masse—we have to define them one by one. It gets
even more frustrating when extending built-in classes, as Prototype does:

String.prototype.strip = function() {

// ...

};

String.prototype.gsub = function() {

// ...

};

String.prototype.times = function() {

// ...

};

String.prototype.toQueryParams = function() {

// ...

};

This is a direct road to carpal tunnel syndrome. There’s got to be a better way—we
need a function for merging two different objects.

Prototype gives us Object.extend. It takes two arguments, destination and source,
and both objects, and loops through all the properties of source, copying them over to
destination. If the two objects have a property with the same name, then the one on
destination takes precedence.

CHAPTER 2 ■ PROTOTYPE BASICS22

if (person.country == "USA") {

Object.extend(data, {

socialSecurityNumber: "456-78-9012",

stateOfResidence: "TX",

standardTaxDeduction: true,

zipCode: 78701

});

}

Since objects are passed by reference, not value, the source object is modified
in place.

Object.extend also solves our typing woes when extending built-ins:

Object.extend(String.prototype, {

strip: function() {

// ...

},

gsub: function() {

// ...

},

times: function() {

// ...

},

toQueryParams: function() {

// ...

}

});

for (var i in String.prototype)

console.log(i);

//-> "strip", "gsub", "times", "toQueryParams"

That’s one annoyance out of the way. This construct cuts down on redundancy,
making code both smaller and easier to read. Prototype uses Object.extend all over
the place internally: extending built-ins, “mixing in” interfaces, and merging default
options with user-defined options.

CHAPTER 2 ■ PROTOTYPE BASICS 23

WHY NOT USE OBJECT.PROTOTYPE.EXTEND?

If we were steadfastly abiding by JavaScript’s object orientation, we’d define Object.prototype.
extend, so that we could say the following:

var data = { height: "5ft 10in", hair: "brown" };

data.extend({

socialSecurityNumber: "456-78-9012",

stateOfResidence: "TX"

});

This may appear to make things easier for us, but it will make things much harder elsewhere.
Because properties defined on the prototypes of objects are enumerated in a for...in loop, augment-
ing Object.prototype would “break” hashes:

for (var property in data)

console.log(property);

//-> "height", "hair", "socialSecurityNumber", "stateOfResidence", "extend"

There are ways around this, but they all involve changing the way we enumerate over objects.
And we’d be breaking a convention that’s relied upon by many other scripts that could conceivably
exist in the same environment as Prototype. In the interest of “playing well with others,” nearly all
modern JavaScript libraries abide by a gentleman’s agreement not to touch Object.prototype.

$A: Coercing Collections into Arrays
Oftentimes in JavaScript, you’ll have to work with a collection that seems like an array but
really isn’t. The two major culprits are DOM NodeLists (returned by getElementsByTagName
and other DOM methods) and the magic arguments variable within functions (which con-
tains a collection of all the arguments passed to the function).

Both types of collections have numeric indices and a length property, just like
arrays—but because they don’t inherit from Array, they don’t have the same methods
that arrays have. For most developers, this discovery is sudden and confusing.

$A provides a quick way to get a true array from any collection. It iterates through the
collection, pushes each item into an array, and returns that array.

CHAPTER 2 ■ PROTOTYPE BASICS24

The arguments Variable

When referenced within a function, arguments holds a collection of all the arguments
passed to the function. It has numeric indices just like an array:

function printFirstArgument() {

console.log(arguments[0]);

}

printFirstArgument('pancakes');

//-> "pancakes"

It isn’t an array, though, as you’ll learn when you try to use array methods on it.

function joinArguments() {

return arguments.join(', ');

}

joinArguments('foo', 'bar', 'baz');

//-> Error: arguments.join is not a function

To use the join method, we first need to convert the arguments variable to an array:

function joinArguments() {

return $A(arguments).join(', ');

}

joinArguments('foo', 'bar', 'baz');

//-> "foo, bar, baz"

DOM NodeLists

A DOM NodeList is the return value of any DOM method that fetches a collection of
elements (most notably getElementsByTagName). Sadly, DOM NodeLists are nearly use-
less. They can’t be constructed manually by the user. They can’t be made to inherit
from Array. And the same cross-browser issues that make it hard to extend HTMLElement
also make it hard to extend NodeList.

Any Prototype method that returns a collection of DOM nodes will use an array.
But native methods (like getElementsByTagName) and properties (like childNodes) will
return a NodeList. Be sure to convert it into an array before you attempt to use array
methods on it.

// WRONG:

var items = document.getElementsByTagName('li');

items = paragraphs.slice(1);

//-> Error: items.slice is not a function

CHAPTER 2 ■ PROTOTYPE BASICS 25

// RIGHT:

var items = $A(document.getElementsByTagName('li'));

items = items.slice(1);

//-> (returns all list items except the first)

$$: Complex Node Queries
The richness of an HTML document is far beyond the querying capabilities of the basic
DOM methods. What happens when we need to go beyond tag name queries and fetch
elements by class name, attribute, or position in the document?

Cascading Style Sheets (CSS) got this right. CSS, for those of you who don’t have
design experience, is a declarative language for defining how elements look on a page.
The structure of a CSS file consists of selectors, each with a certain number of rules
(i.e., “The elements that match this selector should have these style rules.”). A CSS file,
if it were obsessively commented, might look like this:

body { /* the BODY tag */

margin: 0; /* no space outside the BODY */

padding: 0; /* no space inside the BODY */

}

a { /* all A tags (links) */

color: red; /* links are red instead of the default blue */

text-decoration: none; /* links won't be underlined */

}

ul li { /* all LIs inside a UL */

background-color: green;

}

ul#menu { /* the UL with the ID of "menu" */

border: 1px dotted black; /* a dotted, 1-pixel black line around the UL */

}

ul li.current {

/* all LIs with a class name of "current" inside a UL */

background-color: red;

}

CHAPTER 2 ■ PROTOTYPE BASICS26

To put this another way, one side of our problem is already solved: in CSS, there
exists a syntax for describing specific groups of nodes to retrieve. Prototype solves the
other side of the problem: writing the code to parse these selectors in JavaScript and
turn them into collections of nodes.

The $$ function can be used when simple ID or tag name querying is not powerful
enough. Given any number of CSS selectors as arguments, $$ will search the document
for all nodes that match those selectors.

$$('li'); // (all LI elements)

//-> [<li class="current" id="nav_home">, <li id="nav_archives">,

<li id="nav_contact">, <li id="nav_google">]

$$('li.current'); // (all LI elements with a class name of "current")

//-> [<li class="current" id="nav_home">]

$$('#menu a'); // (all A elements within something with an ID of "menu")

//-> [, , ,

]

There are two crucial advantages $$ has over ordinary DOM methods. The first is
brevity: using $$ cuts down on keystrokes, even for the simplest of queries.

// BEFORE:

var items = document.getElementsByTagName('li');

// AFTER:

var items = $$('li');

As the complexity of your query increases, so does the savings in lines of code. $$
can be used to fetch node sets that would take many lines of code to fetch otherwise:

// find all LI children of a UL with a class of "current"

// BEFORE:

var nodes = document.getElementsByTagName('li');

var results = [];

for (var i = 0, node; node = nodes[i]; i++) {

if (node.parentNode.tagName.toUpperCase() == 'UL' &&

node.className.match(/(?:\s*|^)current(?:\s*|$)) {

results.push(node);

}

}

// AFTER:

var results = $$('ul > li.current');

CHAPTER 2 ■ PROTOTYPE BASICS 27

The second advantage is something we’ve talked about already: the nodes returned
by $$ are already “extended” with Prototype’s node instance methods.

If you’re a web designer, you’re likely familiar with CSS, but the power of $$ goes
far beyond the sorts of selectors you’re likely accustomed to. $$ supports virtually all of
CSS3 syntax, including some types of selectors that you may not have encountered:

• Querying by attribute:

• $('input[type="text"]') will select all text boxes.

• $$('a[rel]') will select all anchor tags with a rel attribute.

• $$('a[rel~=external]) will select all a elements with the word “external” in the
rel attribute.

• Querying by adjacency:

• $$('ul#menu > li') li') selector> will select all li elements that are direct
children of ul#menu.

• $$('li.current + li') will select any li sibling that directly follows a
li.current in the markup.

• $$('li.current ~ li') will select all the following siblings of a li.current
element that are li elements themselves.

• Negation:

• $$('ul#menu li:not(.current)') will select all li elements that don’t have a
class name of current.

• $$('ul#menu a:not([rel])') will select all a elements that don’t have a rel

attribute.

These are just some of the complex selectors you can use in $$. For more information
on what’s possible, consult the Prototype API reference online (http://prototypejs.org/
api/). We’ll encounter other complex selectors in some of the code we’ll write later in this
book.

CHAPTER 2 ■ PROTOTYPE BASICS28

Summary
You can do far more with Prototype than what I’ve just described, but the functions in
this chapter are the ones you’ll use most often. And although they solve common prob-
lems, they also form the foundation for a general scripting philosophy: one that espouses
fewer lines of code, separation of content and behavior, and the principle of least sur-
prise. Later on, you’ll learn how to use these functions within a set of conventions to
make your DOM scripting experience far more pleasant.

CHAPTER 2 ■ PROTOTYPE BASICS 29

Collections (Or, Never Write a
for Loop Again)

Collections are at the heart of DOM scripting—arrays, hashes, DOM NodeLists, and
various other groups of items. Nearly all your scripts will do some form of iteration over
an array. So why is iteration so bland in JavaScript?

Prototype sports a robust library for dealing with collections. It makes arrays
astoundingly flexible (and invents Hash, a subclass of Object, for key/value pairs), but
can also be integrated into any collections you use in your own scripts.

The Traditional for Loop
Amazingly, the first version of JavaScript didn’t even support arrays. They were added
soon after, but with only one real enhancement over a vanilla Object—a magic length
property that would count the number of numeric keys in the array. For example

var threeStooges = new Array();

threeStooges[0] = "Larry";

threeStooges[1] = "Curly";

threeStooges[2] = "Moe";

console.log(threeStooges.length);

//-> 3

The length property and the ubiquitous for looping construct result in a simple, low-
tech way to loop over an array’s values: start at 0 and count up to the value of length.

for (var i = 0; i < threeStooges.length; i++) {

console.log(threeStooges[i] + ": Nyuk!");

}

31

C H A P T E R 3

This is a fine and decent way to loop, but JavaScript is capable of so much more!
A language with JavaScript’s expressive power can embrace functional programming
concepts to make iteration smarter.

Functional Programming
JavaScript is a multi-paradigm language. It can resemble the imperative style of C, the
object-oriented style of Java, or the functional style of Lisp. To illustrate this, let’s define
a function and see what it can do:

function makeTextRed(element) {

element.style.color = "red";

}

This function expects a DOM element node and does exactly what it says: it turns
the node’s enclosed text red. To apply this function to an entire collection of nodes, we
can use the venerable for loop:

var paragraphs = $$('p');

for (var i = 0; i < elements.length; i++)

makeTextRed(elements[i]);

But let’s look at this from another angle. You learned in Chapter 1 that functions in
JavaScript are “first-class objects,” meaning that they can be treated like any other data
type, like so:

typeof makeTextRed //-> "function"

makeTextRed.constructor; //-> Function

var alias = makeTextRed;

alias == makeTextRed; //-> true

In short, anything that can be done with strings, numbers, or other JavaScript data
types can be done with functions.

This enables a different approach to iteration: since functions can be passed as
arguments to other functions, you can define a function for iterating over an array.
Again, this is easier to explain with code than with words:

function each(collection, iterator) {

for (var i = 0; i < collection.length; i++)

iterator(collection[i]);

}

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)32

The iterator argument is a function. The each method we just wrote will loop over an
array’s indices and call iterator on each, passing into it the current item in the array.

Now we can iterate thusly:

var paragraphs = $$('p');

each(paragraphs, makeTextRed);

Also remember from Chapter 1 that functions have a literal notation—you don’t have
to name a function before you use it. If we won’t use the makeTextRed function anywhere
else in the code, then there’s no reason to define it beforehand.

each(paragraphs, function(element) {

element.style.color = "red";

});

We can make one more improvement to our code. Since each is a method made to
act on arrays, let’s make it an instance method of all arrays:

Array.prototype.each = function(iterator) {

for (var i = 0; i < this.length; i++)

iterator(this[i]);

};

Remember that this refers to the execution scope of the function—in this case, it’s
the array itself. Now we can write the following:

paragraphs.each(function(element) {

element.style.color = "red";

});

To look at this more broadly, we’ve just abstracted away the implementation details
of iteration. Under the hood, we’re calling the same old for loop, but because we’ve built
a layer on top, we’re able to define other functions that involve iterating but do much
more than the preceding each example.

ABOUT FUNCTION NOTATION

This book uses a common notation to distinguish between static methods and instance methods. Static
methods are marked with a dot—for example, Array.from refers to the from method on the Array
object. Instance methods are marked with an octothorpe: Array#each refers to the each method on
Array.prototype—that is, a method on an instance of Array.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 33

Prototype’s Enumerable Object
Prototype defines a handful of functions in an object called Enumerable. Anything that is
“enumerable” (anything that can be iterated over) can use these methods.

These functions include each (much like the one we defined previously) and many
other methods that all hook into each internally. These methods aren’t specific to
arrays—they can be used on any collection, as long as we tell them how to enumerate
the items therein.

Prototype automatically extends Enumerable onto Array. At the end of the chapter,
you’ll learn how to implement Enumerable in your own classes, but for now we’ll use
arrays for all our examples.

Using Enumerable#each

Enumerable#each is the foundation that the rest of Enumerable relies upon, so let’s take
a closer look at it.

I’ve been defaming for loops for several pages now, but they do have one critical
advantage over functional iteration: they let you short-circuit the iteration flow by
using the keywords break (abort the loop) and continue (skip to the next item in the
loop). We need a way to emulate these keywords if we want to match the feature set
of traditional loops.

var elements = $$('.menu-item');

// find the element whose text content contains "weblog"

for (var i = 0, element; element = elements[i]; i++) {

if (!element.id) continue;

if (element.innerHTML.include('weblog')) break;

}

Simulating continue is easy enough—an empty return within a function will do
the trick:

var elements = $$('.menu-item'), weblogElement;

elements.each(function(element) {

if (!element.id) return;

/* ... */

});

But a break equivalent takes a bit of voodoo. Prototype makes smart use of excep-
tions to pull this off. It creates a $break object that can be thrown within loops to exit
immediately.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)34

var elements = $$('.menu-item'), weblogElement;

elements.each(function(element) {

if (!element.id) return;

if (element.innerHTML.include('weblog')) {

weblogElement = element;

throw $break;

}

});

In this example, we “throw” the $break object as though it were an exception. It
interrupts the execution of the function and gets “caught” higher in the call stack, at
which point the each method stops iterating and moves on.

Now we’re even. It’s rare that you’ll need to use $break—most of the use cases for
breaking out of loops are addressed by other Enumerable methods—but it’s comforting
to know it’s there.

Finding Needles in Haystacks: detect, select,
reject, and partition
The code pattern we used in the last section—finding one needle in a haystack—is a
common one, but we can express it more concisely than through an each loop. The
function we pass into each serves as an item manipulator, but we can also use that
function as a litmus test to let us know whether an item matches our needle. The next
four methods do just this.

Using Enumerable#detect

Enumerable#detect finds and returns one item in your collection. It takes a function as
an argument (one that returns true or false) and will return the first item in the collec-
tion that causes the function to return true.

function isEven(number) {

return number % 2 == 0;

}

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].detect(isEven);

//-> 2
If there are no matches, detect will return false.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 35

Using Enumerable#select

What if we need to find several needles in a haystack?

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].select(isEven);

//-> [2, 4, 6, 8, 10]

Just like detect, select tests each item against the given function. But it doesn’t stop
after the first match—it will return all items in the collection that match the criteria.

["foo", 1, "bar", "baz", 2, null].select(function(item) {

return typeof item === "string";

});

//-> ["foo", "bar", "baz"]

Unlike detect, which is guaranteed to return only one item, select will always return
an array. If there are no matches, it will return an empty array.

Using Enumerable#reject

Nearly identical to select, reject will return all the items that fail a particular test.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].reject(isEven);

//-> [1, 3, 5, 7, 9]

Using Enumerable#partition

When you need to separate a collection into two groups, use Enumerable#partition. It
returns a two-item array: the first an array of all items that passed the test, and the sec-
ond an array of all items that failed the test.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].partition(isEven);

//-> [[2, 4, 6, 8, 10], [1, 3, 5, 7, 9]]

Sorting Collections: min, max, and sortBy
The next three Enumerable methods—min, max, and sortBy—address common situations of
arranging collections by value.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)36

Using Enumerable#min and #max

Much like Math.min and Math.max, which identify the smallest and largest values of all the
arguments passed to them, Enumerable#min and #max will find the smallest and largest val-
ues in an existing group:

Math.min(1, 4, 9, 16, 25); //-> 1

Math.max(1, 4, 9, 16, 25); //-> 25

var squares = [1, 4, 9, 16, 25];

squares.min(); //-> 1

squares.max(); //-> 25

In this example, it’s easy to figure out what the minimum and maximum values
are—numbers are directly comparable. For trickier collections, though, you’ll need to
pass in a function to identify exactly what you want the maximum or minimum of:

var words = ["flowers", "the", "hate", "moribund", "sesquicentennial"];

words.max(function(word) { return word.length; }); //-> 16

words.min(function(word) { return word.length; }); //-> 3

Comparing on string length, we get 3 and 16 as the min and max, respectively—the
lengths of the shortest and longest words in the array.

Using Enumerable#sortBy

JavaScript has a built-in sorting method: Array#sort. Why do we need another?
Let’s illustrate. If we try to use Array#sort on an example set of numbers, we’ll be

in for a surprise:

[2, 5, 4, 8, 9, 1, 3, 10, 7, 6].sort();

//-> [1, 10, 2, 3, 4, 5, 6, 7, 8, 9]

As it happens, sort called with no arguments will coerce the array items into strings
before it compares them. (10 is greater than 2, but "10" is less than "2".) If we want to
compare the numbers directly, we must pass a function argument into sort:

[2, 5, 4, 8, 9, 1, 3, 10, 7, 6].sort(function(a, b) {

return a – b;

});

//-> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 37

The passed function tells sort how to compare any two items in the array. In the pre-
ceding example, if a is greater than b, then the return value will be positive, indicating
that a should follow b. If b is greater than a, then the return value will be negative, and a
will precede b. (If the return value is 0, then the two are equal, of course.)

This is nuts—or, at the very least, surprising. We need a better sort function.
Enumerable#sortBy works a little differently. It, too, takes a function argument, but

the function is used only to translate a given item to a comparison value:

var words = ["aqueous", "strength", "hated", "sesquicentennial", "area"];

// sort by word length

words.sortBy(function(word) { return word.length; });

//-> ["area", "hated", "aqueous", "strength", "sesquicentennial"]

// sort by number of vowels in the word

words.sortBy(function(word) { return word.match(/[aeiou]/g).length; })

//-> ["strength", "hated", "area", "aqueous", "sesquicentennial"]

As you can see, the comparison function takes one argument, rather than two. Most
developers will find this far more intuitive.

Advanced Enumeration: map, inject, invoke,
and pluck
The next four Enumerable methods carry more cryptic names, but are every bit as useful
as the methods described previously.

Using Enumerable#map and Enumerable#inject

The map method performs parallel transformation. It applies a function to every item in
a collection, pushes each result into an array, and then returns that array.

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].map(function(num) { return num * num; });

//-> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

The inject method returns an accumulated collection. Think of it as a hat being
passed around to each of the items—each item throws a different quantity into the hat.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)38

var words = ["aqueous", "strength", "hated", "sesquicentennial", "area"];

var totalLength = words.inject(0, function(memo, string) {

return memo + string.length;

});

// -> 40

Since we need to keep track of memo—the variable that stores our running total—the
arguments for inject are slightly different. The first argument of inject is our starting
value—0, in this case, since we’re dealing with a numeric property. The second argument
is the function we’re using against the collection’s items.

This inner function itself takes two arguments: our running total (memo) and the item
we’re working with (string). The function’s return value will be used as the memo for the
next item in the collection.

This can be a bit confusing, so let’s add a logging statement to the inner function to
illustrate what’s going on:

var totalLength = words.inject(0, function(memo, string) {

console.log('received ' + memo + '; added ' + string.length);

console.log('returning ' + (memo + string.length));

return memo + string.length;

});

//-> received 0; added 7

//-> returning 7

//-> received 7; added 8

//-> returning 15

//-> received 15; added 5

//-> returning 20

//-> received 20; added 16

//-> returning 36

//-> received 36; added 4

//-> returning 40

//-> 40

Now that you can see each step in the enumeration, the behavior of inject should be
easier to follow.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 39

Using Enumerable#pluck and Enumerable#invoke

These two Enumerable methods are somewhat special. They take a string as their first
argument instead of a function.

The pluck method collects individual properties on each of the objects on the
collection:

var words = ["aqueous", "strength", "hated", "sesquicentennial", "area"];

words.pluck('length');

//-> [7, 8, 5, 16, 4]

Note that this example code is equivalent to

words.map(function(word) { return word.length; });

but is shorter and more meaningful.
The invoke method is similar: it calls the specified instance method on each item.

Let’s illustrate by using one of Prototype’s string methods:

" aqueous ".strip(); //-> "aqueous"

var paddedWords = [" aqueous ", "strength ", " hated ",

"sesquicencennial", " area "];

words.invoke('strip');

//-> ["aqueous", "strength", "hated", "sesquicentennial", "area"]

This code is equivalent to

words.map(function(word) { return word.strip(); });

but invoke can also pass arguments along to the instance method. Simply add the
required number of arguments after the first:

"swim/swam".split('/'); //-> ["swim", "swam"]

"swim/swam".replace('/', '|'); //-> "swim|swam"

var wordPairs = ["swim/swam", "win/lose", "glossy/matte"];

wordPairs.invoke('split', '/');

//-> [["swim", "swam"], ["win", "lose"], ["glossy", "matte"]]

wordPairs.invoke('replace', '/', '|');

//-> ["swim|swam", "win|lose", "glossy|matte"]

The map, inject, pluck, and invoke methods greatly simplify four very common code
patterns. Become familiar with them and you’ll start to notice uses for them all over the
code you write.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)40

Other Collections That Use Enumerable
Two other Prototype classes that make use of Enumerable are Hash and ObjectRange.
Together they serve as great examples of how to use Enumerable with other types of
collections.

Hash

There is no built-in facility in JavaScript for setting key/value pairs—the construct that’s
known as a hash (in Ruby), a dictionary (in Python), or an associative array (in PHP).
There is, of course, an ordinary object, and this suffices for most cases.

var airportCodes = {

AUS: "Austin-Bergstrom Int'l",

HOU: "Houston/Hobby",

IAH: "Houston/Intercontinental",

DAL: "Dallas/Love Field",

DFW: "Dallas/Fort Worth"

};

for (var key in airportCodes) {

console.log(key + " is the airport code for " + airportCodes[key] + '.');

}

>>> AUS is the airport code for Austin-Bergstrom Int'l.

>>> HOU is the airport code for Houston/Hobby.

>>> IAH is the airport code for Houston/Intercontinental.

>>> DAL is the airport code for Dallas/Love Field.

>>> DFW is the airport code for Dallas/Fort Worth.

We can declare an object and iterate over its properties quite easily. This doesn’t get
us everything a hash would, but it comes very close.

Eventually, however, we’ll run into two major problems.

Objects Have No Key Safety

An object is not a blank slate when it’s declared. It has native properties and methods
with names that may conflict with the names you’d want to use for your keys.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 41

var obj = {};

obj.constructor; //-> Object

obj = {

name: "Statue of Liberty",

constructor: "Frédéric Bartholdi"

};

obj.constructor; //-> "Frédéric Bartholdi"

In this example, a built-in property (constructor) that has special meaning in
JavaScript is being shadowed by a property of the same name that we assign on the
object instance. Similar collisions can occur with toString, valueOf, and other built-in
properties. The safety of any arbitrary key cannot be guaranteed.

These might seem like edge cases, but key safety is especially important when
you’re building a hash in which the key names depend on user input, or on some
other means that isn’t planned beforehand by the developer.

The Object.prototype Problem

As we briefly covered in Chapter 2, JavaScript suffers from a flaw caused by two of its fea-
tures stepping on one another. In theory, we can define properties on Object.prototype
and have them propagate to every instance of Object. Unfortunately, when properties are
enumerated in a for...in loop, anything that’s been defined on Object.prototype will get
picked up.

Object.prototype.each = function(iterator) {

for (var i in this)

iterator(i, this[i]);

};

var obj = {

name: "Statue of Liberty",

constructor: "Frédéric Bartholdi"

};

obj.each(console.log); // (pass the key and value as arguments to console.log)

>>> "name" "Statue of Liberty"

>>> "constructor" "Frédéric Bartholdi"

>>> "each" "function(iterator) { for (var i in this) iterator(i, this[i]); }"

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)42

Regrettably, there’s no way to suppress this behavior. We could get around it by
avoiding ordinary for...in loops altogether, wrapping code around them that ensures
we enumerate only properties that exist on the instance, but then we’ve only solved the
problem for our own scripts. Web pages often pull in scripts from various sources, some
of which may be unaware of each other’s existence. We can’t expect all these scripts to
boil the ocean just to make our lives a little easier.

The Solution

There’s a way around all this, although it may not be ideal: creating a new “class” for
creating true hashes. That way we can define instance methods on its prototype with-
out encroaching on Object.prototype. It also means we can define methods for getting
and setting keys—internally they can be stored in a way that won’t collide with built-in
properties.

Prototype’s Hash object is meant for key/value pairs. It is designed to give the syntac-
tic convenience of Enumerable methods without encroaching on Object.prototype.

To create a hash, use new Hash or the shorthand $H:

var airportCodes = new Hash();

To set and retrieve keys from the hash, use Hash#set and Hash#get, respectively:

airportCodes.set('AUS', 'Austin-Bergstrom Int'l');

airportCodes.set('HOU', 'Houston/Hobby');

airportCodes.get('AUS'); //-> "Austin-Bergstrom Int'l"

Ick! Do we really have to set keys individually like that? Is this worth the trade-off?
Luckily, we don’t have to do it this way. We can pass an object into the Hash construc-

tor to get a hash with the key/value pairs of the object. Combine this with the $H shortcut,
and we’ve got a syntax that’s almost as terse as the one we started with:

var airportCodes = $H({

AUS: "Austin-Bergstrom Int'l",

HOU: "Houston/Hobby",

IAH: "Houston/Intercontinental",

DAL: "Dallas/Love Field",

DFW: "Dallas/Fort Worth"

});

You can also add properties to a hash en masse at any time using Hash#update:

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 43

var airportCodes = new Hash();

airportCodes.update({

AUS: "Austin-Bergstrom Int'l",

HOU: "Houston/Hobby",

IAH: "Houston/Intercontinental",

DAL: "Dallas/Love Field",

DFW: "Dallas/Fort Worth"

});

This code gives the same result as the preceding example.
You can get a hash’s keys or values returned as an array with Hash#keys and

Hash#values, respectively:

airportCodes.keys(); //-> ["AUS", "HOU", "IAH", "DAL", "DFW"]

airportCodes.values();

//-> ["Austin-Bergstrom Int'l", "Houston/Hobby", "Houston/Intercontinental",

//-> "Dallas/Love Field", "Dallas/Fort Worth"]

Finally, you can convert a hash back to a plain Object with Hash#toObject:

airportCodes.toObject();

//-> {

//-> AUS: "Austin-Bergstrom Int'l",

//-> HOU: "Houston/Hobby",

//-> IAH: "Houston/Intercontinental",

//-> DAL: "Dallas/Love Field",

//-> DFW: "Dallas/Fort Worth"

//-> }

Enumerable Methods on Hashes

Enumerable methods on hashes work almost identically to their array counterparts. But
since there are two parts of each item—the key and the value—the object passed into the
iterator function works a bit differently:

airportCodes.each(function(pair) {

console.log(pair.key + ' is the airport code for ' + pair.value + '.');

});

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)44

>>> AUS is the airport code for Austin-Bergstrom Int'l.

>>> HOU is the airport code for Houston/Hobby.

>>> IAH is the airport code for Houston/Intercontinental.

>>> DAL is the airport code for Dallas/Love Field.

>>> DFW is the airport code for Dallas/Fort Worth.

The pair object in the preceding example contains two special properties, key and
value, which contain the respective parts of each hash item. If you prefer, you can also
refer to the key as pair[0] and the value as pair[1].

Keep in mind that certain Enumerable methods are designed to return arrays, regard-
less of the original type of the collection. Enumerable#map is one of these methods:

airportCodes.map(function(pair) {

return pair.key.toLowerCase();

});

//-> ["aus", "hou", "iah", "dal", "dfw"]

In general, these methods work the way you’d expect them to. Be sure to consult the
Prototype API documentation if you get confused.

ObjectRange

Prototype’s ObjectRange class is an abstract interface for declaring a starting value, an
ending value, and all points in between. In practice, however, you’ll be using it almost
exclusively with numbers.

To create a range, use new ObjectRange or the shorthand $R.

var passingGrade = $R(70, 100);

var teenageYears = $R(13, 19);

var originalColonies = $R(1, 13);

A range can take three arguments. The first two are the start point and endpoint of
the range. The third argument, which is optional, is a Boolean that tells the range
whether to exclude the end value.

var inclusiveRange = $R(1, 10); // will stop at 10

var exclusiveRange = $R(1, 10, true); // will stop at 9

Ranges are most useful when you need to determine whether a given value falls
within some arbitrary boundaries. The include instance method will tell you whether
your value is included in the range.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 45

if (passingGrade.include(studentGrade))

advanceStudentToNextGrade();

But ranges can also use any method in Enumerable. We can take advantage of this to
simplify our example code from earlier in the chapter.

function isEven(num) {

return num % 2 == 0;

}

var oneToTen = $R(1, 10);

oneToTen.select(isEven); //-> [2, 4, 6, 8, 10]

oneToTen.reject(isEven); //-> [1, 3, 5, 7, 9]

var firstTenSquares = oneToTen.map (function(num) { return num * num; });

//-> [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Turning Collections into Arrays

Enumerable also boasts a generic toArray method that will turn any collection into an
array. Obviously, this isn’t very useful for arrays themselves, but it’s a convenience when
working with hashes or ranges.

$H({ foo: 'bar', baz: 'thud' }).toArray();

//-> [['foo', 'bar'], ['baz', 'thud']]

$R(1, 10, true).toArray();

//-> [1, 2, 3, 4, 5, 6, 7, 8, 9]

Keep in mind that using $A, the array-coercion shortcut function, will produce the
same result. If an object has a toArray method, $A will use it.

Using Enumerable in Your Own Collections

The fun is not confined to arrays, hashes, and ranges. Enumerable can be “mixed into” any
class—all it needs to know is how to enumerate your collections.

Let’s take a look at the source code for Enumerable#each:

// Excerpt from the Prototype source code

each: function(iterator) {

var index = 0;

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)46

try {

this._each(function(value) {

iterator(value, index++);

});

} catch (e) {

if (e != $break) throw e;

}

return this;

}

The nonhighlighted portion manages the boring stuff: keeping track of the index
value and catching our handy $break exception. The actual enumeration is delegated to
a method called _each. This is where the magic happens.

Enumerable needs the _each method to tell it how to enumerate. For example,
Array.prototype._each looks like this:

// Excerpt from the Prototype source code

each: function(iterator) {

for (var i = 0, length = this.length; i < length; i++)

iterator(this[i]);

}

So, we haven’t gotten rid of the for loop entirely—we’ve just stashed it away in a
function you’ll never call directly.

Here’s a horribly contrived example to illustrate all this. Let’s say we want a specific
kind of array that will enumerate only its even indices, skipping over the odd ones. Writ-
ing the constructor for this class is easy enough:

var EvenArray = function(array) {

this.array = array;

};

We can feed it any ordinary array by calling this constructor with an existing array:

var even = new EvenArray(["zero", "one", "two", "three", "four", "five"]);

Now let’s define an _each method on our class’s prototype:

EvenArray.prototype._each = function(iterator) {

for (var i = 0; i < this.array.length; i += 2)

iterator(this.array[i]);

};

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN) 47

Notice that we’re incrementing two at a time, skipping all the odd values of i.
Now we can extend Enumerable onto our class:

Object.extend(EvenArray.prototype, Enumerable);

Remember how Object.extend works—we’re taking each property on Enumerable and
copying it onto EvenArray.prototype.

And we’re done. No, really. Try it out:

even.each(function(item) { console.log(item); });

//-> zero

//-> two

//-> four

even.map(function(item) { return item.toUpperCase(); });

//-> ["ZERO", "TWO", "FOUR"]

By defining one method (_each), we’re now able to use any Enumerable method on
instances of EvenArray.

So, to review, mixing Enumerable into your own classes is a two-step process. First,
define the _each method. Next, copy the Enumerable methods onto your class with
Object.extend. When using Prototype, you’ll find there is rarely a step three.

Summary
Playing with Enumerable methods is a good way to dip your toe into the Prototype pool.
You’ll use them in many different contexts throughout your code. And because they’re
abstract, they’re mercifully free of the annoying cross-browser issues that cast their
shadow over nearly every other area of browser-based JavaScript development. Before
you forge ahead, make sure you’re very comfortable with everything we’ve covered in
this chapter.

CHAPTER 3 ■ COLLECTIONS (OR, NEVER WRITE A FOR LOOP AGAIN)48

Ajax: Advanced Client/Server
Communication

By now, you’re almost certainly familiar with Ajax as a buzzword. Technically, it’s an
acronym—Asynchronous JavaScript and XML—and refers specifically to JavaScript’s
XmlHttpRequest object, which lets a browser initiate an HTTP request outside the
confines of the traditional page request.

Yawn. The technology isn’t the exciting part. Ajax is huge because it pushes the
boundaries of what you can do with a web UI: it lets you reload part of a page without
reloading the entire page. For a page-based medium like the Web, this is a seismic leap
forward.

Ajax Rocks
XmlHttpRequest (XHR for short) is a JavaScript interface for making arbitrary HTTP
requests. It lets a developer ask the browser to fetch a URL in the background, but with-
out any of the typical baggage of a page request—the hourglass, the new page, and the
re-rendering.

Think of it as an HTTP library for JavaScript, not unlike Ruby’s Net::HTTP class or
PHP’s libcurl bindings. But because it lives on the client side, it can act as a scout, mar-
shaling requests between client and server in a much less disruptive way than the typical
page request.

The difference is crucial—the user has to wait around for a page request, but
XHR doesn’t. Like the acronym says, Ajax allows for asynchronous communication—
the JavaScript engine can create a request, send it off, and then do other things until the
response comes back. It’s far better than making your users do other things until
the response comes back.

49

C H A P T E R 4

Ajax Sucks
It’s not all sunshine and rainbows, though. Ajax is much easier to talk about than it is
to do.

The problem that afflicts JavaScript in general applies to Ajax in particular: the
XmlHttpRequest object has its own set of bugs, inconsistencies, and other pitfalls from
browser to browser. Created by Microsoft and first released as part of Internet Explorer 5,
the XHR object gained popularity once it was implemented by the other major browser
vendors—even though there was no formal specification to describe how it ought to work.
(The W3C has since started an XHR specification, currently in “Working Draft” status.)

For this reason, it’s painful and frustrating to work with XHR without some sort of
wrapper library to smooth out the rough edges. Prototype takes the awkward, unintuitive
API of XmlHttpRequest and builds an easy-to-use API around it.

Prototype’s Ajax Object
Let’s set up an environment to play around with Ajax. In a text editor, create a file named
ajax.js and place some JavaScript content inside. This will be the file we load with Ajax
(see Listing 4-1).

Listing 4-1. The ajax.js File

alert('pancakes!');

Create a directory for this file and save it.

■Caution Since Ajax is an HTTP request interface, these examples require a web server to communicate
with. Opening these examples straight from the local disk (using the file: protocol) will yield mixed results.
Try running them on a local installation of Apache—or on space you control on a remote web server.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION50

Now we need a page to make the Ajax request from. Create an empty HTML page,
call it index.html, and save it in the same directory as ajax.js. Listing 4-2 shows the
index.html file.

Listing 4-2. The index.html File

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Blank Page</title>

<script src="prototype.js" type="text/javascript"></script>

</head>

<body>

<h1>Blank Page</h1>

</body>

</html>

Notice how we load Prototype by including it in the head of our document via a
script tag. You’ll need to place a copy of prototype.js in the same directory as index.html.

Now open index.html in Firefox. We’ll use Firefox for these examples so that we can
execute commands on the fly in the Firebug interactive shell. Make sure the Console tab
is focused, as shown in Figure 4-1.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 51

Figure 4-1. Firebug is open to the console tab at the bottom of the screen.

Ajax.Request

Now type the following into the shell:

new Ajax.Request('ajax.js', { method: 'get' });

You should see the dialog shown in Figure 4-2.

Figure 4-2. This dialog came from our external JavaScript file.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION52

The Ajax.Request call fetched our external file and evaluated the JavaScript we placed
inside. This simple example teaches you several things about Ajax.Request:

• It’s called as a constructor (using the new keyword).

• Its first argument is the name of the URL you want to load. Here it’s a relative URL
because the file we want to load is in the same directory; but you can also use an
absolute URL (one that begins with a forward slash).

■Caution Keep in mind that this URL can’t begin with http because of the same-domain policy of Ajax—
even if the URL points internally.

• Its second argument is an object that can contain any number of property/value
pairs. (We’ll call this the options argument.) Prototype uses this convention in a
number of places as a way of approximating named arguments. In this example,
we’re specifying that the browser should make an HTTP GET request for this file.
We only need to specify this because it’s overriding a default—if you omit the
method option, Ajax.Request defaults to a POST.

• The JavaScript we placed in ajax.js was evaluated automatically, so we know that
Ajax.Request will evaluate the response if it’s served up as JavaScript. Web servers
typically give JS files a MIME type of text/javascript or application/x-javascript;
Prototype knows to treat those types (and a handful of others) as JavaScript.

Now let’s add to this example. Type the same line as before, but with an extra prop-
erty in the options argument:

new Ajax.Request('ajax.js', { method: 'get',

onComplete: function() { alert('complete'); }

});

■Tip You can switch the Firebug console to multiline input by clicking the button at the far right of the
command line.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 53

Figure 4-3 shows the results. This time, you’ll see two dialogs: the original, “pan-
cakes!” and the one inside the line highlighted in the previous code block, “complete.”

Figure 4-3. These two dialogs appear in sequence.

So, by adding just a little code to this example, you’ve learned two more things:

• The onComplete option is a new property in our options object. It sets up a
callback—a function that will run at a certain point in the future. An Ajax request
keeps the browser updated on its progress, triggering several different “ready
states” along the way. In this case, our onComplete function will be called when the
request is complete.

• The “pancakes!” dialog appears before the “complete” dialog, so you can deduce
that the onComplete function is called after the response is evaluated.

Let’s use another callback. Replace onComplete with onSuccess (see Figure 4-4):

new Ajax.Request('ajax.js', { method: 'get',

onSuccess: function() { alert('success'); }

});

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION54

Figure 4-4. These two dialogs appear in sequence.

Figure 4-4 is subtly different than Figure 4-3. Like before, you’ll see two dialog
boxes—but this time the “pancakes!” dialog comes last. So, you can assume the following:

• The onSuccess option is a callback that will be run if the request is a success. If
there’s a failure of some kind (a 404 error, a communication error, an internal
server error, etc.), its companion, onFailure, will get called instead.

• Since we saw the callback’s alert dialog first, we know that onSuccess and onFailure
are called before the remote JavaScript file is evaluated, and also before onComplete.
True to its name, onComplete is called as the very last thing Ajax.Request does before
it punches its timecard. But it decides between calling onSuccess or onFailure as
soon as it knows the outcome of the request.

We can request any kind of file with Ajax—not just JavaScript files. To prove it,
rename ajax.js to ajax.txt and try this (see Figure 4-5):

new Ajax.Request('ajax.txt', { method: 'get',

onSuccess: function(request) { alert(request.responseText); }

});

Figure 4-5. Our new dialog contains some familiar text.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 55

You just learned two more things from Figure 4-5:

• Because our “pancakes!” dialog didn’t appear, we know that the response was not
evaluated as JavaScript—because it was served as an ordinary text file.

• Callbacks like onSuccess are passed the browser’s native XmlHttpRequest object as
the first argument. This object contains several things of interest: the readyState of
the request (represented as an integer between 0 and 4), the responseText (plain-
text contents of the requested URL), and perhaps the responseXML as well (a DOM
representation of the content, if it’s served as HTML or XML). That’s how we were
able to display the contents of ajax.txt in our dialog.

Here’s where it all comes together—since we can fetch a fragment of HTML from a
remote file, we can update the main page incrementally by dropping that fragment into
a specific portion of the page. This is such a common task that Prototype has a subclass
for it.

Ajax.Updater

Prototype’s Ajax.Updater does exactly what you think it does: it “updates” a portion of
your page with external content from an Ajax request.

To demonstrate this, let’s add an empty container to our index.html file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Blank Page</title>

<script src="prototype.js" type="text/javascript"></script>

</head>

<body>

<h1>Blank Page</h1>

<div id="bucket"></div>

</body>

</html>

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION56

Now we can request an external HTML file and direct the browser to place its con-
tents into the div we just created. So let’s create a file called ajax.html, as shown in
Listing 4-3.

Listing 4-3. The ajax.html File

<h2>(actually, it's not blank anymore)</h2>

This isn’t a full HTML file, you’ll notice—since we’ll be inserting this content into a
fully formed page, it should just be an HTML fragment.

Now reload index.html in Firefox. You won’t see the div we created, of course, because
there’s nothing in it yet. Type this into the Firebug console:

new Ajax.Updater('bucket', 'ajax.html', { method: 'get' });

In Figure 4-6, you’ll see our once-empty div chock-full of content!

Figure 4-6. Our h1 is no longer alone on the page.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 57

This line of code reads almost like a sentence: Using Ajax, update the bucket element
with the contents of ajax.html. It introduces you to more new things:

• Ajax.Updater works a lot like Ajax.Request. But it’s got an extra argument at the
beginning: the element to be updated. Remember what you learned in Chapter 2:
any function that takes a DOM node can also take a string reference to that node’s
ID. We could just as easily have used $('bucket') (or a native DOM call like
document.getElementsByTagName('div')[0]) as the argument instead of 'bucket'.

• Just like Ajax.Request, Ajax.Updater takes an options hash as its final argument. It
supports all the options we’ve covered already, plus a few new ones, which we’re
about to look at.

Now press the up arrow key at the Firebug command line to bring up the statement
you just typed. Run it again (see Figure 4-7).

Figure 4-7. Isn’t this the same as the last?

Nothing changed between Figures 4-6 and 4-7. Well, that’s not true—something
changed, but you didn’t notice because the old content was identical to the new content.
Every time you call Ajax.Updater on an element, it will replace the contents of that
element.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION58

You can change this behavior with one of Ajax.Updater’s options: insertion. If
present, the updater object will add the response to the page without overwriting any
existing content in the container.

The insertion property takes one of four possible values: top, bottom, before, or
after. Each one inserts the content in the described location, relative to the container
element: top and bottom will insert inside the element, but before and after will insert
outside the element.

So let’s try appending the response instead. Type this into your console:

new Ajax.Updater('bucket', 'ajax.html', { method: 'get', insertion: 'bottom' });

Although it’s a bit longer, this line of code also reads like a sentence: Using Ajax,
get the contents of ajax.html and insert them at the bottom of the bucket element.

Run this code. Then run it again, and again, and again. Each time you’ll see an
extra h2 tag on the page, as shown in Figure 4-8.

Figure 4-8. The h2s are starting to reproduce like mad.

This is pretty cool stuff. It’s a shame you have to run this code every single time,
though. You could pay someone to sit at your desk and enter this line into the Firebug
console over and over—but it’s probably easier to use Ajax.PeriodicalUpdater.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 59

Ajax.PeriodicalUpdater

Just as Updater builds on Request, PeriodicalUpdater builds on Updater. It works like it
sounds: give it a URL, an element to update, and a time interval, and it will run an
Ajax.Updater at that interval for the life of the page—or until you tell it to stop.

There are tons of applications for a repeating Ajax request: imagine the client side
of a chat application asking the server if anyone’s spoken in the last 10 seconds. Imag-
ine a feed reader that checks every 20 minutes for new content. Imagine a server doing
a resource-intensive task, and a client polling every 15 seconds to ask how close the
task is to completion.

Rather than dispatch an Ajax request as the result of a user action—a click of a but-
ton or a drag-and-drop—these examples set up a request to run automatically, thereby
saving the user the tedious task of manually reloading the page every time.

Let’s try it. Reload index.html and run this command in the console:

new Ajax.PeriodicalUpdater('bucket', 'ajax.html', {

method: 'get', insertion: 'bottom', frequency: 5

});

Right away we see our first h2 element. Then, 5 seconds later, we see another. Then
another. Now they’re reproducing with no help from us.

So here’s what you’ve probably figured out about PeriodicalUpdater:

• It takes the same basic arguments as Ajax.Updater, but it also accepts a frequency
parameter in the options object, allowing you to set the number of seconds
between requests. We could have omitted this parameter and left the frequency
at the default 2 seconds—but then we wouldn’t have had the occasion to talk
about it.

• At the specified interval, Ajax.PeriodicalUpdater will create its own instance of
Ajax.Updater—passing it the element to update, the URL to request, and any
relevant options. For example, the insertion parameter is being passed to
Ajax.Updater, which is why new content is being added to the bottom of
div#bucket instead of replacing the old stuff.

OK, these h2s are getting on my nerves. Reload the page.

Controlling the Polling

When you set up a PeriodicalUpdater, you don’t necessarily want it to keep running
until the end of time. Prototype gives us a couple of tactics to regulate this constant flow
of requests.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION60

To demonstrate the first, we’ll have to interact with the PeriodicalUpdater instance.
So let’s run our most recent line of code again, making sure to assign it to a variable:

var poller = new Ajax.PeriodicalUpdater('bucket', 'ajax.html', {

method: 'get', insertion: 'bottom', frequency: 5

});

We could have been doing this all along, but only now do we need to refer to the
Ajax object in subsequent lines of code.

The familiar steady stream of h2s is back, inexorably marching down the page like
textual lemmings. But this time we can make them stop:

poller.stop();

Spend a few seconds staring at the screen, nervously wondering if you truly shut it
all down. You’ll eventually realize that the h2s have stopped, and no more Ajax requests
are being logged to the Firebug console.

It’s really that simple: PeriodicalUpdater has an instance method named stop that will
put all that periodical updating on hold. There’s a predictable complement to stop, and
we’ll use it right now to turn the h2s back on:

poller.start();

Their respite was short-lived—the h2s are back and growing in number every 5 sec-
onds. Calling start on a stopped PeriodicalUpdater works a lot like creating a new one:
the request is run immediately, and then scheduled to run again once the specified inter-
val of time passes.

There’s one more flow control strategy we can employ. It’s called decay, but it’s
nowhere near as gross as it sounds—think atoms, not carcasses.

Let’s reload index.html one more time and add the decay parameter to our options
object:

var poller = new Ajax.PeriodicalUpdater('bucket', 'ajax.html', {

method: 'get', insertion: 'bottom', frequency: 5, decay: 2

});

It will take a little longer to realize what’s going on this time. Just like before, the
first Ajax request is dispatched immediately. Then there’s another request 5 seconds
later. Then . . . wait. That time it felt more like 10 seconds. And now it’s even longer. Is
this thing slowing down?

After a few more cycles, you’ll be able to figure out what’s going on.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 61

It is, in fact, slowing down. Our decay parameter is causing the interval between
requests to double each time. (5 seconds, then 10, 20, 40, 80, etc.) If we changed decay
to 3, the interval would be tripled each time. In mathematics, this is called exponential
decay. It has many applications across all fields of science, but here we’re using it to make
web pages awesome. The default value for decay is 1—that is, by default there is no decay.

But why is it slowing down? Because it’s getting the same response every time.
PeriodicalUpdater keeps track of this, comparing the latest response to the previous
response each time the updater runs. If the contents are different, all proceeds as nor-
mal; if the contents are identical, the interval gets multiplied by the decay parameter
and the result is used to schedule the next updater. (In this example, of course, we’re
requesting a static HTML file, so each request is identical to the previous.) If, after the
interval is lengthened, a fresh response comes back, it snaps back to the frequency that
was originally set.

So PeriodicalUpdaters can be started, stopped, and decayed, abiding by your
exacting rules of flow control. You’ll need these rules someday. You probably didn’t feel
any dread at the prospect of HTML elements that reproduce infinitely, but you will
feel dread when the server hosting your web app starts getting hit every 15 seconds
by every single client using it. Responsiveness is good, and periodic client-server
communication is good—but these benefits will eventually clash with the practical
constraints of bandwidth and processing power. Knowing when to poll, when not to
poll, and when to poll less often can be the antidote to the typical “chattiness” of Ajax-
driven applications.

Advanced Examples: Working with
Dynamic Content
We’ve already looked at a handful of simple examples of what Prototype’s Ajax objects
can do. But simple examples are boring. Let’s get our feet wet.

Increasing the complexity means we’ll have to introduce server-side scripting to the
mix. These examples will use PHP, but the concepts are applicable no matter what your
architecture.

Example 1: The Breakfast Log

Most of your Ajax calls will involve dynamic content, rather than the HTML and text files
we’ve been using—the response will vary based on the data you send. You’re probably
already familiar with GET and POST—the two HTTP methods for sending data to the
server—from working with HTML forms. Ajax can use either method to submit data.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION62

For this set of examples, we’ll be creating a “blog.” If you don’t know what a blog
is, you’re behind the times, my friend; it’s short for “breakfast log,” and it’s a minute-
by-minute account of which breakfast foods you’ve consumed on which dates and
times. The trend is spreading like wildfire: at least half a dozen people on earth have
breakfast logs.

The Server Side

We’ll start with the server side, so that our page will have something to talk to. Create
a file called breakfast.php (as shown in Listing 4-4) and put it in the same directory as
index.html.

Listing 4-4. The breakfast.php File

<?php

// make a human-readable date for the response

$time = date("g:i a \o\\n F j, Y", time());

$food_type = strip_tags($_REQUEST['food_type']);

$taste = strip_tags($_REQUEST['taste']);

?>

At <?= $time ?>, I ate <?= $taste ?>

<?= $food_type ?>.

I’ve highlighted the lines that reference $_REQUEST, the global variable for looking
up any query parameters given to a script. This script expects to receive two crucial
pieces of data: the kind of food I ate and its taste quality. For now, we won’t send the
time of the meal—we’ll simply assume that the breakfast logger (“blogger” for short)
is posting from his or her kitchen table, mouth full of French toast. This lets us take
the shortcut of using the server’s time rather than relying on the client to provide it.

Our script takes the provided values for food and taste and strips them of HTML
using PHP’s strip_tags function. (Ordinarily, it would also save the values to a database,
but that’s not important for what we’re doing here.) Then it prints a small fragment of
HTML to describe to the browser what has just happened.

Let’s make sure our script works. Open a browser and navigate to wherever you put
breakfast.php on your server. But remember, we’ve got to tell it what we ate and how deli-
cious it was. So we need to add a query string to the end of the URL. Yours should look
something like this:

http://your-server.dev/breakfast.php?food_type=waffles&taste=delicious

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 63

Press return, and you ought to see your HTML fragment in the browser window, as
shown in Figure 4-9.

Figure 4-9. The HTML fragment that represents our delicious meal

No errors! Emboldened by this programming victory, let’s go back to index.html to
make it look more like a breakfast log.

The Client Side

Our HTML page is no longer generic—it’s got a purpose! Let’s make it friendlier. Make
these changes to index.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Andrew's Breakfast Log</title>

<script src="prototype.js" type="text/javascript"></script>

</head>

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION64

<body>

<h1>Andrew's Breakfast Log</h1>

<ul id="breakfast_history"></div>

</body>

</html>

It’s still ugly and sparse, but at least it’s got a human touch now.
We’re going to keep a list on this page, so let’s treat it as such. We’ve changed our

container div to a ul, a proper container for lis, and given it a more descriptive ID.
Now we’re ready to record our meals for posterity! Reload index.html in Firefox, and

then type this into the Firebug console:

new Ajax.Updater('breakfast_history', 'breakfast.php', { method:'get',

parameters: { food_type: 'waffles', taste: 'delicious' }

});

You should recognize the highlighted line—we’re sending these name/value pairs
along with our request. Our script gets the message, saves it to a database (presumably),
and then gives us some HTML to put on the page.

Also, notice how we’ve removed the method parameter from the options. We could
explicitly set it to "post", but since that’s the default we’re better off omitting it altogether.

Run this code. The result should look like Figure 4-10.

Figure 4-10. The fragment from the previous figure has been placed on the page.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 65

Since Firebug logs all Ajax requests, you can see for yourself. Near the bottom of your
console should be a gray box containing the URL of the request; expand this box to view
all the request’s details, as depicted in Figure 4-11.

Figure 4-11. The details of our Ajax request

That was fun. Let’s try it again—run the exact same command in the console (see
Figure 4-12).

Figure 4-12. What happened to the first one?

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION66

Figure 4-12 is not quite what we expected. The time is different, so the content got
replaced properly. But we don’t want to replace the contents of ul#breakfast_history; we
want to add to what’s already there.

Typically, breakfast log entries are arranged so that the most recent is first. So let’s
change our Ajax call so that new entries are appended to the top of the container:

new Ajax.Updater('breakfast_history', 'breakfast.php', {

insertion: 'top', method: 'get',

parameters: { food_type: 'waffles', taste: 'delicious' }

});

Run this code and you’ll see your new entry added to the top of the list, as in
Figure 4-13. Each time you run this code, in fact, a new li will be added to the top of
your ul container.

Figure 4-13. New entries appear at the top.

Handling Errors

Our breakfast.php script works, but it’s not exactly battle-tested. It naively assumes that
each request will have the two pieces of information it wants. What if something goes
wrong? What if our scrambled eggs fail to be tabulated? We need to work out some sort of
code between client and server to handle situations like these.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 67

Actually, it’s been worked out for us. Each HTTP request has a status code that indi-
cates whether everything went well or not. The standard success response is 200, which
means “OK,” although most web surfers are more familiar with 404 (File Not Found),
since one usually isn’t shown the status code until something goes wrong.

The first digit of an HTTP status code tells you what kind of message this is going
to be. Codes starting with 2 are all various forms of success codes, 3 signifies a redirect,
4 means the request was faulty somehow, and 5 means that the server encountered an
error.

This is just what we need. Our script can check for the presence of food_type and
taste as query parameters. If it doesn’t find them, it can return an error status code
instead of the typical 200. And it can use the content of the response to present a friend-
lier error message to the user.

PHP lets us do this rather easily.

<?php

// make a human-readable date for the response

$time = date("g:i a \o\\n F j, Y", time());

if (!isset($_REQUEST['food_type']) || !isset($_REQUEST['taste'])) {

header('HTTP/1.0 419 Invalid Submission');

die("At ${time}: Whoa! Be more descriptive.");

}

$food_type = strip_tags($_REQUEST['food_type']);

$taste = strip_tags($_REQUEST['taste']);

?>

At <?= $time ?>, I ate <?= $taste ?>

<?= $food_type ?>.

The 419 error code isn’t canonical—we just made it up. But Apache delivers this code
just fine, and Prototype properly recognizes it as an error code.

Test this in your browser. Open up breakfast.php directly, just like you did before—
but this time leave one of the parameters out of the URL (see Figure 4-14):

http://your-server.dev/breakfast.php?food_type=waffles

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION68

Figure 4-14. Our error is a success!

As expected, the response (shown in Figure 4-14) tells us that we weren’t forthcoming
enough about the waffles we just ate. We can’t actually see the status code this way, but
we can if we request the URL through Ajax instead. So go back to index.html and run the
Ajax.Updater call once more—but this time remove one of the parameters from the
options hash. (Figure 4-15 shows the result.)

new Ajax.Updater('breakfast_history', 'breakfast.php', {

insertion: 'top',

parameters: { food_type: 'waffles' }

});

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 69

Figure 4-15. Proper error reporting

Firebug, ever helpful, shows you that something went wrong with the request—it
makes the URL red and adds the status code to the end of the line, as shown in Figure 4-16.

Figure 4-16. Firebug shows the status code when an error occurs.

So our omission of taste information is being reported as an error, just like we want.
But our JavaScript code doesn’t yet treat errors differently from successful responses. We
need to separate the two if we want errors to stand out to the user.

So let’s create a new ul, this one for errors. We can style the two containers differently
and give them headings so that the user knows they’re two different groups of things.
Make these changes to index.html and view the results in Figure 4-17:

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION70

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Andrew's Breakfast Log</title>

<style type="text/css" media="screen">

#breakfast_history {

color: green;

border: 1px solid #cfc;

padding: 5px 0 5px 40px;

}

#error_log {

color: red;

border: 1px solid #edd;

padding: 5px 0 5px 40px;

}

</style>

<script src="prototype.js" type="text/javascript"></script>

</head>

<body>

<h1>Andrew's Breakfast Log</h1>

<h2>Breakfast History</h2>

<ul id="breakfast_history">

<h2>Errors</h2>

<ul id="error_log"></div>

</body>

</html>

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 71

Figure 4-17. Slightly less ugly

We’re almost there. The last part is the easiest because it’s built into Ajax.Updater.
Instead of designating one container to update, you can designate two: one for successful
requests and one for unsuccessful requests. The conventions followed by HTTP status
codes make it easy to figure out what’s an error and what’s not.

new Ajax.Updater({ success: 'breakfast_history', failure: 'error_log' },

'breakfast.php', { insertion: 'top',

parameters: { food_type: 'waffles' }

});

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION72

Victory! As Figure 4-18 shows, bad requests show up bright red in the error log.

Figure 4-18. Errors now look like errors.

Now put that taste parameter back into the statement and watch your valid request
appear in a pleasing green color, as shown in Figure 4-19.

new Ajax.Updater({ success: 'breakfast_history', failure: 'error_log' },

'breakfast.php', { insertion: 'top',

parameters: { food_type: 'waffles', taste: 'delicious' }

});

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 73

Figure 4-19. Valid entries now look valid.

Example 2: Fantasy Football

It’s time to talk about the site we’ll be building together over the course of this book.
JavaScript has a place on many different kinds of sites, but web applications are espe-
cially ripe for applying the topics we’ll cover in the pages ahead. So let’s build a site that
people need to use, rather than just read. We’ll build the sort of site that Ajax can have
the greatest impact on.

The App

For the next few chapters, we’ll be building a fantasy football site. For those who don’t
know (apologies to my non-American readers), fantasy football is a popular activity
among followers of professional American football. Here’s fantasy football in a nutshell:

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION74

• A group of friends will form a league, “draft” certain real-life players, and earn
points each week based on the in-game performances of these players. The mem-
bers of the league, called “owners,” have duties much like the coaches and man-
agers of real-life football teams: they can make trades, sign free agents, and decide
who plays and who sits on the bench (“starters” and “reserves”).

• Each week, a fantasy team will compete against another fantasy team to see who
can score more points. (Nearly all pro football games are played on Sunday; nearly
all pro teams play every single week.) Owners must decide who to start by predict-
ing which of their players will score the most points. This can vary from week to
week based on real-life match-ups, injuries, and other factors.

• A fantasy team earns points whenever one of its starters does something notable
in his real-life game. For instance, when a player scores a touchdown in a game,
any fantasy football owners who started him that week will earn points. Players
also earn points for rushing yardage (advancing the ball on the ground), passing
yardage (advancing the ball through the air), and field goals (kicking the ball
through the uprights). Scoring systems vary from league to league, but these
activities are the ones most often rewarded.

• Fantasy football has been around for several decades, but was far more tedious
before computers; owners would have to tabulate their scores manually by reading
game results in the newspaper. The Web eliminated this chore, thus causing an
explosion in the game’s popularity. The National Football League (NFL), America’s
top professional league, even offers free fantasy football on its own web site.

If none of this makes sense to you, don’t worry. All you need to know is that we’re
building a web application that will need plenty of the bells and whistles we’ll be covering
in the chapters ahead.

The League

Most “reliable sources” state that American football originated in the United Kingdom
sometime in the 1800s as an offshoot of rugby. This assertion, while “true,” is breathtak-
ingly dull. Wouldn’t it be much more interesting if American football had, in fact, been
conceived of by the nation’s founding fathers? Wouldn’t you be fascinated to learn that,
during the framing of the Constitution, members of the Congress of the Confederation
often resolved disputes by advancing an oblong ball down a grassy field on the outskirts
of Philadelphia?

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 75

There are no surviving documents that tell us the makeup of the teams, nor the out-
comes of the games, but a thorough reading of the US Constitution gives us hints. And
so every year a small group of New England football lovers holds reenactments of these
games, complete with costumes and pseudonyms, to pay tribute to the unrecognized
progenitors of American football. (And you thought Civil War reenactments were crazy.)

This folk tale, even though I just made it up, allows us to proceed with the fantasy
football concept without using the names of actual football players—thus sparing me the
wrath of the NFL Players’ Association, which regulates the use of NFL players’ names. So
it’s a win-win scenario. I avoid a lawsuit; you receive a fun history lesson.

The Scoring

Scoring varies from league to league, but leagues tend to award points when a player
does something good for his team. Thus, the players with the best individual statistics
are often the highest-scoring fantasy players. Some leagues also subtract points when a
player makes a mistake in a game—throwing an interception, for instance, or fumbling
the ball.

For simplicity’s sake, our league will feature six starting slots per team: one quarter-
back, two running backs, two wide receivers, and one tight end. These are all offensive
players that accrue stats in a way that’s easy to measure.

Table 4-1 shows the tasks that will earn points in our league.

Table 4-1. League Scoring Table

Task Typical Position Points

Throwing a touchdown pass QB (quarterback) 4

Catching a touchdown pass WR (wide receiver), TE (tight end), RB (running back) 6

Rushing for a touchdown RB, QB 6

Every 25 passing yards QB 1

Every 10 rushing yards RB, QB 1

Every 10 receiving yards WR, TE, RB 1

The Stats

And now, finally, we come to this chapter’s task. The most important page on a fantasy
football site is the box score page—the page that shows the score for a given match-up.

Our target user, the avid fantasy football owner, keeps a close eye on the box score
every Sunday during football season. He needs a page that can do the following things:

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION76

1. Show him the score of the game in a way that he can tell whether he’s winning or
losing at a glance.

2. Show him his roster and his opponent’s roster. Alongside each player should be
the number of points he’s scored and a summary of what he’s done in his pro
game to earn those points. When the owner’s score changes, he should be able
to tell which of his players just earned points for him.

3. Show him the scores of the other games in his league. Clicking a particular score
should take him to the match-up for that game, where he can view the results in
greater detail.

4. Keep the score current without needing a page refresh. This page will be open
all day.

The first three requirements need to be addressed in the interface. We’ll come
back to those in the next few chapters. But the last one—updating the content without
refreshing—is, quite literally, what Ajax was made for.

Let’s translate this into technical requirements:

1. We’ll need to use Ajax to refresh the game stats without reloading the page. This
means we’ll also need a URL that, when requested, will return game stats.

2. The client will send out an Ajax request every 30 seconds to ask the server for
new stats.

3. The whole site runs on stats, so other pages we build will also need this infor-
mation. So the data should be sent in an abstract format. The client-side code
we write will determine how to format the data for display.

4. For the preceding reason, the client needs to know how to interpret the data it
receives. Let’s have the server return the stats as JSON; it will be easy to parse in
JavaScript.

5. The client should figure out when and how to alert the user to score changes.
In other words, it’s the client’s job to compare the new stats to the previous stats
to figure out what’s different.

Knowing what we need is one thing; putting it all together is another. Naturally, we’ll
be focusing on the client side, but the client needs to talk to something so that we can
ensure our code works right.

But we don’t have any real stats; our fictional league’s season hasn’t started yet. So
we’ll have to fake it.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 77

Mocking

Think of the client and server as humans. The JavaScript we write deals only with the
browser; to make an Ajax call, our code has to ask the browser to make an external
request and hand over the response when it’s ready. Imagine Alice walking into a room
and telling Bob to make a phone call for her. Bob calls Carol, has a quick conversation,
and then hangs up and tells Alice what Carol said.

But Alice has no direct contact with Carol. If Bob wanted to, he could turn around,
pick up the phone, pretend to dial a number, pretend to have a conversation, hang up,
and tell Alice whatever he feels like. The whole thing’s a ruse, but Alice is none the wiser.

In the real world, this would be dishonest and unwise behavior. In the computer
world, it helps us build our app faster. Lying to your code shouldn’t make you feel bad.

The code we write will make a request to a certain URL every 30 seconds; it will
expect a JSON response that follows a certain format. But it doesn’t need to know how
those stats are retrieved; that’s the job of the server.

For testing purposes, we need a stream of data that behaves the way a real stream
would during game day: games start out with no score, but points are amassed over time
as real-life players do good things.

So let’s write a script that will generate some mock stats for us. This script can be told
which stats to report at any given time. It can behave the way real stats would.

We’ll be using PHP, but the basic idea is the same for any language. Here’s how it
will work:

1. We define several classes—one or two for each position. These will represent the
players. Each will score at a different rate.

2. We’ll have stats running on a 10-minute cycle, after which every score will reset.
This may seem like a short cycle—and, indeed, it’s much shorter than a real foot-
ball game—but a shorter cycle only helps us develop more quickly.

3. We’ll tell each class how to report its own score based on the current time and the
pace of scoring we’ve set.

We’ll write as little code as possible in order to get this done. This won’t be a part of
the final site, so it doesn’t have to be pretty; it just has to work.

The Data

Since PHP 5.2, when the JSON module was first included in a default PHP installation, it
has been easy to encode and decode JSON in PHP. The json_encode function is part of the
core language:

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION78

$data = array(

"QB" => "Alexander Hamilton",

"RB" => "John Jay",

"WR" => "James Madison"

);

json_encode($data);

//-> '{ "QB": "Alexander Hamilton", "RB": "John Jay", "WR": "James Madison" }'

This works with nested arrays as well (arrays that contain arrays):

$teams = array(

"team1" => array(

"QB" => "Alexander Hamilton",

"RB" => "John Jay",

"WR" => "James Madison"

),

"team2" => array(

"QB" => "George Washington",

"RB" => "John Adams",

"WR" => "John Hancock"

)

);

json_encode($teams);

//-> '{

//-> "team1": {

//-> "QB": "Alexander Hamilton",

//-> "RB": "John Jay",

//-> "WR": "James Madison"

//-> },

//-> "team2": {

//-> "QB": "George Washington",

//-> "RB": "John Adams",

//-> "WR": "John Hancock"

//-> }

//-> }'

This is great news. It means we can create a data structure using nested associative
arrays (PHP’s equivalent to JavaScript’s Object type), waiting until the very last step to
convert it to JSON.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 79

So let’s decide on a structure for the data we’ll receive. Hierarchically, it would look
something like this:

• Team 1

• Score

• Players

• Yards

• Touchdowns

• Score

• Summary

• Team 2

• Score

• Players

• Yards

• Touchdowns

• Score

• Summary

In pure JavaScript, we would build this with nested object literals. Since we’re in PHP,
though, we’ll use associative arrays.

If you’re using a different server-side language, don’t worry—JSON libraries exist for
practically every commonly used programming language. The concept is the same.

The Code

Let’s figure out how to keep track of the time, since that’s the most important part. We
don’t care what the time is in absolute terms; we just care about setting milestones every
10 minutes, and then checking how long it has been since the last milestone. Sounds like
a job for the modulus operator.

// figure out where we are in the 10-minute interval

$time = time() % 600;

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION80

PHP’s time function gives us a UNIX timestamp (the number of seconds since Janu-
ary 1, 1970). There are 600 seconds in 10 minutes, so we divide the timestamp value by
600 and take the remainder. This will give us a value between 0 and 599.

First, we grab the timestamp. All we’re looking for is a number from 0 to 600 (telling
us where we are in the 600-second cycle), so we’ll use the modulus operator on a stan-
dard UNIX timestamp.

All player classes will need this value, so we’ll write a base Player class that will define
the time instance variable.

class Player {

var $time;

function Player() {

global $time;

$this->time = $time;

}

}

In PHP, we make a constructor by defining a function with the same name as its class.
So the Player function will get called whenever we declare a new Player (or any class that
descends from Player). All this constructor does is store a local copy of $time. (Pulling in
$time as a global is a little sloppy, but it’s quicker.)

Now, by writing position-specific classes that extend Player, we can do different
things with the time variable in order to report different stats. These classes will have
two things in common:

• Each will define a stats method that will return the player’s stats thus far in the
10-minute cycle.

• The stats will be returned in array form, with fields for yards, touchdowns, fantasy
points scored, and a text summary of the player’s performance. This structure will
be converted to JSON when it’s sent over the pipeline.

A quarterback would slowly accrue passing yards over a game—with the occasional
touchdown pass in between. Since we’re compressing a whole game’s statistics into a
10-minute period, we should set a faster pace.

// QB throws for 10 yards every 30 seconds

// and a touchdown every 4 minutes.

class QB extends Player {

function stats() {

$yards = floor($this->time / 30) * 10;

$tds = floor($this->time / 240);

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 81

return array(

"yards" => $yards,

"TD" => $tds,

"points" => floor($yards / 25) + (4 * $tds),

"summary" => $yards . " yards passing, " . $tds . " TD"

);

}

}

We’re extending the Player class, so we get its constructor for free. All we have to
define, then, is the stats method. To get a score from this class, you need only declare
a new instance and call this method.

$time = 430; // let's say

$qb = new QB();

$qb->score ();

//-> array(

//-> "yards" => 140

//-> "TD" => 1,

//-> "points" => 9,

//-> "summary" => "140 yards passing, 1 TD"

//->)

Now we’ll do the same for the running back and wide receiver. But, since a team
starts two running backs and two wide receivers (as opposed to starting one quarter-
back), we should make two different classes for each of these positions. That way, by
mixing and matching which combinations start for which team, we can introduce
some variation in the scoring.

// RB1 runs for 5 yards every 30 seconds and scores at minute #6.

class RB1 extends Player {

function stats() {

$yards = floor($this->time / 30) * 5;

$tds = floor($this->time / 360);

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION82

return array(

"yards" => $yards,

"TD" => $tds,

"points" => floor($yards / 10) + (6 * $tds),

"summary" => $yards . " yards rushing, " . $tds . " TD"

);

}

}

// RB2 runs for 5 yards every 40 seconds and does not score.

class RB2 extends Player {

function stats() {

$yards = floor($this->time / 40) * 5;

return array(

"yards" => $yards,

"TD" => 0,

"points" => floor($yards / 10),

"summary" => $yards . " yards rushing, 0 TD"

);

}

}

// WR makes one catch every minute for 15 yds and scores at minute #4.

class WR1 extends Player {

function stats() {

$yards = floor($this->time / 60) * 15;

$tds = $this->time > 240 ? 1 : 0;

return array(

"yards" => $yards,

"TD" => $tds,

"points" => floor($yards / 10) + (6 * $tds),

"summary" => $yards . " yards receiving, " . $tds . " TD"

);

}

}

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 83

// WR makes one catch every 2 minutes for 25 yds and does not score.

class WR2 extends Player {

function stats() {

$yards = floor($this->time / 120) * 25;

return array(

"yards" => $yards,

"TD" => 0,

"points" => floor($yards / 10),

"summary" => $yards . " yards receiving, 0 TD"

);

}

}

These classes all return data in the same format. They only differ in the “script” they
follow—the way they turn that original $time value into a point total.

Each team will start only one tight end, so we needn’t bother with more than one
“version” of tight end.

// TE makes one catch at minute #8 for a 20-yard TD.

class TE extends Player {

function stats() {

$yards = $this->time > 480 ? 20 : 0;

$tds = $this->time > 480 ? 1 : 0;

return array(

"yards" => $yards,

"TD" => $tds,

"points" => floor($yards / 10) + (6 * $tds),

"summary" => $yards . " yards receiving, " . $tds . " TD"

);

}

}

There’s only one thing left to do: organize these players into teams. At the bottom of
scores.php, we’ll add the code to do this and output to JSON.

// Adds a player's score to a running total; used to

// compute a team's total score

function score_sum($a, $b) {

$a += $b["points"];

return $a;

}

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION84

$qb = new QB();

$rb1 = new RB1();

$rb2 = new RB2();

$wr1 = new WR1();

$wr2 = new WR2();

$te = new TE();

$team1 = array();

// team 1 will score more points, so we give it

// the better "versions" of RB and WR

$team1["players"] = array(

"QB" => $qb->stats(),

"RB1" => $rb1->stats(),

"RB2" => $rb1->stats(),

"WR1" => $wr1->stats(),

"WR2" => $wr1->stats(),

"TE" => $te->stats()

);

// take the sum of all the players' scores

$team1["points"] = array_reduce($team1["players"], "score_sum");

$team2 = array();

// team 2 will score fewer points, so we give it

// both "versions" of RB and WR

$team2["players"] = array(

"QB" => $qb->stats(),

"RB1" => $rb1->stats(),

"RB2" => $rb2->stats(),

"WR1" => $wr1->stats(),

"WR2" => $wr2->stats(),

"TE" => $te->stats()

);

// take the sum of all the players' scores

$team2["score"] = array_reduce($team2["players"], "score_sum");

// deliver it in one large JSON chunk

echo json_encode(array("team_1" => $team1, "team_2" => $team2));

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 85

To paraphrase Blaise Pascal: I apologize for writing a long script, but I lack the time to
write a short one. We could have taken the time to write more elegant code, but why? This
script doesn’t need to be maintainable; it just needs to work. And football season is fast
approaching. Better to take extra care with the code that the general public will see.

Testing It Out

It will be easy to see whether our script works—we need only open it in a browser. Fire up
Firefox and type the URL to your scores.php file.

If all goes well, you should see some JSON on your screen (see Figure 4-20).

Figure 4-20. The raw data generated by our script

The numbers on your screen will vary from those in Figure 4-20. Because they run off
a 10-minute cycle, the last digit of your system time (in minutes) is the factor—the closer
it is to 0, the closer the scores will be to 0. Reload your page in 30 seconds and some of
the scores will increment—and will continue to increment until that minute hand hits
another multiple of 10, at which time the scores will all go back to 0.

We have spent a lot of time on scores.php, but it will save us much more time later
on. We’ve just written a simulation of nearly all the data our site needs from the outside
world.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION86

Making an Ajax Call

Finally, we come to the Ajax aspect of this example. Create a blank index.html file in the
same directory as your scores.php file. It shouldn’t be completely empty—make sure it
loads prototype.js—but it doesn’t need any content. From here we can use the Firebug
shell to call our PHP script and look at the response.

Open index.html in a browser, and then open the Firebug console and type the
following:

var request = new Ajax.Request("scores.php");

Firebug logs all the details about the Ajax request, as shown in Figure 4-21.

Figure 4-21. Our Ajax request in the Firebug console

Expand this line, and then click the Response tab (see Figure 4-22).

Figure 4-22. The same data we saw in Figure 4-20

There’s our JSON, brackets and everything. Typing request.responseText into the
Firebug console will give you the response in string form.

We can do better than that, though. Go back to the request details, and then switch
to the Headers tab. There are two sets of headers—request headers and response
headers—corresponding to the headers we sent out and the headers we got back, res-
pectively. The response headers should tell you that our JSON data was served with a
Content-type of text/html.

It’s not HTML, though; PHP just serves up everything as HTML by default. We can tell
our script to override this default. The de facto Content-type for JSON is application/json,
so let’s use that.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 87

Go back to scores.php (last time, I promise) and insert the following bold line near
the bottom:

// deliver it in one large JSON chunk

header("Content-type: application/json");

echo json_encode(array("team_1" => $team1, "team_2" => $team2));

This call to the header function will set the proper Content-type header for the
response.

■Caution You must call the header function before any output has been placed in the response. This
includes anything printed or echoed, plus anything that occurs in your script before the PHP start tag
(<?php). Even line breaks count as output.

Save your changes, and then go to the Firebug console. Press the up arrow key to
recall the last statement you typed, and then press Enter. Inspect the details of this
request and you’ll notice that the Content-type has changed to application/json.

Why did we bother with this? It’s not just a compulsion of mine; I promise. When
Prototype’s Ajax.Request sees the application/json content type, it knows what sort of
response to expect. It unserializes the JSON string automatically, creating a new property
on the response. To prove it, we’ll try one more statement in the Firebug console. (You
may want to switch to multiline mode for this one.)

var request = new Ajax.Request("scores.php", {

onSuccess: function(request) {

console.log(request.responseJSON);

}

});

Run this statement; then watch a miracle happen in your console (see Figure 4-23).

Figure 4-23. Our data. But it’s no longer raw.

Egad! That looks like our data. Click the bottom line to inspect the object—the JSON
response has been converted to Object form automatically.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION88

Let’s recap what we’ve learned about the different Ajax response formats:

• All requests, no matter what the Content-type of the response, bear a responseText
property that holds a string representation of the response.

• Requests that carry an XML Content-type bear a responseXML property that holds
a DOM representation of the response.

• Prototype extends this pattern to JSON responses. Requests that carry a JSON
Content-type bear a responseJSON property that holds an Object representation of
the response.

The responseJSON property, while nonstandard, is the natural extension of an existing
convention. It simplifies the very common pattern of transporting a data structure from
server to client, converting the payload into the data type it’s meant to be.

Summary
The code you’ve written in this chapter demonstrates the flexible design of Prototype’s
Ajax classes—simple on the surface, but robust on the inside. As the examples went from
simple to complex, the amount of code you wrote increased in modest proportion.

You typed all your code into Firebug because you’re just starting out—as you learn
about other aspects of Prototype, we’ll mix them in with what you already know, thus
pushing the examples closer and closer to real-world situations. The next chapter, all
about events, gives us a big push in that direction.

CHAPTER 4 ■ AJAX: ADVANCED CLIENT/SERVER COMMUNICATION 89

Events

If you’re a fan of the absurd, bizarre, and overcomplicated—and you must be if you
write JavaScript—you’re probably familiar with Rube Goldberg machines. Named for
their cartoonist creator, these ad hoc, convoluted contraptions humorously obfuscate
simple processes like flipping a light switch or opening a door. They paint a picture of
a parallel universe where simple tasks are complicated.

I’m drawn to Goldberg machines because they’re the opposite of how things work in
everyday life. Usually we dream of an ideal world where things that seem simple actually
are simple, without reality stubbornly standing in the way.

Browser-based, event-driven interfaces should be simple. Highlight an element when
the user clicks on it. Disable a submit button after a form has been submitted. But reality is
harsh in the world of web development. Writing event handlers can feel like building an
elaborate set of pulleys to open a window.

In an unyielding quest to help client-side developers manage this complexity, Proto-
type sports a robust event system—one that makes simple things simple and complex
things possible.

State of the Browser (Or, How We Got Here)
I feel like a broken record—browser wars, lack of specifications, Netscape did one thing,
Internet Explorer did another. It bears repeating because we’re still feeling the effects
10 years later.

Rather than subject you to a bland history lesson, though, I’ll recap through code.

Pre-DOM, Part 1

Let’s travel back in time to 1996—the heyday of Netscape 2.0, the first version to imple-
ment JavaScript. Back in the day, this was how you assigned events:

<input type="submit" value="Post" onclick="postBreakfastLogEntry();">

91

C H A P T E R 5

The event assignment was just another attribute in the HTML. On its face, this is a
simple and straightforward way to assign events: it makes simple things simple. Unfor-
tunately, it also makes complex things damn near impossible.

First: note that we’re inside a pair of quotation marks. What if we need to use quota-
tion marks in our code?

<input type="submit" value="Post"

onclick="postBreakfastLogEntryWithStatus(\"draft\");">

We could use single quotes instead, but that’s just a band-aid. With sufficiently com-
plex code, we’d be forced to escape quotation marks. By itself it’s not a big deal—just an
illustration of how HTML and JavaScript don’t mix well.

Second, what if we need to assign the event to a bunch of different things?

<input type="submit" value="Save as Draft"

onclick="postBreakfastLogEntryWithStatus('draft');">

<input type="submit" value="Save and Publish"

onclick="postBreakfastLogEntryWithStatus('published');">

<input type="submit" value="Discard"

onclick="postBreakfastLogEntryWithStatus('discarded');">

That’s a lot of typing—and a lot of code duplication for something that should be
much easier. DOM scripting makes it trivial to work with arbitrary collections of ele-
ments. Why, then, are we writing copy-and-paste HTML to solve this problem?

Pre-DOM, Part 2

Such scary times. Let’s jump ahead one year and assign events the way Netscape 3.0 lets
us: in pure JavaScript.

// HTML:

<input type="submit" value="Save and Publish" id="save_and_publish">

// JavaScript:

var submitButton = document.getElementById('save_and_publish');

submitButton.onclick = postBreakfastLogEntry;

Here we’re doing what the previous example only hinted at. Event handlers (onclick,
onmouseover, onfocus, etc.) are treated as properties of the node itself. We can assign a
function to this property—passing it a reference to a named function or declaring an
anonymous function on the spot.

CHAPTER 5 ■ EVENTS92

Now it’s much more elegant to assign the same handler to a bunch of elements:

$('save_and_publish', 'save_as_draft', 'discard').each(function(button) {

button.onclick = postBreakfastLogEntry;

});

But if we assign one function to a bunch of different elements, how do we figure out
which one received the event?

In this example, our postBreakfastLogEntry function should receive an event object as
its first argument—one that will report useful information about that event’s context. Just
as you can inspect a letter and know its post office of origin, an event handler is able to
inspect an event and know what type it is, where it came from, and what should be done
with it.

function postBreakfastLogEntry(event) {

var element = event.target;

if (element.id === 'save_and_publish')

saveAndPublish();

/* ...et cetera */

}

Unfortunately, events have never been quite this simple. This is a portrayal of an
ideal simplicity—not on Earth, but in a parallel universe where the adversarial and fast-
moving browser market didn’t make simplicity impossible. The real-world example
would look like this:

function postBreakfastLogEntry(event) {

event = event || window.event;

var element = event.target || event.srcElement;

if (element.id === 'save_and_publish')

saveAndPublish();

/* ...et cetera */

}

The browser wars were in full swing by 1997. Hasty to add differentiating features
to their own products, and working in an area where a standards body had not yet
claimed authority, Internet Explorer and Netscape developed event models that were
alike enough to seem compatible, but still different enough to cause maximum confu-
sion and headaches.

Ten years later, the landscape is not all that different. But instead of Internet Explorer
versus Netscape, it’s Internet Explorer versus the standards. The other three major
browsers have all adopted DOM Level 2 Events, the 2000 specification that finally

CHAPTER 5 ■ EVENTS 93

brought some authority to the discussion, but as of version 7, Internet Explorer still uses
its proprietary event model.

The strides web applications have made in the last decade only call more attention to
this problem: writing cross-browser event code is just as hard now as it was in 1997. Hav-
ing to reconcile these differences—in property names, in event assignment, and in the
event types themselves—is the mental mildew that makes simple things hard.

Events: The Crash Course
Let’s go back to our site from the previous chapter. So far, we’ve neglected the UI (i.e.,
there is none). Unless we want our breakfast loggers to type all their commands into the
Firebug console, we’ll have to build a simple form for adding entries to the log.

In between chapters, I took the liberty of writing some CSS to make our page a little
less ugly (see Figure 5-1).

Figure 5-1. Lipstick on the pig

Open up index.html and follow along. (Feel free to style your version in whatever
manner you choose.)

CHAPTER 5 ■ EVENTS94

We’re collecting two pieces of information: what the user ate and how good it was.
The form practically writes itself.

<h1>Log Your Breakfast</h1>

<form id="entry" method="post" action="breakfast.php">

<p>

I just ate <input type="text" id="food_type" name="food_type"

size="15" />.

My meal was <input type="text" id="taste" name="taste" size="15" />.</p>

<input type="submit" name="submit" value="Post Entry" />

</form>

The hardest part has already been done. Remember that we already have a
breakfast.php script, one that expects a form submission containing these two fields.

Insert this markup at the bottom of index.html, and your page should look something
like Figure 5-2.

Figure 5-2. Our form doesn’t do anything yet, but it looks nice.

CHAPTER 5 ■ EVENTS 95

Now let’s start writing some JavaScript! First we’re going to create a new file called
breakfast.js and include it from index.html. Separating HTML from JavaScript, putting
each in its own file, will stave off the urge to write spaghetti code.

File: index.html

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Andrew's Breakfast Log</title>

<link rel="stylesheet" href="breakfast.css" type="text/css" />

<script src="prototype.js" type="text/javascript"></script>

<script src="breakfast.js" type="text/javascript"></script>

</head>

...

Because we’ll be writing code that uses parts of Prototype, we must include our
new script at the end. (Remember, Prototype should be the first script you include on
your page.)

There’s nothing in breakfast.js yet, so let’s fix that. We need to write the function that
will get called when the form is submitted. Then we’ll write the glue to connect it to the
actual event.

function submitEntryForm() {

var updater = new Ajax.Updater({

success: 'breakfast_history', failure: 'error_log'

}, 'breakfast.php',

{ parameters: { food_type: $('food_type').value, taste: $('taste').value } });

}

This code is almost identical to the code we wrote in the last chapter. Only one
thing has changed: instead of specifying the values directly, we look up the values of
the two text boxes. There are many ways to hook into these values, but an ID lookup
is the quickest.

Now the glue. It won’t take much code to connect the function and the event—we
can use Prototype’s observe method:

$('entry').observe('submit', submitEntryForm);

CHAPTER 5 ■ EVENTS96

The first argument indicates what we’re listening for—we want to run this code when
our form is submitted. The second argument is our responder—the name of the function
that will get called when the form’s submit event fires.

Add the submitEntryForm function and the observe call to breakfast.js. Save, go back
to your browser, reload the page, and . . . what? Error? (See Figure 5-3.)

Figure 5-3. Guh?

Of course it’s defined! It’s right there on the page! I’m staring straight at it!
Firebug can tell us what went wrong. Select the Script tab, click Options, and then

click Break on All Errors. This way you’ll know exactly when that error happens.
Reload the page. Almost immediately the page load will halt, as Firebug points you

to the offending line (see Figure 5-4).

Figure 5-4. When Break on All Errors is on, any error in your code is treated as a debugger
breakpoint.

CHAPTER 5 ■ EVENTS 97

The Script tab is Firebug’s JavaScript debugger. We’ve just set a breakpoint, paus-
ing the evaluation of scripts (and rendering in general) at a certain spot. From here,
we can resume the page load, step through functions one by one, and even use Fire-
bug’s console.

But right now we don’t need to do any of that—the screen tells us all we need to
know. Notice how the viewport is empty. None of our content is there. At the time we
tried to set the event, the element we were referencing hadn’t yet been created.

This is an easy trap to fall into. Script tags are typically placed in the head of an
HTML document. In the common case where a script needs to modify stuff in the
body of a document, it’s got to wait.

OK, new plan—we’ll add our listeners when the document is fully loaded, so that we
can be sure that the entire DOM tree is at our disposal. Take the offending line of code
and place it inside a function:

function addObservers() {

$('entry').observe('submit', submitEntryForm);

}

Now we can set this function to run when the page loads using the load event:

Event.observe(window, 'load', addObservers);

Make these changes to breakfast.js, and then reload the page. Our error is gone—
and, more to the point, the Ajax form submission works this time! Wait, no. Never mind.
Something else is wrong (see Figure 5-5).

What could be causing this? The only thing on the page is the HTML fragment that
should’ve been injected into our other page.

Look at the address bar. When we submitted the form, the browser went to break-
fast.php, the URL in the form’s action attribute. Following that URL is the submit event’s
default action.

That means we’re at fault again. When we submitted the form, submitEntryForm was
called as we intended. But we didn’t hijack the submit event; we just listened for it. If we
want to suppress this default action, we must explicitly say so.

CHAPTER 5 ■ EVENTS98

Figure 5-5. This is the HTML fragment we wanted, but it’s on its own page.

Using Event#stopPropagation, Event#preventDefault,
and Event#stop

To pull this off, we’re borrowing a couple of methods from the DOM2 Events spec.
Internet Explorer doesn’t support these events natively, but we can fake it on the fly—
augmenting Internet Explorer’s event object with instance methods the same way we
augment DOM nodes with instance methods.

First, we add an event argument to our handler so that we can use the event object.
(We could have done this from the start, but we didn’t have a use for it until just now.)
Then, at the end of the handler, we tell the event not to do what it had originally planned.

function submitEntryForm(event) {

var updater = new Ajax.Updater({

success: 'breakfast_history', failure: 'error_log'

}, 'breakfast.php',

{ parameters: { food_type: $('food_type').value, taste: $('taste').value } });

event.preventDefault();

}

CHAPTER 5 ■ EVENTS 99

Prototype gives you two other methods to control the flow of events:

• Normally, events start deep in the DOM tree and “bubble” up to the top (e.g., click-
ing a table cell will also fire an event in that cell’s table row, in the table body, in the
table, in the table’s parent node, and so on all the way up to window). But you can
halt the bubbling phase using the stopPropagation method.

• When you need to stop the event from bubbling and prevent the default action,
use Prototype’s custom stop method. It’s a shortcut for calling both stopPropagation
and preventDefault.

OK, let’s try one more time. Reload index.html and try to submit a breakfast log (see
Figure 5-6).

Figure 5-6. Finally, we can submit meal information without having to reload the page!
Eureka!

That was easy, right? Right?
Be aware: The behavior layer of web development (JavaScript) is far more complex

than the structural layer (HTML) or the presentational layer (CSS). Ordinary web pages

CHAPTER 5 ■ EVENTS100

are snapshots—the server sends it, the browser renders it, and it’s done. Pages that make
use of JavaScript, however, have some aspect of mutability to them. The page may be
loaded, but it’s never done.

You will run into problems like the ones we encountered in this example. You will
make mistakes simply because all this may be new and unfamiliar. Don’t get discour-
aged! Rely on your tools—Firebug, Microsoft Script Debugger, and even the trusty alert
dialog—to get you out of the quagmire.

A Further Example

We’ll keep coming back to events in subsequent chapters, since they’re a part of every-
thing you do in DOM scripting. But let’s add just one more thing to our page.

Being able to post entries without leaving the page is quite handy, but what if you’re
just there to read your old entries? In the interest of removing clutter, let’s hide the form
by default, showing it only if the user asks for it.

Let’s assign an id to the Log Your Breakfast heading so that we can grab it easily. Let’s
also write some CSS to make it feel more button-like and invite clicking.

// HTML:

<h2 id="toggler">Log Your Breakfast ↓</h2>

// CSS:

#toggler {

cursor: pointer;

border: 2px solid #222;

background-color: #eee;

}

We also want the form to be hidden when the page first appears, so let’s add a
handler that will hide the form when the page loads:

Event.observe(window, "load", function() { $('entry').hide(); });

And the last ingredient is a handler for the new link’s click event:

function toggleEntryForm(event) {

$('entry').toggle();

event.preventDefault();

}

The toggle method conveniently alternates an element between hidden and shown.
(In other words, it will show hidden elements and hide shown elements.) Note the use of

CHAPTER 5 ■ EVENTS 101

preventDefault—since we don’t want the browser to follow the link, we’ve got to suppress
the default action.

We can assign this event just like we assigned the other one—with our addObservers
function:

function addObservers() {

$('entry').observe('submit', submitEntryForm);

$('toggler').observe('click', toggleEntryForm);

}

Now two events will be assigned on page load. Save breakfast.js, reload index.html,
and marvel that this exercise was much easier than the last (see Figure 5-7).

Figure 5-7. Each click of the link will toggle the display state of the form.

Events and Forms
A whole group of events is devoted to the user’s interaction with form elements. These
can be tricky to manage, but they also stand to gain the most from UI enhancements.

Client-Side Validation

In Chapter 4, we wrote some PHP to check the submitted values on the server side. If the
user had left either field blank, the submission would have been invalid, and the server
would have sent back an error HTTP status code.

CHAPTER 5 ■ EVENTS102

We don’t need a server round-trip here, though. We can just as easily check whether
a field is blank on the client side. We want to code defensively, catching possible user
mistakes as early as possible.

We can perform this check when the form is submitted; we’ve already got a function
handling that event.

function submitEntryForm(event) {

event.preventDefault();

if ($('food_type').value === '' || $('taste').value === '') {

alert('Both fields are required.');

return;

}

var updater = new Ajax.Updater(

{ success: 'breakfast_history', failure: 'error_log' },

'breakfast.php',

{ parameters: { food_type: $('food_type').value, taste: $('taste').value } }

);

}

Our handler now branches. If the two fields we’re looking at are empty, we show a
message and stop; if not, we submit the form via Ajax. Either way, we want to stop the
default action of the form, so we move the event.preventDefault call to the top of the
function (see Figure 5-8).

Figure 5-8. The validation message we expected

CHAPTER 5 ■ EVENTS 103

This works just like we expected. But let’s try something a bit subtler. Imagine that
each of the text boxes has a state that’s either valid or invalid. At any point in time, it’s
either one or the other. Both text boxes need to be valid before the form is submitted.

Let’s write a CSS rule for an invalid text box:

input#food_type.invalid,

input#taste.invalid {

border: 2px solid #900;

}

So that we aren’t too subtle, an invalid text box will be shown with a thick red border.
When the page loads, both text boxes are empty, but neither one can be called

invalid yet, because the user hasn’t had a chance to enter text. But we know it’s definitely
invalid if the text box receives focus, then loses focus, and is still empty. That’s when we
should alert the user.

There’s an event for losing focus—it’s called blur. So let’s use it.

function onTextBoxBlur(event) {

var textBox = event.element();

if (textBox.value.length === 0) textBox.addClassName('invalid');

else textBox.removeClassName('invalid');

}

We use Prototype’s Event#element method to figure out which element received the
event. The method ensures that we get an element node as the target, not a text node.

When a text field is blurred, we make sure it has a nonempty value. If so, we add the
class name to mark it as invalid. If not, the field is valid, so we remove the class name.

We’re going to leave our submit handler the way it is, since the blur handler won’t
catch everything. But let’s change it to use the new approach.

function submitEntryForm(event) {

event.preventDefault();

var valid = true;

$('food_type', 'taste').each(function(box) {

if (box.value.length === 0) {

box.addClassName('invalid');

valid = false;

} else box.removeClassName('invalid');

});

if (!valid) {

alert('Both fields are required.');

return;

}

CHAPTER 5 ■ EVENTS104

var updater = new Ajax.Updater({ success: 'breakfast_history',

failure: 'error_log' }, 'breakfast.php',

{ parameters: { food_type: $('food_type').value, taste: $('taste').value } });

}

Don’t forget to attach the new handler. Add it to the addObservers function.

function addObservers() {

$('entry').observe('submit', submitEntryForm);

$('toggler').observe('click', toggleEntryForm);

$('food_type', 'taste').invoke('observe', 'blur', onTextBoxBlur);

}

Remember Enumerable#invoke? Here we’re using it to call the observe method on a
collection of two elements, passing the last two arguments in the process.

Now let’s do some functional testing to make sure this works right. Reload the page
in your browser.

First, try clicking the submit button immediately, before focus has been given to
either text box. Figure 5-9 shows the result.

Figure 5-9. Both text boxes are invalid.

Works as expected! Now click inside the food_type text box and type some text. Press
Tab to change focus, and notice how the red border disappears (see Figure 5-10).

CHAPTER 5 ■ EVENTS 105

Figure 5-10. Only the second text box is invalid.

Now click inside the food_type text box once again to give it focus. Delete the box’s
value, and then press Tab. The text box should once again have a red outline, as shown in
Figure 5-11.

Figure 5-11. Both text boxes are once again invalid.

You might consider all this redundant, since the server validates the data itself, but
keep in mind that the client-side and server-side validations serve different purposes.
The server is validating the data so that it can let the client know if the request was suc-
cessful; this is useful no matter how the breakfast log entry gets posted. The client is
validating the data so that it can present a helpful and humane UI. The two are not at
odds with one another.

Also, remember that client-side validation is not a replacement for server-side valida-
tion. Ideally, you’d do both, but validating data on the server is essential. You’re in control
of the server; you’re not in control of the client.

CHAPTER 5 ■ EVENTS106

Cleaning It Up

We could leave it like this, but if you’re code-compulsive like I am, you’ve probably
noticed several redundant lines of code. The check we’re doing inside submitEntryForm is
nearly identical to the one we’re doing inside onTextBoxBlur. By changing the way we
observe the form, we can easily combine these checks into one.

First, we’ll write a function that checks one text box for validity:

function validateTextBox(textBox) {

if (textBox.value.length === 0) {

textBox.addClassName('invalid');

return false;

} else {

textBox.removeClassName('invalid');

return true;

}

}

We’ll use the return value of this function to indicate whether the text box in question
is valid or invalid—true is valid; false is invalid.

Now we’ll write a function that checks the entire form for empty text boxes:

function validateForm(form) {

var textBoxes = Form.getInputs(form, 'text');

return textBoxes.all(validateTextBox);

}

The highlighted part introduces a new method: Form.getInputs. It accepts a form ele-
ment as the first parameter and returns all of the input elements contained within. The
second argument is optional; if present, it will return only inputs of the given type. Here
we want the form’s text boxes, so the second argument is "text".

Form.getInputs is also available as an instance method on form elements (e.g.,
form.getInputs('text');).

The second line gets a little tricky. Instead of using Array#each to iterate over the text
boxes, we’re using Array#all. Since validateTextBox returns a Boolean, we can look at the
return values to figure out whether all text boxes are valid. If so, the statement (and thus
the validateForm function) returns true; if not, false.

So, this function doesn’t just mark our text boxes; it also returns a “good data/bad
data” Boolean value. If the function returns false, we’ll know not to submit the form.

Now we can simplify the code in submitEntryForm:

CHAPTER 5 ■ EVENTS 107

function submitEntryForm(event) {

event.preventDefault();

if (!validateForm('entry')) return;

var updater = new Ajax.Updater(

{ success: 'breakfast_history', failure: 'error_log' },

'breakfast.php',

{ parameters: { food_type: $('food_type').value, taste: $('taste').value } }

);

}

Our new code does the same task more succinctly. If validateForm returns false, we
bail on the form submission so that the user can correct the errors (which have been
helpfully outlined in red). Otherwise we proceed as planned.

As a last step, we can rewrite the onTextBoxBlur function and save a couple lines
of code:

function onTextBoxBlur(event) {

return validateTextBox(event.target);

}

We’ve done more than clean up our code in this section; we’ve also eliminated
redundancy. Furthermore, the new code will continue to work even if we add extra text
boxes to the form later on. Make your code as flexible as possible—it will save time in
the long run.

Custom Events
I’ve saved the best part for last. Native browser events are purely reactive; they’re trig-
gered by user action. Wouldn’t it be great if we could harness the event model and use it
to make our own events?

Let’s go back to our fantasy football example. Imagine being able to trigger an “event”
in your code whenever the user changes his lineup, or whenever the lead changes in a
game. You’d also be able to write code that listens for those kinds of events and calls han-
dlers accordingly.

If I were to get academic on you, I’d call this an event-driven architecture. I could also
call it a publish/subscribe model (or pub/sub for short). No matter what I call it, the key
idea is the decoupling of publisher and subscriber. The code that responds to these kinds
of events doesn’t need to know how the event was triggered—the object sent along with
the event will contain all the necessary information.

I wouldn’t be telling you any of this, naturally, if it were a pipe dream. Prototype
introduced support for custom events in version 1.6. Using Prototype, you can fire

CHAPTER 5 ■ EVENTS108

custom events from anywhere in your code; you can also listen for custom events with
the same API that you’d use to listen for native browser events.

The First Custom Event

Prototype itself fires a custom event called dom:loaded. It fires at a specific time in the
page’s life cycle: after the page’s DOM tree is fully accessible to scripts, but before the win-
dow’s load event, which doesn’t fire until all external assets (e.g., images) have been fully
downloaded.

Use dom:loaded when you want to work with the DOM in that narrow window of
time before the page appears on the screen fully rendered. In nearly all cases, it’s better
to assign to dom:loaded than load—unless your handler depends upon having every-
thing downloaded and rendered.

This is also a good time to talk about the naming scheme for custom events. You’ve
probably noticed that dom:loaded, unlike native events, contains a colon. This is by
design—all custom events must contain a colon in their names. Since custom events are
handled differently under the hood, Prototype needs a way to distinguish them from
native browser events (which number in the hundreds if all major browsers are consid-
ered). Embrace the convention.

Broadcasting Scores

The data stream we built in Chapter 4 will power a large portion of our fantasy football
site. It would be wasteful and silly for each JavaScript component to make its own Ajax
requests, so let’s write some general code with the specific task of “asking” for scores
from the server, and then “announcing” these scores through some sort of public
address system.

Create a new file called score_broadcaster.js and place this code inside:

var ScoreBroadcaster = {

setup: function() {

this.executer = new PeriodicalExecuter(this.update.bind(this), 30);

this.update();

},

update: function() {

this.request = new Ajax.Request("scores.php", {

onSuccess: this.success.bind(this)

});

},

CHAPTER 5 ■ EVENTS 109

success: function(request) {

document.fire("score:updated", request.responseJSON);

}

};

document.observe("dom:loaded", function() {

ScoreBroadcaster.setup();

});

First, notice the design pattern—we’re creating a ScoreBroadcaster object to act as
our namespace. Next, jump to the bottom—we’ve hooked up ScoreBroadcaster.setup to
run as soon as the DOM is ready. This function schedules a new Ajax request every 30
seconds; successful requests will call another function that will fire a custom event with
our data.

Now look in the middle—we call document.fire with two arguments. This method
fires custom events, naturally, and exists on all elements (Element#fire) and on the
document object, too. You’ve just learned two things about this method:

• The first argument is the name of the event to be fired. As we discussed, the name
needs to have a colon in it, so let’s call it score:updated. The noun:verbed naming
scheme is just a convention, but it’s a useful one.

• The second argument is an object that contains any custom properties for attach-
ing to the event object. Just like native browser events, custom events pass an
event object as the first argument to any handler. Alongside familiar properties
like target, custom events have a memo property on their event objects. The second
argument of Element#fire gets assigned to this property. In short, we’re attaching
the score information so that handlers can read it.

As we covered in Chapter 4, we’re using Prototype’s special responseJSON property on
the Ajax response object—useful because it automatically unserializes the JSON payload.
Using the application/json MIME type gets us this property for free.

That’s one fewer link in the chain we have to worry about. When we write compo-
nents, we won’t have to deal with the boring details of getting the data. Score updates
will be dropped upon them as though they were manna from heaven.

Listening for Scores

To illustrate this point, let’s write some quick test code to make sure the custom event is
working right. Add this to the bottom of score_broadcaster.js:

CHAPTER 5 ■ EVENTS110

document.observe("dom:loaded", function() {

document.observe("score:updated", function(event) {

console.log("received data: ", event.memo);

});

});

We listen for a custom event the same way we listen to a native event: using
Event.observe. Custom events behave much the same way as native events: they bubble
up the DOM tree, and they have their own event objects that implement all the proper-
ties and methods we’ve already covered.

Here we listen for our custom score:updated event and log to the Firebug console
whenever it fires. Include this script on an HTML page and observe the result. Every
30 seconds, one of the lines shown in Figure 5-12 should appear in your Firebug console.

Figure 5-12. This line should appear in your Firebug console twice a minute.

In subsequent chapters, we’ll write code that hooks these stats up to the interface.

Summary
To revisit the theme of the chapter, events should make simple things simple and com-
plex things possible. Prototype’s event system doesn’t make everything simple, but it
does manage the unnecessary complexities of modern browser events.

The watchword for this chapter has been normalization: making different things
behave uniformly. Prototype makes two different event systems (Internet Explorer’s
and the W3C’s) behave uniformly; it also makes native events and custom events
behave uniformly. Keep this concept in mind while we look at DOM traversal in the
next chapter.

CHAPTER 5 ■ EVENTS 111

Working with the DOM

Now that you’ve got the foundation you need to explore advanced concepts, it’s time to
learn about Prototype’s powerful helpers for working with the DOM.

About the DOM API
As we discussed in the last chapter, the DOM is specified in a series of documents
released by the W3C.

DOM Level 1 outlines the basics you’re probably used to. Levels 2 and 3 specify a
series of enhancements and expansions to the DOM API, such as events, node traversal,
and style sheets. Level 1 enjoys support in all modern browsers, but the other levels can-
not be counted on.

Despite its obvious power and utility, at times the DOM API just doesn’t feel very
JavaScript-y. Methods have annoyingly long names. Some methods take a lot of argu-
ments, and some methods expect their arguments in an unintuitive order.

This is an unfortunate but necessary result of the DOM’s language independence.
Though the most famous implementation of the DOM is JavaScript’s, the APIs are
designed to be implemented in nearly any modern programming language. This
approach has its drawbacks (the DOM can’t leverage any of JavaScript’s dynamism, since
it has to work in more static languages like Java), but it also has the advantage that the
DOM works the same way in any language: learn once, write anywhere.

Still, we’re writing our code in JavaScript, so let’s make the most of it. Prototype con-
tains a large number of extensions to the browser’s DOM environment, so developers can
have their DOM and eat it too.

Node Genealogy
The strange world of the DOM is filled with jargon and terms of art. In order to minimize
confusion, let’s look at a few of them up front.

113

C H A P T E R 6

Think of the DOM as an unseralizer. It takes a linear stream of HTML, parses it
into different types of nodes, and arranges those nodes in a tree according to their
relationships.

That may not have been too helpful, so I’ll let the code talk (see Figure 6-1):

<p><u>Colorless</u> <i>green <u>ideas</u></i> sleep furiously.</p>

Figure 6-1. The DOM translates a stream of HTML into a tree of nodes. This paragraph has
both element nodes and text nodes as descendants.

The resemblance of a tree like this to a family tree is convenient—it lets us borrow
the jargon of genealogy.

Take the p tag at the top. It has five children: u, i, "sleep", b, and ".". The two in quo-
tation marks are text nodes. The other three are element nodes, and those elements have
children of their own. And "ideas" is p’s great-grandchild, so to speak; it’s in the third level
of descendants from p.

The distinction is useful, then, between children and descendants, and between
parent and ancestor. Children are all elements that are exactly one level descended from

CHAPTER 6 ■ WORKING WITH THE DOM114

a certain node. Descendants are all elements that a node contains—the sum of all the
node’s children, its children’s children, and so on.

Likewise, a node can have only one parent, but can have many ancestors.

Prototype’s DOM Extensions
The DOM is broad, sterile, and built by committee. In the interest of creating a “safe”
API that can be used by many different languages, it maintains a cordial distance from
the features of JavaScript. Its API chooses verbose method names like getElementById and
getAttributeNode—as with natural language, the cost of eliminating all ambiguity is to
double the number of words.

Prototype establishes a bridge between the DOM and the commonest use cases
of the typical developer. As a result, the code you write will be shorter and far more
readable.

Prototype’s DOM API is broad, so let’s divide it into rough categories based on task:
modifying, traversing, collecting, and creating.

Modifying

These methods modify properties of a DOM node or report information about a node for
later modification.

The hide, show, visible, and toggle Methods

These are the most commonly used element methods. They control whether the element
is visible or hidden (whether its CSS display property is set to none, thereby hiding it from
view).

Controlling element display is a staple of web applications. Think of a message that
should disappear after the user dismisses it. Think of a listing of items, each with a sum-
mary that should only be shown when the user mouses over that item. Think of a view
stack—a group of elements that should occupy the same area of the page, with only one
visible at a time.

Element#hide and Element#show control element display:

var foo = $('foo');

foo.hide();

foo.style.display; //-> 'none';

foo.show();

foo.style.display; //-> 'block';

CHAPTER 6 ■ WORKING WITH THE DOM 115

Both methods are idempotent: calling them more than once in a row has the same
effect as calling them just once. So you don’t need to check whether an element is visible
before you hide it.

Nonetheless, an easy way to figure out the display state of an element is to use
Element#visible:

foo.hide();

foo.visible(); //-> false

foo.show();

foo.visible(); //-> true

Element#visible simply reports on the element’s CSS display, returning true if it’s set
to none. Now imagine using all three of these methods to write code that will switch an
element between visible and hidden:

if (element.visible()) element.hide();

else element.show();

You don’t have to imagine it, actually, because Prototype does it for you with a
method called Element#toggle:

foo.visible(); //-> true

foo.toggle();

foo.visible(); //-> false

foo.toggle();

foo.visible(); //-> true

Element#toggle is a handy abstraction for elements that should have their display
state toggled each time an event (e.g., a click) is triggered.

// HTML:

<div class="news-item" id="item_1">

<h3>Declaration of Independence Hide/Show</h3>

<p id="summary_1">When, in the course of human events, it becomes necessary

for one people to dissolve the political bonds which have connected them with

another, and to assume among the powers of the earth, the separate and equal

station to which the laws of nature and of nature's God entitle them, a decent

respect to the opinions of mankind requires that they should declare the

causes which impel them to the separation.</p>

</div>

// JavaScript:

$('toggle_1').observe('click', function() { $('summary_1').toggle(); });

CHAPTER 6 ■ WORKING WITH THE DOM116

With the preceding markup, this one line of code toggles the visibility of the para-
graph of text every time the span is clicked. In other words, items with expanded and
collapsed states are perfect for Element#toggle.

The addClassName, removeClassName, hasClassName, and toggleClassName Methods

Showing and hiding elements is handy. But what if we want to do more with CSS? It’s
remarkably easy to style elements directly through JavaScript using the style property
that exists on every node.

It’s so easy, in fact, that it enables sloppy coding. Consider the following:

function highlight(element) {

element.style.backgroundColor = 'yellow';

}

function unhighlight(element) {

element.style.backgroundColor = 'white';

}

Imagine these two functions as mouseover/mouseout handlers for a table. When
the user moves the pointer over a row, its background color is changed to yellow; when
the pointer leaves the row, it goes back to the default white.

This code works as intended, but it’s not very maintainable. It’s a bad idea for the
same reason that inline CSS in HTML is a bad idea: it mixes different layers and makes
future changes more painful.

For example, what if you introduce a third background color for table rows (red,
perhaps, to denote important items)? Such rows would start out red, turn yellow on
mouseover, and turn white on mouseout. You could rewrite the handlers to take this
into account, storing the initial color value somewhere so that it can be restored on
mouseout, but you’d just be going further down the wrong path.

Instead, use CSS class names—they’re well-suited to the task.

// CSS:

#items tr {

background-color: white;

}

#items tr.important {

background-color: red;

}

CHAPTER 6 ■ WORKING WITH THE DOM 117

#items tr.highlighted {

background-color: yellow;

}

// JavaScript:

function highlight(element) {

element.addClassName('highlighted');

}

function unhighlight(element) {

element.removeClassName('highlighted');

}

This is a far safer and more elegant way to apply arbitrary styling. It uses Prototype’s
Element#addClassName and Element#removeClassName (which do exactly what they say they
do) to add and remove the styling. And, unlike the first approach, the style information
is in CSS, where it should be. It won’t be forgotten about three years from now when you
re-skin your application.

This approach is particularly flexible because any element can have any number of
class names. The HTML class attribute accepts any number of names separated by
spaces (<tr class="important highlighted">).

Since it’s an attribute, we can use the DOM to modify its value. In JavaScript, class is
a reserved word, so the relevant property is called className instead.

foo.className; //-> "";

foo.className = 'important'; //-> "important"

This is readable but foolish. Assigning a new class name directly will step on any
others that may have been there already. Likewise, you can remove a class name by giv-
ing it an empty value (""), but that will remove all of an element’s class names, not just
a specific one.

In other words, this isn’t a value you change; it’s a value you add to or subtract from.
You use addClassName and removeClassName to ensure that these operations have no side
effects.

If you’ve noticed how addClassName and removeClassName resemble hide and show, then
you’ll have predicted our next two methods: toggleClassName and hasClassName.

CHAPTER 6 ■ WORKING WITH THE DOM118

foo.className; //-> "important"

foo.toggleClassName('highlighted');

foo.hasClassName('highlighted'); //-> true

foo.hasClassName('important'); //-> true

foo.toggleClassName('highlighted');

foo.className; //-> "important"

All four methods expect the class name as an argument; otherwise, they work the
same way as hide, show, visible, and toggle.

The setStyle and getStyle Methods

Despite the warnings I just gave you, sometimes you’ll have no choice but to set style
properties directly. Size and position (width, height, top, and left) can be declared in a
style sheet, but complex use cases will require manipulating these properties dynami-
cally as a result of user input.

The native DOM style API forces you to set these properties one at a time:

foo.style.top = '12px';

foo.style.left = '150px';

foo.style.width = '100px';

foo.style.height = '60px';

But Prototype’s Element#setStyle can apply CSS styles in bulk. It accepts an object lit-
eral as an argument, directly correlating JavaScript object properties and values with CSS
properties and values:

foo.setStyle({

top: '12px',

left: '150px',

width: '100px',

height: '60px';

});

Element#setStyle’s counterpart is named Element#getStyle, appropriately—though
it’s not quite a counterpart. It retrieves the given style property on the node, regardless of
that style’s origin.

CHAPTER 6 ■ WORKING WITH THE DOM 119

// CSS:

#foo {

font-family: "'Helvetica Neue', Helvetica, Arial, sans-serif"

padding: 10px;

border: 15px;

}

// JavaScript:

foo.getStyle('font-family');

//-> "'Helvetica Neue', Helvetica, Arial, sans-serif"

foo.getStyle('padding-left');

//-> "10px"

foo.getStyle('border-top');

//-> "15px"

Upon first look, this seems unnecessary—why not just read from foo.style? But the
style property doesn’t read from the entire style cascade—just inline styles.

// HTML:

<div id="foo" style="display: inline;"></div>

// JavaScript:

foo.style.fontFamily; //-> undefined

foo.style.paddingLeft; //-> undefined

foo.style.borderTop; //-> undefined

0foo.style.display; //-> 'inline'

So the element’s style object may contain what you’re looking for—if a property
reports a value, then it’s sure to be the correct one, since inline styles are the most spe-
cific. But most of the time it will return undefined, since most style declarations come
from a CSS block or an external CSS file.

Internet Explorer and the DOM both provide APIs for determining the true style of
a certain element. Element#getStyle acts as a wrapper around both.

The update, replace, insert, and remove Methods

Changing the content of an element is a common task, but it’s not an easy one. Suppose
we want to change

CHAPTER 6 ■ WORKING WITH THE DOM120

<div id="foo"><p>bar</p></div>

to

<div id="foo">thud</div>

There are two ways to do this in modern browsers. One uses DOM Level 1 methods,
relying on the hierarchy-of-nodes model:

var foo = $('foo');

var span = document.createElement('span');

var text = document.createTextNode('thud');

span.appendChild(text);

foo.replaceChild(span, foo.firstChild);

The other uses the element’s innerHTML property (first introduced in Internet
Explorer, and then implemented by other browsers). It treats an element’s contents as
a string:

foo.innerHTML; //-> "<p>bar</p>";

foo.innerHTML = "thud";

Which should be used? There isn’t an easy answer. The innerHTML technique has
the advantage of simplicity (in most cases) and speed (it can be up to an order of
magnitude faster), but the disadvantage of being only a de facto standard, prone to
irregular behavior.

Meanwhile, the DOM technique is considered “purer” by standardistas—but, just like
most other parts of the DOM, it can feel clunky and verbose, with many lines of code
needed to do simple tasks. Purity comes at a cost.

Those that champion one approach and slander the other are presenting a false
dilemma. Sometimes it makes sense to treat markup as a node tree; sometimes it makes
sense to treat markup as a string. Both techniques work well in all modern browsers; you
don’t have to choose one and stick with it.

If embrace of the nonstandard innerHTML property gives you pause, consider that the
scope of what we can accomplish with today’s browsers would be severely impeded if we
restricted ourselves to that which is defined by a W3C specification. We’d be building sites
of interest to academics and power users, but which ignore the real world and the
market-leading browser. Writing JavaScript for today’s Web requires balancing the ideal
and the practical.

As a way forward, we can push for standardization of all the nonstandard APIs we
use—“paving the cowpaths,” as it’s called. For instance, the HTML 5 specification aims to
prescribe a standard behavior for innerHTML so that it can be used without guilt or caveat.

CHAPTER 6 ■ WORKING WITH THE DOM 121

I find that the DOM approach works best when creating HTML programmatically—
when the structure or content of the inserted markup isn’t the same every time—because
building long strings in JavaScript isn’t my idea of a fun afternoon. For simpler cases,
innerHTML is easier and faster. Figure out the balance you’re comfortable with.

The first three methods we’ll deal with—update, replace, and insert—don’t force you
to pick one approach or the other. All three can accept either a markup string or a node.

Using update

Element#update changes the contents of an element. Think of it as a thin wrapper around
innerHTML—just as assigning to the innerHTML property will erase whatever was there
before, update will discard the original contents of the element, replacing it with what
you’ve given.

// HTML (before):

<p id="foo">narf</p>

// JavaScript:

$('foo').update('thud');

// HTML (after):

<p id="foo">thud</p>

It boasts several advantages over innerHTML:

• As explained, it can take a DOM node or a string.

• The convenient “automatic script evaluation” you were introduced to in Chapter 4
also applies to Element#update. Any script elements in the inserted markup will be
removed; the code inside them will be extracted and evaluated after the element
has been updated.

• It gracefully handles some special cases where Internet Explorer tends to choke.
For instance, most table elements have read-only innerHTML properties, as do odd-
balls like col and select.

Let’s try a DOM node instead of an HTML string:

var span = document.createElement('span');

span.appendChild(document.createTextNode('thud'));

$('foo').update(span);

$('foo').innerHTML; //-> "thud"

CHAPTER 6 ■ WORKING WITH THE DOM122

Using replace

Element#replace is nearly identical to its brother update, but can be used to replace an ele-
ment (and all its descendants) instead of just changing its contents.

CHAPTER 6 ■ WORKING WITH THE DOM 123

CHAINING

Prototype’s augmentation of DOM node instance methods opens the door to method chaining: a syntac-
tic shortcut that makes lines of code read like sentences.

Many of the methods in this chapter—specifically those that do not need to return other values—
will return the elements themselves. Consider this code:

$('foo').addClassName('inactive');

$('foo').hide();

Because both addClassName and update return the element itself, this code can be simplified:

$('foo').addClassName('active').hide();

Chaining method calls like this—joining them in a line, each acting upon the return value of the
last—can increase code clarity when used judiciously. In this example, we’ve also optimized the code,
removing a redundant call to $ to re-fetch the element.

Look out for methods that do not return the original element. Consider Element#wrap, which
returns the new created parent node:

$('foo').wrap('div');

$('foo').addClassName('moved');

// wrong:

$('foo').wrap('div').addClassName('moved');

We’ve changed the meaning of the code by accident: instead of adding a class name to the ele-
ment with an ID of foo, we’re now adding it to the div that was created and returned by wrap.
Reversing the order of the method calls preserves our intent:

// right:

$('foo').addClassName('moved').wrap('div');

Similarly, note that Element#replace will return the original element, but that element has been
replaced and is no longer a part of the DOM tree. If you want to work with the content that has replaced
it, you’ll need to obtain that reference some other way.

// HTML (before):

<div id="foo">thud</div>

// JavaScript:

$('foo').replace('<p id='foo'>narf</p>');

// HTML (after):

<p id="foo">narf</p>

The new content occupies the same position in the document as its predecessor. So
replace is a way to remove an element, keep a finger on its spot in the DOM tree, and
then insert something else at that spot.

Using insert

Element#insert appends content to an element without removing what was there before.
We flirted with insert in Chapter 4, so the syntax will be familiar to you:

// HTML (before):

<div id="foo">thud</div>

// JavaScript:

$('foo').insert("honk", 'top');

// HTML (after):

<div id="foo">honkthud</div>

The second argument is the position of insertion—either before, after, top, or bottom.
This argument will default to bottom if omitted.

// equivalent in meaning:

$('foo').insert("honk", 'bottom');

$('foo').insert("honk");

A more robust syntax can be used to insert several things at once. Instead of a string,
pass an object as the first argument—the keys are insertion positions and the values are
HTML strings.

CHAPTER 6 ■ WORKING WITH THE DOM124

// HTML (before):

<div id="foo">thud</div>

// JavaScript:

$('foo').insert({ top: "honk", bottom: "narf" });

// HTML (after):

<div id="foo">honkthudnarf</div>

The positions before and after are similar to top and bottom, respectively, but you
insert the new elements outside the boundaries of the given element—as siblings, rather
than children.

// HTML (before):

<div id="foo">thud</div>

// JavaScript:

$('foo').insert({ before: "honk", after: "narf" });

// HTML (after):

honk<div id="foo">thud</div>narf

Using remove

In the DOM API, you must remove an element by calling the removeChild method on its
parent:

// to remove "foo"

$('foo').parentNode.removeChild($('foo'));

Prototype adds Element#remove in order to circumvent this annoyance:

$('foo').remove();

Note that removing an element from the document doesn’t make it vanish; it can
be reappended somewhere else, or even modified while detached. But a detached node
won’t respond to calls to $ or document.getElementById (since the node is no longer in
the document), so make sure you preserve a reference to the node by assigning it to a
variable.

CHAPTER 6 ■ WORKING WITH THE DOM 125

// to remove "foo" and append it somewhere else

var foo = $('foo');

foo.remove();

$('new_container').appendChild(foo);

The readAttribute and writeAttribute Methods

Prototype’s readAttribute and writeAttribute methods are used to get and set attributes
on elements.

“Aren’t these superfluous?” you ask. “Doesn’t the DOM give us getAttribute and
setAttribute?” Yes, it does, and browsers also expose attributes as properties of their
object representations—a holdover from the pre-DOM days. So, for instance, the href
attribute of a link can be fetched with $('foo').getAttribute('href') or even
$('foo').href.

But these approaches have compatibility problems. Internet Explorer, in particular,
exhibits a host of bugs in this area, thwarting our attempts to get identical behavior from
all major browsers. Element#readAttribute and Element#writeAttribute are wrappers that
ensure identical behavior.

Using readAttribute

Let’s look at some examples of surprising getAttribute behavior in Internet Explorer:

// HTML:

<label id="username_label" class="required" for="username">

<input type="text" id="username" name="username"

disabled="disabled" />

</label>

Username guidelines

// JavaScript:

var label = $('username_label');

label.getAttribute('class'); //-> null

label.getAttribute('for'); //-> null

var input = $('username');

input.getAttribute('disabled'); //-> true

var link = $('guidelines');

link.getAttribute('href'); //-> "http://www.example.com/guidelines.html"

CHAPTER 6 ■ WORKING WITH THE DOM126

The label element has class and for attributes set, but Internet Explorer returns null
for both. The input tag has a disabled attribute with a value of “disabled” (in accordance
with the XHTML spec), but Internet Explorer doesn’t return the literal value—it returns a
Boolean. And the a element points to an absolute URL on the same server, but Internet
Explorer gives us the “resolved” version when we ask for its href.

In all three cases, we’re expecting the literal value that was set in the markup—that’s
how getAttribute is supposed to work, and that’s how the other browsers do it. When it
was released, Internet Explorer 6 had the best DOM support of any browser, incomplete
as it was; now, six years later, bugs like these make Internet Explorer the slowpoke of the
bunch.

In nearly all cases, the value we want is hidden somewhere—we’ve just got to find it.
Prototype does the heavy lifting for you.

var label = $('username_label');

label.readAttribute('class'); //-> "required"

label.readAttribute('for'); //-> "username"

var input = $('username');

input.readAttribute('disabled'); //-> "disabled"

var link = $('guidelines');

link.readAttribute('href'); //-> "/guidelines.html";

Use readAttribute anywhere you’d use getAttribute. It’s safer.

Using writeAttribute

As you may expect, writeAttribute lets you set attribute values safely in all browsers, suc-
ceeding where Internet Explorer’s setAttribute fails:

label.setAttribute('class', 'optional'); // fails

label.writeAttribute('class', 'optional'); // succeeds

But that’s not all. It adds a major syntactic time-saver for writing multiple attributes
at once—simply pass an object literal full of attribute names and values.

input.writeAttribute('id', 'user_name');

label.writeAttribute({

title: 'Please choose a username.',

'class': 'optional',

'for': 'user_name'

});

CHAPTER 6 ■ WORKING WITH THE DOM 127

You might recognize this pattern from Element#setStyle, discussed earlier in the
chapter.

There’s only one gotcha: class and for are reserved words in JavaScript (they have
special meaning), so be sure to wrap them in quotes, as in the preceding example.

Later in the chapter, you’ll use this pattern as part of a powerful element-creation API.

Traversing and Collecting

The tasks we’re about to cover could broadly be defined as “getting nodes from other
nodes.” Traversal is getting from one node to another; collection is asking for a group of
nodes that relates to the node you’re on in some way.

Navigating Nodes

Since traversal is all about swiftly navigating complex node structures, let’s create a com-
plex node structure:

<table id="cities">

<caption>Major Texas Cities</caption>

<thead>

<tr>

<th scope="col">Name</th>

<th scope="col" class="number">Population (Metro Area)</th>

<th scope="col">Airport Code</th>

</tr>

</thead>

<tbody>

<tr id="dallas">

<td>Dallas</td>

<td class="number">6003967</td>

<td class="code">DAL</td>

</tr>

<tr id="houston">

<td>Houston</td>

<td class="number">5539949</td>

<td class="code">IAH</td>

</tr>

<tr id="san_antonio">

<td>San Antonio</td>

<td class="number">1942217</td>

<td class="code">SAT</td>

</tr>

CHAPTER 6 ■ WORKING WITH THE DOM128

<tr id="austin">

<td>Austin</td>

<td class="number">1513615</td>

<td class="code">AUS</td>

</tr>

<tr id="el_paso">

<td>El Paso</td>

<td class="number">736310</td>

<td class="code">ELP</td>

</tr>

</tbody>

</table>

Nothing too fancy here—just an ordinary data table (see Figure 6-2). But I’ve taken a
couple liberties with the styling. Anything with a class of number gets right-aligned (so
that all the digits line up); anything with a class of code gets center-aligned.

Figure 6-2. A simple, contrived data table

Drop this code into your index.html file. We’re done with the breakfast log, sadly, so
you can clear that stuff out, but leave the script tag that loads Prototype.

The up, down, next, and previous Methods

Visualize a DOM tree. The root element, document, is at the top, roughly corresponding to
the html tag in your markup. And from there the tree branches to reflect the complex rela-
tionships of nodes in the document. A table node branches into thead and tbody; tbody
branches into several trs; each of those trs branches into several tds.

Now imagine you’re a lowly td tag in the body of our table. You know that your parent
node is a tr, and that you’ve got a reference to that table row in your parentNode property.

td.parentNode; //-> <tr>

CHAPTER 6 ■ WORKING WITH THE DOM 129

You don’t know who your grandparent node is, but you can ask the tr:

td.parentNode.parentNode; //-> <tbody>

And so on, up the line:

td.parentNode.parentNode.parentNode; //-> <table>

Tedious, isn’t it? Makes me want to be an orphan. But it’s even worse in the opposite
direction: imagine you’re a table element and you want to find one of your td grandchil-
dren.

The DOM foresees these needs, but addresses them only partially. We need better
ways to jump from one node to another, no matter which direction we’re going.

With Element#up, Element#down, Element#next, and Element#previous, we have the fine
control that the DOM lacks. Each method returns one element in the specified direction.

Imagine we’ve got a reference to the td with the content “Houston.” From there, we
can traverse with ease:

td.up(); //-> <tr>

td.next(); //-> <td class="number">

td.previous(); //-> null

td.down(); //-> null

Calls to up and next return the parent node and the next sibling, respectively. Calls to
down and previous return null because no element is found in that direction.

■Note These four methods ignore text nodes entirely. When you call next, you’re asking for the next
element sibling, which may not be the same as the node’s nextSibling property.

Now let’s jump up one level:

var tr = td.up();

tr.up(); //-> tbody

tr.next(); //-> tr#san_antonio

tr.previous(); //-> tr#dallas

tr.down(); //-> td

CHAPTER 6 ■ WORKING WITH THE DOM130

This time, we get results in all four directions: next and previous point to table rows 1
and 3, while up and down point to the parent node and the first child node.

To repeat, each of these methods returns one result. If there is more than one ele-
ment to choose from, it will pick the first one that satisfies its search.

These traversal methods become even more useful when given arguments. All four
take two types of arguments:

A CSS selector string: Checks potential matches against the selector; accepts the same
wide range of selectors as $$.

A numeric index: Specifies how many matches should be skipped. (Or think of it this
way: if all the matches were returned in an array, this would be the index of the one
you want.)

tr.up('table'); //-> table

tr.next(1); //-> tr#austin

tr.down('td.code'); //-> td.code

tr.down('td', 1); //-> td.number

As you can see, both arguments are optional, and the order is flexible. You can pass in
an index or a selector as the first argument; but if you pass both, the selector needs to
come first.

The select Method

Don’t forget about our old friend from Chapter 2. $$, the CSS selector function, searches
the entire document, but it has an instance-method counterpart (select) that can search
any subset of a DOM tree.

Element#selector works like Element#down, except it returns an array of elements.

tr.select('.code');

// -> [td.code, td.code, td.code, td.code, td.code]

tr.up('table').select('.number');

// -> [th.number, td.number, td.number,

td.number, td.number, td.number]

tr.up('table').select('td:last-child');

// -> [td.code, td.code,

td.code, td.code, td.code]

CHAPTER 6 ■ WORKING WITH THE DOM 131

The ancestors, descendants, and immediateDescendants Methods

These methods correspond to the groups searched by Element#up and Element#down:

• ancestors returns all ancestors of the node, starting with its parent node and end-
ing with the html element.

• descendants returns all element descendants of the node in depth-first order. This
is equivalent to calling getElementsByTagName('*') in the node’s scope.

• immediateDescendants returns all element children of the node in the order they
appear. This is equivalent to the element’s childNodes property—but with all text
nodes filtered out. (children would be a better name, but Safari uses that property
name for something else.)

The siblings, previousSiblings, and nextSiblings Methods

These methods correspond to the groups searched by Element#previous and Element#next:

• previousSiblings and nextSiblings return all the element nodes that come before
and after the given node, respectively. The returned collections are ordered based
on proximity to the original element, meaning that previousSiblings will return a
collection in reverse DOM order.

• siblings returns the union of previousSiblings and nextSiblings arranged in DOM
order. This collection does not include the original node itself. This is equivalent to
calling immediateDescendants on the node’s parent node, and then removing the
original node from the returned collection.

Creating Nodes

Individually, all these methods are simply helpers—convenience methods for repetitive
tasks. But when they combine, they form a strong platform that allows for a whole new
level of coding. The Element constructor is the Captain Planet of the Prototype DOM
extensions—a force greater than the sum of its parts.

Think of the example we’ve been using in a specific context. Suppose we were build-
ing a site where a user could select any number of cities and compare some of their
qualities. To make the UI snappy, we’d load city data via Ajax and stuff it into our compar-
ison table dynamically. The data itself has to come from the server, but we can offload
some of the easier stuff to the client side.

Most of this falls outside the scope of this chapter, but there’s one part we can extract
into a simple example. Let’s say we want to build a new row at the bottom of our table—

CHAPTER 6 ■ WORKING WITH THE DOM132

one that will add up all the populations of the cities and display a total. In HTML form,
the row would look something like this:

<tr class="total">

<td>Total</td>

<td class="number">15,736,058</td>

<td class="code"></td>

</tr>

We’ll give the tr its own class so we can style it to look different from the other rows.
And we’ll leave the last cell empty because it’s not applicable to this row, of course.

But now we’ve got to decide between two equally ugly ways of generating this HTML
dynamically. We could use Element#insert with a string:

var html = "<tr class='total'>";

html += "<td>Total</td>";

html += "<td class='number'>" + totalPopulation + "</td>";

html += "<td class='code'></td>";

html += "</tr>";

$('cities').down('tbody').insert(html, 'bottom');

But I hate building long strings like that. It’s a syntax error minefield. So, we could
stick to the DOM way:

// First, create the row.

var tr = document.createElement('tr');

// We need to "extend" the element manually if we want to use

// instance methods.

$(tr).addClassName('total');

// Next, create each cell individually.

var td1 = document.createElement('td');

td1.appendChild(document.createTextNode('Total'));

var td2 = document.createElement('td');

$(td2).writeAttribute('class', 'number');

td2.appendChild(document.createTextNode(totalPopulation));

var td3 = document.createElement('td');

$(td3).writeAttribute('class', 'code');

CHAPTER 6 ■ WORKING WITH THE DOM 133

// Now append each cell to the row...

tr.appendChild(td1);

tr.appendChild(td2);

tr.appendChild(td3);

// ...and append the row to the table body.

$('cities').down('tbody').insert(tr, 'bottom');

Three times as many lines! As is often the case, one approach is easy but sloppy, and
the other is harder but more “correct.” Can’t we split the difference?

// First, create the row.

var tr = new Element('tr', { 'class': 'total' });

// Next, create each cell and append it on the fly.

tr.appendChild(new Element('td').update('Total'));

tr.appendChild(new Element('td',

{ 'class': 'number'}).update(totalPopulation));

tr.appendChild(new Element('td', { 'class': 'code' }));

// Now append the row to the table body.

$('cities').down('tbody').insert(tr, 'bottom');

We haven’t talked about this technique yet, but it ought to seem familiar anyway. The
glue in the middle, the new Element part, takes a tag name as its first argument, creates
that element, calls Element.extend on it (to give it the Prototype instance methods), and
then returns the element.

The rest of it is stuff we’ve already covered:

• The optional second argument to Element is an object with the attribute/value
pairs the element should have. Element#writeAttribute takes care of that part.

• Instead of the annoying document.createTextNode, we can use Prototype’s own Ele-
ment#update to set the text content of a new element.

• The last step is the same in all cases. We use Element#down to hop from the table to
its tbody, and then we use Element#insert to place our new element after all the
other rows.

CHAPTER 6 ■ WORKING WITH THE DOM134

The wrap Method

Let’s take a time-out from the example to talk about Element#wrap.
Sometimes you’ll want to create a new element to act as a container for something

that’s already on the page. This is one mode of attack for browser bugs—rendering issues,
for example, can sometimes be defeated with a “wrapper” element.

Prototype’s Element#wrap is shorthand for creating an element and specifying its con-
tents all at once. Its arguments are identical to those of the Element constructor:

// wrap a TABLE in a DIV

var someTable = $('cities');

var wrapper = someTable.wrap('div', { 'class': 'wrapper' });

Here, since the table already exists in the DOM, we don’t have to explicitly append it
somewhere. The div is created at the spot occupied by the table; the table then gets
added as a child of the div.

Wrapping an element that isn’t yet in the document, of course, is a different matter:

// add a link to a list

var li = new Element('a', { href: "http://google.com"

}).update("Google").wrap("li");

$('links').insert(li);

Like most methods on Element, wrap can be chained. But, as these examples show, it
returns the wrapper, not the original element.

Putting It Together
Back to the example. Let’s write a function that, when given a table of the sort we’ve writ-
ten, will automatically calculate the total and insert a new row at the bottom. Insert this
block in the head of the page, right below where Prototype is loaded:

<script type="text/javascript">

function computeTotalForTable(table) {

// Accept a DOM node or a string.

table = $(table);

// Grab all the cells with population numbers in them.

var populationCells = table.select('td.number');

CHAPTER 6 ■ WORKING WITH THE DOM 135

// Add the rows together.

// (Remember the Enumerable methods?)

var totalPopulation = populationCells.inject(0, function(memo, cell) {

var total = cell.innerHTML;

// To add, we'll need to convert the string to a number.

return memo + Number(total);

});

// We've got the total, so let's build a row to put it in.

var tr = new Element('tr', { 'class': 'total' });

tr.insert(new Element('td').update('Total'));

tr.insert(new Element('td',

{ 'class': 'number' }).update(totalPopulation));

// Insert a cell for the airport code, but leave it empty.

tr.insert(new Element('td', { 'class': 'code' }));

table.down('tbody').insert(tr);

}</script>

This code does a lot of stuff, so let’s look at it piece by piece.
First, we use the $ function on the table argument so that we can be sure we’re work-

ing with a DOM node. Then we use Element#select to grab all the table cells with a class of
number—there will be one per table row.

Now that we have all of the table cells that contain population figures, we add them
together with Enumerable#inject. We start off with 0, adding the value of each cell to that
figure as we loop through the cells. The returned value is the sum of all the numbers con-
tained in the cells.

Now that we have the number, we need to lay the DOM scaffolding for it. We build a
tr with a class of total, and then three tds with contents that correspond to that of the
existing cells. Our total population figure gets inserted into the third cell via
Element#update. We insert each cell as a child of the tr upon creation; since Element#insert
adds new nodes at the end, by default, these elements will appear on the page in the
order they’re inserted.

All that’s left to do is test it! Open index.html in Firefox, and pass our population table
to the computeTotalForTable function (see Figure 6-3):

computeTotalForTable('cities');

CHAPTER 6 ■ WORKING WITH THE DOM136

Figure 6-3. JavaScript can add better than I can.

Summary
There’s a lot of meat to Prototype’s DOM support—primarily because that’s where most
of your headaches come from. The DOM’s verbosity and uneven browser support are the
proverbial “rock” and “hard place” of JavaScript development.

An exploration of the DOM, however, isn’t complete without attention paid to events.
The next chapter will exemplify the power of Prototype’s element traversal methods in
the context of handling standard (and not-so-standard) browser events.

CHAPTER 6 ■ WORKING WITH THE DOM 137

Advanced JavaScript:
Functional Programming and
Class-Based OOP

JavaScript is a multi-paradigm language. No matter how well you think you know how
to use it, you’re destined to find some style of writing code that confuses the hell out of
you.

This is good news, if you’ll believe it. It means that there’s often a better, shorter,
more secure, or easier-to-understand way of doing something.

Earlier chapters introduced you to object-oriented programming and functional
programming. So you’re probably familiar with what they are, but may not realize yet
why they’re useful. In this chapter, we’ll revisit these techniques, exploring advanced
use cases for both.

Object-Oriented JavaScript Programming
with Prototype
The term object-oriented programming (OOP) has become nearly meaningless with over-
use, but I’ll try to wring out a few final drops of meaning. JavaScript itself is an
object-oriented language, as we’ve discussed, but most of the common OOP concepts—
class definitions, clear inheritance chains, and so on—aren’t built into the language.

Prototype builds a class-based facade around the prototypal OOP model of
JavaScript. In this chapter, you’ll learn how to use classes the Prototype way.

Why OOP?

The jaded developer might wonder whether I’m espousing OOP as the alpha and omega
of programming styles. As Steve Yegge once quipped, advocating “object-oriented

139

C H A P T E R 7

programming” is like advocating “pants-oriented clothing”; it elevates one architectural
model to an overimportant position.

In the DOM scripting world, OOP is often—but not always—the right tool for the job.
Its advantages mesh well with the realities of the browser environment.

Cleanliness

JavaScript 1.x has no explicit namespacing and no package mechanism—no comprehen-
sive way to keep different pieces of code from stepping on each other. If your web app
needs, say, 50 lines of JavaScript, this isn’t a problem; if it needs three external libraries
and a bunch of behavior code, you’ll run into naming problems. Scripts share the global
space.

In other words, if I have a function named run, I’ll need to make sure that none of the
scripts I rely upon defines a run function, or else it will be overwritten. I could rename my
function to something unique—like myRun or dupont_Run—but this is just a stall tactic.
Ensuring uniqueness of function names becomes exponentially harder as the number of
functions increases. (PHP’s standard library is an extreme example of the sort of clutter
that can accumulate this way.)

OOP helps solve this. It lets me define methods in more appropriate contexts.
Instead of a global function called stringReplace, JavaScript defines replace as an
instance method on strings.

Sharing a scripting environment is like sharing an apartment. If you don’t help keep
the place clean, your roommates will think of you as an inconsiderate bastard. Don’t be
that guy. If you must be messy, be messy in your own room. Common areas need to
remain tidy.

Encapsulation

OOP helps keep things organized through bundling. An object contains all the methods
and properties associated with it, minimizing clutter and affording portability.

Information-Hiding

Many clocks rely on an elaborate system of gears to tell time, but humans see very little of
what goes on inside a clock. We don’t have to figure out the time from the positions of the
gears; we can look at the hands on the clock face. In other words, the gears are important
to the clock, but they’re not important to us.

Most real-world objects have a “public” interface (the way the outside world uses it)
and a “private” interface (the way the object does the tasks it needs to do). OOP works the
same way, letting a developer produce code that is easier to understand and more rele-
vant on the line where it’s used.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP140

Brevity

Brevity is a by-product of cleanliness. Functions can be named more concisely when they
don’t have to worry about conflict. Which would you rather type?

stringReplace("bar", "r", "z");

"bar".replace("r", "z");

The second option is seven characters shorter than the first. Over time, this savings
will add up—your code will be clearer and your wrists will thank you.

Remedial OOP: Namespacing

Before we get into “true” OOP, let’s look at how objects can be used to isolate our code
and make it more resilient in a shared scripting environment.

Because scripts from different authors often coexist on the same page, it’s a bad idea
to define too many functions in the global scope. The more there are, the more likely one
of them will overwrite someone else’s function with the same name.

Instead, what if you were to define one object in the global scope, and then attach
all your functions to that object? You’d balk at defining a method named run, but
BreakfastLog.run is much less risky. The first line of defense in the cleanliness wars is
namespacing your code.

Let’s look at some of our code from a previous chapter:

function submitBreakfastLogEntry(event) {

if (event.target.id === 'cancel')

cancelBreakfastLogEntry(event);

// ... et cetera

}

function cancelBreakfastLogEntry(event) {

event.stop();

event.target.up('form').clear();

// ... et cetera

}

Since they’re related, these functions ought to be placed into a common namespace.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 141

var BreakfastLog = {

submitEntry: function(event) {

this.form = event.target.up('form');

if (event.target.id == "cancel")

this.cancelEntry(event);

// et cetera

},

cancelEntry: function(event) {

event.stop();

this.form.clear();

// ... et cetera

}

};

Here, we’re using the familiar object literal in a new way: as a container for like-
minded methods and variables. Remember that {} is a shortcut for new Object, and that
the new keyword triggers a new scope.

Thus, inside any particular method, the keyword this refers to the BreakfastLog
object. Code running outside the BreakfastLog object must explicitly call
BreakfastLog.cancelEntry, but code running inside has the privilege of referring to it as
this.cancelEntry.

Similarly, the object itself can be used to pass information between methods. Notice
how cancelEntry can read this.form, a property set by submitEntry (and that would be
referred to as BreakfastLog.form from another scope).

I’ve been casually referring to this as “namespacing,” even though it’s not a true
namespacing solution like that of Perl or Ruby. There’s still a risk of naming collisions—
after all, another library you use could create a BreakfastLog object—but it’s much less
likely when there are fewer items in the global namespace. We can’t eliminate the risk
altogether, but we can minimize it.

Advanced OOP: Using Classes

In Chapter 1, you learned about JavaScript’s prototypal inheritance model. Each function
has a property called prototype that contains the “template” for making new objects of
that type. Since every function has this property, every function can be instantiated.
(Although this also means that “instantiate” isn’t the correct term; prototypal inheritance
does not distinguish between classes and instances.)

Prototypal inheritance isn’t better or worse than class-based inheritance, but you may
not feel that way if you’re not used to it. Most of what you’re used to just isn’t there: no
class definitions, no explicit way to define inheritance, no information-hiding. These
things are hard not to miss.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP142

Luckily, nearly anything can be done in JavaScript if you’re willing to hack at it long
enough. Prototype features a Class object that can mimic most of the features of class-
based inheritance. It’s not meant to change the way JavaScript works; it’s just a different
approach to OOP—an extra tool to have on your belt.

Example

Here’s a glimpse at the project we’ll be working on in the second part of the book. It’s a
site about football (American football to the rest of the world). If you know nothing about
the game, that’s OK—the bits you need to know will be learned along the way.

A football team consists of an offense and a defense, each of which is divided into
many positions and roles. But every player has the ability to score points. (For some play-
ers, it would only happen by accident, but it’s still possible.)

So each player has certain characteristics (things he is) and certain capabilities
(things he can do). Those characteristics and capabilities vary based on his position, but
there are some that are common to all players. This sounds like the perfect use case for
class-based OOP.

Creating the Base Class

First, we’ll define a Player class—one that describes a generic football player:

var Player = Class.create({

initialize: function(firstName, lastName) {

this.firstName = firstName;

this.lastName = lastName;

this.points = 0;

},

scorePoints: function(points) {

this.points += points;

},

toString: function() {

return this.firstName + ' ' + this.lastName;

}

});

Let’s consider the bold sections of code in order.
Class.create is the Prototype method for building a new class. It accepts one argu-

ment: an object literal that contains the properties the class should have. Most of the
time, these will be methods, but they can be whatever you like.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 143

Class.create returns a function that can be instantiated. Be sure to assign it to a vari-
able (Player in this case) so that you can use it later. That will be the name of your class.

Next, look at initialize. Prototype treats it as the class’s constructor. When the Player
class is instantiated (with new Player), this method will be called with the given argu-
ments. Ours takes two arguments: firstName and lastName.

Finally, look at toString. JavaScript gives a toString property (with a function value)
special treatment: if it’s defined, it will be used to convert the object into a string.

Firebug explains it better:

// redefine the toString method for all arrays (bad idea)

Array.prototype.toString = function() {

return "#<Array: " + this.join(', ') + '>';

};

var someArray = [1, 2, 3];

// works on both explicit and implicit string conversions:

someArray.toString(); //-> "#<Array: 1, 2, 3>"

someArray + ''; //-> "#<Array: 1, 2, 3>"

So, we’re defining a toString method for reporting the string value of an instance of
Player. For now, it’s the player’s full name.

This class doesn’t do much, but it’s ready to use. Let’s have some fun:

var p = new Player('Andrew', 'Dupont');

p.firstName; //-> "Andrew"

p.lastName; //-> "Dupont"

p + ''; //-> "Andrew Dupont"

p.points; //-> 0

p.scorePoints(6);

p.points; //-> 6

Notice how Prototype is mixing some of its own conventions with the native con-
structs of JavaScript. As with prototypal OOP, you’ll use the new keyword to generate
instances of objects. Prototype’s Class.create method, however, builds a nearly leak-
proof abstraction over JavaScript’s inheritance model. You’ll be able to think in terms
of class-based OOP, using the same techniques you’d use when architecting Java or
Ruby code.

The preceding code creates a generic football player with my name. This is exciting
for me, as it’s as close as I’ll get to playing professional football. But it’s probably not too
exciting for you. All the interesting stuff will be contained in Player’s subclasses.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP144

Creating the Subclasses

Football players have many things in common, but also many differences. Some are
broad and slow; some are tall, skinny, and fast; some are middle-aged and do nothing
but kick the ball.

We want to repeat ourselves as little as possible, so let’s make sure that all common
characteristics are defined in Player. But the differences require that we make a class for
each position.

A quarterback runs the offense. He can throw the ball to a wide receiver, hand it to
a running back, or even run with it himself.

var Quarterback = Class.create(Player, {

initialize: function($super, firstName, lastName) {

// call Player's initialize method

$super(firstName, lastName);

// define some properties for quarterbacks

this.passingYards = 0;

this.rushingYards = 0;

},

throwPass: function(yards) {

console.log(this + ' throws for ' + yards + 'yds.');

this.passingYards += yards;

},

throwTouchdown: function(yards) {

this.throwPass(yards);

console.log('TOUCHDOWN!');

this.scorePoints(6);

}

});

Notice that the bold parts introduce two new concepts.
Just as before, we define the class using Class.create. This time, though, we’ve

placed an extra argument at the beginning: the class to be extended. Because Quarter-
back is based on Player, it will have all of Player’s properties and methods, plus whatever
extra stuff Quarterback defines for itself. Observe how, for instance, Quarterback has a
scorePoints method, even though it wasn’t defined on Quarterback directly. That method
was inherited from Player.

So we’ve established a relationship between Player and Quarterback: Player is
Quarterback’s superclass, and Quarterback is Player’s subclass.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 145

Quarterback’s initialize method appears to perform some voodoo. As the comments
indicate, we’re replacing Player’s initialize method, but we’re still able to call the original
method. To do so, we place an argument named $super at the front of initialize’s argu-
ment list. The name of the argument serves as a signal that we want to override
Player#initialize. The original method is passed into the function as $super, and we call
it just like we would call any other method.

Keep in mind that initialize still expects two arguments, not three. We define
initialize to take three arguments, but the first one is filled in automatically behind
the scenes. The public interface has not changed.

WHY $SUPER?

“Another dollar sign?” you ask. “You’ve got to be kidding me.”
No, I’m serious. There are two reasons why Prototype uses the dollar sign ($) as part of its naming

scheme:

• As a shortcut for a method that will be used quite often (e.g., $, $$, $A)

• As a sigil in front of a word that would otherwise be reserved in JavaScript (e.g., $break,
$super)

In this case, super is one of the “reserved words” that can’t be used as an identifier (just like you
can’t define a function named if or while). Oddly enough, super is not used in JavaScript 1.x, but
was preemptively reserved for future use.

By adding a dollar sign to the beginning of the word, Prototype circumvents this edict.

Because we still have access to the original method, Quarterback#initialize doesn’t
have to duplicate code that’s already been written for Player#initialize. We can tell it to
call Player#initialize, and give it more instructions afterward. Specifically,
Quarterback#initialize sets the starting values for passingYards and rushingYards—statis-
tics that aren’t common to all players, and thus need to be defined in subclasses of
Player.

We can test this code out in a Firebug console:

var andrew = new Quarterback('Andrew', 'Dupont');

andrew.passingYards; //-> 0

andrew.points; //-> 0

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP146

andrew.throwPass(23);

>> "Andrew Dupont throws for 23yds."

andrew.passingYards; //-> 23

andrew.throwTouchdown(39);

>> "Andrew Dupont throws for 39yds."

>> "TOUCHDOWN!"

andrew.passingYards; //-> 62

andrew.points; //-> 6

Everything works as expected. So let’s try another position. A wide receiver plays on
offense and catches passes thrown by the quarterback.

var WideReceiver = Class.create(Player, {

initialize: function(firstName, lastName) {

// call Player's initialize method

$super(firstName, lastName);

// define properties for receivers

this.receivingYards = 0;

},

catchPass: function(yards) {

console.log(this + ' catches a pass for ' + yards + 'yds');

this.receivingYards += yards;

},

catchTouchdown: function(yards) {

this.catchPass(yards);

console.log('TOUCHDOWN!');

this.scorePoints(6);

}

});

Notice again that we’re not writing copy-and-paste code. Our WideReceiver class
defines only those methods and properties that are unique to wide receivers, deferring to
the Player class for everything else.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 147

Monkeypatching

Most OOP-like languages treat classes as static—once they’re defined, they’re immutable.
In JavaScript, however, nothing is immutable, and it would be silly to pretend otherwise.
Instead, Prototype borrows from Ruby once again.

In Ruby, all classes are mutable and can be changed at any point. This practice is
referred to as “monkeypatching” by those who deride it; I’ll refer to it that way simply
because I like words that contain monkey. But there’s no negative connotation for me.

Each class object comes with a method, addMethods, that lets us add instance meth-
ods to the class later on:

Player.addMethods({

makeActive: function() {

this.isActive = true;

console.log(this + " will be a starter for Sunday's game.");

},

makeReserve: function() {

this.isActive = false;

console.log(this + " will spend Sunday on the bench.");

}

});

So now we’ve got two new methods on the Player class for managing team lineups.
But these methods also propagate to Player’s two subclasses: Quarterback and
WideReceiver. Now we can use makeActive and makeReserve on all instances of these
classes—even the instances we’ve already created. Remember the narcissistic instance
of Quarterback I created?

andrew.makeReserve();

>> "Andrew Dupont will spend Sunday on the bench."

andrew.isActive; //-> false

Don’t take this freedom as license to code in a style that is stupid and pointless. Most
of the time you won’t need to monkeypatch your own code. But Class#addMethods is quite
useful when dealing with code that isn’t yours—a script.aculo.us class, for example, or
another class defined by a Prototype add-on.

Usage: DOM Behavior Pattern

Prototype’s advanced OOP model is the perfect tonic for the headache of managing a
complex behavior layer. For lack of a better term, I’m going to refer to this as the behavior

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP148

pattern—a class describes some abstract behaviors, and instances of that class apply the
behavior to individual elements.

I’ll rephrase that in plain English. In Chapter 6, we wrote some JavaScript to manage
computing totals in a data table: given a table of Texas cities alongside their populations,
our code added together all the population numbers, and then inserted the total in a new
row at the bottom of the table.

The function we wrote got the job done, but was written with specifics in mind. In
the interest of reusing code, let’s refactor this function. We’ll make the logic more generic
and place it into a class that follows the behavior pattern.

function computeTotalForTable(table) {

// Accept a DOM node or a string.

table = $(table);

// Grab all the cells with population numbers in them.

var populationCells = table.select('td.number');

// Add the rows together.

// (Remember the Enumerable methods?)

var totalPopulation = populationCells.inject(0, function(memo, cell) {

var total = cell.innerHTML;

// To add, we'll need to convert the string to a number.

return memo + Number(total);

});

// We've got the total, so let's build a row to put it in.

var tr = new Element('tr', { 'class': 'total' });

tr.insert(new Element('th').update('Total'));

tr.insert(new Element('td',

{ 'class': 'number' }).update(totalPopulation));

// Insert a cell for the airport code, but leave it empty.

tr.insert(new Element('td', { 'class': 'code' }));

table.down('tbody').insert(tr);

}

What can we improve upon? How can we make this code more generic and versatile?

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 149

• We should not make assumptions about the layout of the table, nor the order of its
columns, nor the way numeric cells are marked. The function assumes it ought to
add all cells with a class of number, but what if that selector is too simplistic for what
we need?

• To display the total, we build a whole table row in JavaScript, complete with cells,
and then insert it at the bottom of the table. This approach isn’t very DRY. What
happens when we add a column to this table in the HTML? There’s a good chance
we’ll forget to make the same change in the JavaScript.

Above all, we should rewrite this code to be more lightweight. Simple things are
reusable; complex things are often context specific. We can add more complexity later
if need be, but the best foundation is a simple one.

Refactoring

What are the simplest possible solutions to the preceding issues?

• We should be able to specify a CSS selector that describes which elements (within
the context of a certain container) we want totaled. It can have a default (like
.number) for convenience.

• Instead of building our own DOM structure to place the total into, let’s take our cue
from the HTML. In other words, the class should accept an existing element on the
page for displaying the total. This limits the responsibility of the class, simplifying
the code.

So let’s write a class called Totaler, starting off with the bare skeleton:

var Totaler = Class.create({

initialize: function() {

}

});

How many arguments should it take? We need at least two things: the context ele-
ment and the “total container” element. Any other parameters can fall back to intelligent
defaults, so we’ll place them in an options argument at the end.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP150

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

}

});

So what are these “options” I speak of? First of all, we should be able to tell Totaler
which elements to pull numbers from. So one of them we’ll call selector, and by default
it will have a value of ".number".

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = {

selector: ".number"

};

}

});

Now we’ve got a default value for selector, but we also want the user to be able to
override this. So let’s copy the options argument over this.options, letting all user-
specified options trump the defaults:

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

}

});

We type options || {} because the user is allowed to omit the options argument
entirely: it’s akin to saying, “Extend this.options with options or, failing that, an empty
object.”

Remember that this refers to the class instance itself. So we’ve defined three proper-
ties on the instance, corresponding to the three arguments in our constructor. These
properties will be attached to each instance of the Totaler class as it gets instantiated. But
to do the actual adding, we’ll write another method:

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 151

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

},

updateTotal: function() {

}

});

Totaler#updateTotal will select the proper elements, extract a number out of each,
and then add them all together, much the same way as before. It needn’t take any argu-
ments; all the information it needs is already stored within the class.

First, it selects the elements by calling Element#select in the context of the container
element.

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

},

updateTotal: function() {

var numberElements = this.element.select(this.options.selector);

}

});

Totaler#updateTotal uses the selector we assigned in the constructor; anything set as
a property of this can be read both inside and outside the class. It selects all elements
within element (the container) that match the given selector.

As before, we use Enumerable#inject to add the numbers together:

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP152

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

},

updateTotal: function() {

var numberElements = this.element.select(this.options.selector);

var total = numberElements.inject(0, function(memo, el) {

return memo + Number(el.innerHTML);

});

}

});

Finally, we fill in totalElement with the sum using Element#update. And we also modify
initialize so that it calls updateTotal—so that the sum is computed automatically when
Totaler is instantiated.

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

this.updateTotal();

},

updateTotal: function() {

var numberElements = this.element.select(this.options.selector);

var total = numberElements.inject(0, function(memo, el) {

return memo + Number(el.innerHTML);

});

this.totalElement.update(total);

}

});

We’re done writing the Totaler class, at least for now. Save it as totaler.js.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 153

Testing

Now find the index.html file you created for Chapter 6. Copy it over to your Chapter 7
folder. We’ll be using the same data for this example, but we’ll need to change the table’s
markup to fit with the changes we’ve made. Alter the table until it looks like this:

<table id="cities">

<caption>Major Texas Cities</caption>

<thead>

<tr>

<th scope="col">Name</th>

<th scope="col" class="number">Population (Metro Area)</th>

<th scope="col">Airport Code</th>

</tr>

</thead>

<tfoot>

<tr>

<th scope="row">Total</th>

<td class="number" id="population_total"></td>

<td></td>

</tr>

</tfoot>

<tbody>

<tr id="dallas">

<th scope="row">Dallas</th>

<td class="number">6003967</td>

<td class="code">DAL</td>

</tr>

<tr id="houston">

<th scope="row">Houston</th>

<td class="number">5539949</td>

<td class="code">IAH</td>

</tr>

<tr id="san_antonio">

<th scope="row">San Antonio</th>

<td class="number">1942217</td>

<td class="code">SAT</td>

</tr>

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP154

<tr id="austin">

<th scope="row">Austin</th>

<td class="number">1513615</td>

<td class="code">AUS</td>

</tr>

<tr id="el_paso">

<th scope="row">El Paso</th>

<td class="number">736310</td>

<td class="code">ELP</td>

</tr>

</tbody>

</table>

We’ve inserted a table footer to hold the row that displays the total. Inside that footer,
one cell has been marked with an ID and is blank; that’s the cell that will hold our total.
(Note that the tfoot element appears above the tbody in the markup, but is rendered
below the tbody on the screen. This comes straight from the HTML spec.)

Now we need to include totaler.js on this page and instantiate it on page load.
Delete the script element that holds our code from the last chapter. Here’s how your
scripts should look instead:

<script src="../js/prototype.js" type="text/javascript"></script>

<script src="totaler.js" type="text/javascript"></script>

<script type="text/javascript">

document.observe("dom:loaded", function() {

window.totaler = new Totaler('cities', 'population_total');

});

</script>

The first highlighted line is a reference to our Totaler class, of course. The second,
run when the DOM is ready, declares a new instance of Totaler on our population table.
Figure 7-1 shows what happens.

Figure 7-1. Instead of the total we were expecting, we get NaN.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 155

Ugh, NaN (which stands for “not a number”). That means we tried to make a number
out of something that has no numeric value (for instance, Number("qwerty");). What did
we do wrong?

Let’s do some logging to find out. Open up totaler.js and add a log statement to
Totaler#updateTotal so that you can see which elements we’re collecting:

updateTotal: function() {

var numberElements = this.element.select(this.options.selector);

console.log(numberElements);

var total = numberElements.inject(0, function(memo, el) {

return memo + Number(el.innerHTML);

});

this.totalElement.update(total);

},

Save, reload, and look at the Firebug console to see the problem: too many cells are
being included in the sum (see Figure 7-2).

Figure 7-2. Firebug shows us which elements we’ve logged to the console.

The header cell and footer cell for that column bear a class of "number" so that they
get the proper styling (they’re aligned to the right of the cell so that all the numbers line
up). But our default selector (.number) is retrieving them along with the cells in the table
body. So let’s override the default and give a more specific selector:

<script type="text/javascript">

document.observe("dom:loaded", function() {

window.totaler = new Totaler('cities', 'population_total', {

selector: "tbody .number"

});

});

</script>

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP156

Since the total cell is a descendant of the tfoot, not the tbody, this selector will
exclude it. To prove it, save the file and reload the page in your browser (see Figure 7-3).

Figure 7-3. The sum is displayed in the table footer.

Aha! Because the total cell now shows the sum of all the number cells in the tbody, we
know the instance of Totaler was initialized correctly. Remove the console.log statement
we added; the debugging is complete.

Since we assigned the Totaler instance to window.totaler (i.e., a global variable
named totaler), we can use the Firebug shell to examine the instance:

>>> totaler

Object element=table#cities

Click that line to inspect the object. You’ll see a listing of properties that includes the
methods we’ve defined (initialize and updateTotal) and the instance properties we’ve
set (element, totalElement, and options).

This means that, for instance, we can call updateTotal again if the numbers in our
cells change. Try this:

>>> totaler.element.down("tbody .number").update(0);

<td class="number">

>>> totaler.updateTotal();

To simulate what would happen if every resident of the greater Dallas area simply
decided to leave, we drill down to the first number cell in our tbody and change the value
to 0. Then, to recompute the total, we call the updateTotal method on totaler. The total
cell changes to reflect the new sum.

So we know that whenever the value in one of those cells changes, we can manually
call updateTotal. The next step, of course, would be to make that call automatic—to tell
the class to watch these cells for changes in value and update the total cell accordingly.
In Chapter 8, you’ll learn how to do this.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 157

Reuse

Go back to totaler.js for a moment so we can reflect on what we’ve just done. We started
with a context-specific function and turned it into a general class that can easily be
reused. The original function made broad assumptions about the naming of elements,
the output, and even the structure of the markup itself. The Totaler class, on the other
hand, can be applied wherever we need to extract a sum from several different places in
the markup.

// HTML:

<p id="apple_anecdote">

I bought 11 apples at the grocery store.

On the way home I bought 7 more from the

back of a truck parked alongside the highway. When I got home I found

I already had 6 apples in the pantry. So

now I've got apples.

</p>

// JavaScript:

new Totaler('apple_anecdote', 'apple_total');

Moreover, we can declare as many Totalers on one page as necessary. Each one oper-
ates in blissful ignorance of whatever happens outside of the element it’s assigned to.

For these reasons, the DOM behavior pattern is used for all the script.aculo.us widg-
ets. And we’ll use this pattern for all the widgets we build as well. More on this in the
chapters to come.

Functional Programming
You first learned about functional programming in Chapter 2. We know that functions are
“first-class objects” in JavaScript—function is a data type, just like string or object, so we
can treat it the same way we treat other data types.

This means, for instance, that functions can be passed as arguments to other func-
tions. We used this technique to great effect in Chapter 3 where, with the help of
Enumerable methods, we applied a function to each item of a collection.

The following sections describe some other things functions can do.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP158

Functions Can Have Their Own Methods

Imagine I’ve got a function that adds numbers together:

function sum() {

var num = 0;

for (var i = 0; i < arguments.length; i++)

num += arguments[i];

return num;

}

The sum function will add its arguments together and return a number. If no argu-
ments are given, it will return 0.

We know the syntax for calling this method:

var result = sum();

To call this function, we append empty parentheses. If we take the parentheses off,
though, we’re no longer calling the function—we’re just referring to it:

var result = sum;

Be sure you understand the difference. In the first example, result is set to 0—the
result of calling sum with no arguments. In the second example, result is set to the sum
function itself. In effect, we’re giving sum an alias.

var result = sum;

result(2, 3, 4); //-> 9

We’re going to look at a few instance methods of Function. At first, these may seem
like magic tricks, but they’ll become more intuitive the more you use them.

Using Function#curry

Partial application (or currying) is a useful technique in languages where functions are
first-class objects. It’s the process by which you “preload” a number of arguments into a
function. In other words, I could “curry” a function that expects parameters a, b, and c by
giving it a and b ahead of time—getting back a function that expects only c.

Confused yet? What I just said is much easier to express in code:

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 159

function alertThreeThings(a, b, c) {

alert(a);

alert(b);

alert(c);

}

var alertTwoThings = alertThreeThings.curry(“alerted first”);

alertTwoThings("foo", "bar");

// alerts "alerted first"

// alerts "foo"

// alerts "bar"

We’ve just defined a function that, if we were to write it out ourselves, would behave
like this:

function alertTwoThings(b, c) {

return alertThreeThings("alerted first", b, c);

}

But by using curry, we’re able to express this more concisely and flexibly.
Function#curry can accept any number of arguments. I could load two or three argu-

ments into alertThreeThings:

var alertOneThing = alertThreeThings.curry("alerted first",

"alerted second");

alertOneThing("foo");

// alerts "alerted first"

// alerts "alerted second"

// alerts "foo"

var alertZeroThings = alertThreeThings.curry("alerted first",

"alerted second", "alerted third");

alertZeroThings();

// alerts "alerted first"

// alerts "alerted second"

// alerts "alerted third"

Let’s look at a less-contrived example. We can curry the sum function we defined
earlier:

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP160

var sumPlusTen = sum.curry(10);

typeof sumPlusTen; //-> "function"

sumPlusTen(5); //-> 15

sumPlusTen(); //-> 10

sumPlusTen(2, 3, 4); //-> 19

Each of these examples is equivalent to calling sum with a value of 10 as the first argu-
ment. It doesn’t matter how many arguments we pass to the curried function, since we’ve
defined sum in a way that works with any number of arguments. The curried function will
simply add 10 to the beginning of the argument list and pass those arguments to the orig-
inal function.

We’ll explore the use cases for Function#curry in later chapters. But it’s important for
you to be familiar with it in the context of the other Function instance methods we’re
about to cover.

Using Function#delay and Function#defer

JavaScript has no formal “sleep” statement—no way to block all script execution for a
specified amount of time. But it does have setTimeout, a function that schedules code
to be run at a certain time in the future.

function remind(message) {

alert("REMINDER:" + message);

}

setTimeout(function() { remind("Be sure to do that thing"); }, 1000);

The built-in setTimeout function takes two arguments. The first can be either a func-
tion or a string; if it’s a string, it’s assumed to be code, and will be evaluated (with eval) at
the proper time. (It’s much better practice to pass a function.) The second argument
must be a number, in milliseconds, that tells the interpreter how long to wait before try-
ing to run the code we gave it. It returns an integer that represents the timer’s internal ID;
if we want to unset the timer, we can pass that ID into the clearTimeout function.

In this example, the setTimeout call ensures that the function we’ve passed it will get
called at least 1000 ms (1 second) later. Because browser JavaScript executes in a single-
threaded context, the interpreter might be busy 1 second later, so there’s no way of
knowing the exact moment. But nothing will slip through: as soon as the interpreter is
idle again, it will look at the backlog of things that have been scheduled, running any-
thing that’s past due.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 161

So maybe that’s a better way to think of setTimeout: it adds functions to a queue,
along with a “do not run before” sticker that bears a timestamp. In the preceding exam-
ple, the timestamp is computed by adding 1000 ms to whatever the time was when we
called setTimeout.

As a thought experiment, then, imagine the second argument to setTimeout getting
smaller and smaller. What happens when it hits 0? Does such a thing trigger a wormhole
through space-time? No, for our purposes, the result is far more mundane. The inter-
preter “defers” the function to run whenever it has a spare moment.

Prototype thinks the setTimeout function is ugly. Prototype prefers to give functions
instance methods named delay and defer.

Function#delay

Function#delay expects one argument: a number that specifies the number of seconds to
wait (not milliseconds, unlike setTimeout).

function annoy() {

alert("HEY! You were supposed to do that THING!");

}

annoy.delay(5);

// alerts "HEY! You were supposed to do that THING!" roughly 5 seconds later

There are those who might say that this is a just a fancy way of calling setTimeout. I
think it’s a less fancy way of calling setTimeout, if fanciness can be measured in number of
characters typed.

// equivalent statements

setTimeout(annoy, 5000);

annoy.delay(5);

The gains are more obvious when you’re calling a function that takes arguments. Any
arguments given to delay after the first are passed along to the function itself:

function remind(message) {

alert("REMINDER:" + message);

}

remind.delay(5, "Be sure to do that thing.");

// alerts "REMINDER: Be sure to do that thing." roughly 5 seconds later

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP162

Now compare the several ways to say the same thing:

// equivalent statements

setTimeout(function() { remind("Be sure to do that thing." }, 5000);

setTimeout(remind.curry("Be sure to do that thing."), 5000);

remind.delay(5, "Be sure to do that thing.");

We save a few keystrokes through clever use of Function#curry, but we save far more
by using Function#delay.

Function#defer

Function#defer is equal to Function#delay with a timeout of 0.01 seconds (the smallest
practical timeout in a browser environment). To defer a function call is to say, “Don’t do
this now, but do it as soon as you’re not busy.”

To illustrate this concept, let’s see how defer affects execution order:

function remind(message) {

alert("REMINDER:" + message);

}

function twoReminders() {

remind.defer("Don't forget about this less important thing.");

remind("Don't forget about this _absolutely critical_ thing!");

}

twoReminders();

// alerts "Don't forget about this _absolutely critical_ thing!"

// alerts "Don't forget about this less important thing."

In the twoReminders function, we make two calls to remind. The first, a deferred call,
fires after the second. More specifically, the second call fires immediately, and the first
call fires as soon as the interpreter exits the twoReminders function.

The commonest use case for defer is to postpone costly operations:

function respondToUserClick() {

doSomethingCostly.defer(); // instead of doSomethingCostly();

$('foo').addClassName('selected');

}

Here, it’s best to defer the call to doSomethingCostly until after the function exits. That
way, the visual feedback (adding a class name to an element) happens without delay,
making the application feel “snappier” to the user.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 163

Using Function#bind

To talk about Prototype’s Function#bind is to delve into JavaScript’s confusing rules about
scope. Scope is the meaning of the keyword this in a given context.

Let’s look back at our Totaler example. In Chapter 1, we talked about how a scope is
created whenever an object is instantiated. When I call new Totaler, I create a new scope
for the instance; Totaler#initialize runs within this scope, as do all other methods in the
Totaler class. Therefore, the keyword this refers to the instance itself when we’re inside
any of these methods.

var Totaler = Class.create({

initialize: function(element, totalElement, options) {

this.element = $(element);

this.totalElement = $(totalElement);

this.options = Object.extend({

selector: ".number"

}, options || {});

},

...

For this reason, this becomes internal shorthand for the instance itself.
Try to take one of these methods out of context, though, and you’ll run into prob-

lems. If I declare a new Totaler on the page, I might want to alias its updateTotal method
for convenience:

window.totaler = new Totaler('cities', 'population_total');

var retotal = totaler.updateTotal;

All I’ve done is hand a method reference to retotal. I should be able to call retotal on
its own later on, but if I try it I run into problems:

retotal();

//-> Error: this.element is undefined

In JavaScript, scope is bound to execution context. The interpreter doesn’t decide
what this means until a function gets called. Here we run into trouble—retotal doesn’t
know anything about the Totaler instance’s scope.

Function#bind solves this problem. It expects one argument and returns a version of
the function whose scope is “bound” to that argument. Here, we want this to refer to
totaler, so let’s bind it to that scope to make the function truly portable:

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP164

var retotal = totaler.updateTotal.bind(totaler);

retotal();

The method runs, error free.
Function#bind is most useful when dealing with event assignment. Switching the con-

text in which an event handler runs is something we’ll need to do quite often in the
chapters to come.

Summary
We’ve taken a brief glance at two useful models for DOM scripting: functional and object-
oriented programming. These models, in fact, go far beyond contrived code patterns;
they’re manifestations of core features of JavaScript. Functional programming is right at
home in the event-driven world of browser scripting; OOP is a corollary of JavaScript’s
principles of mutability and scope.

You’ll be able to appreciate these pillars of JavaScript coding philosophy as we delve
into the use cases presented in Part 2.

CHAPTER 7 ■ ADVANCED JAVASCRIPT: FUNCTIONAL PROGRAMMING AND CLASS-BASED OOP 165

Other Helpful Things:
Useful Methods on Built-Ins

As embarrassing as it is for me to have a chapter devoted to “other random stuff,” I’ve
decided to write it anyway. This book isn’t meant to teach you JavaScript; it’s meant to be
a survey of a framework that acts as JavaScript’s “standard library.” Prototype sticks utility
methods in appropriate nooks and crannies, some of which are simply too general to
have been addressed in an earlier chapter.

This chapter, then, will explore the convenience methods that Prototype adds to
built-in objects. Many of them are used within Prototype itself, but they’re likely to be
useful in your own code as well.

Using String Methods
I’m at a loss here. What can I say about strings? Strings in JavaScript bear good news
and bad news. The bad news is that many of the conveniences that other languages
possess for dealing with strings simply aren’t present in JavaScript. The good news is
that, as we’ve done elsewhere, we can leverage the hackability of the language to fix this
shortcoming.

String Utility Methods

Prototype adds a bagful of useful instance methods to strings. Some you’ll use every day;
some rarely, if ever. But they’re there in case you need them.

The gsub, sub, and scan Methods

These first three methods all involve searching for text in a string and doing something
with the result.

167

C H A P T E R 8

At first glance, String#gsub would appear to be redundant—it behaves just like
String#replace and has a weirder name. At second glance, though, it will become your
method of choice for string substitution.

Short for “global substitution,” gsub is named after the similar method in Ruby. Like
replace, it takes two arguments: a pattern and a replacement. The pattern can be a string
or a regular expression; the replacement can be a string or a function.

Let’s look at the simplest case—both arguments as strings:

"Never, never pour salt in your eyes.".gsub('never', 'always');

//-> "Never, always pour salt in your eyes."

Wait—that’s not what we meant. We want to replace both never and Never, so let’s
change that first argument to a case-insensitive regular expression.

■Tip Do regular expressions intimidate you? If so, this section might not be for you. Type “regular expres-
sions” into your favorite search engine if you need a crash course.

"Never, never pour salt in your eyes.".gsub(/never/i, 'always');

//-> "always, always pour salt in your eyes."

OK, that problem was easy to solve—JavaScript allows us to ignore case by using
the i flag at the end of a regular expression. But now we’ve got a new problem. The first
“never” has a capital N, since it’s the first word of the sentence. We need to ensure that
a capitalized word has a capitalized replacement.

To do this, let’s get a little cleverer with our regular expression. We can experiment
with JavaScript’s RegExp#exec until we have one that suits our needs better. RegExp#exec
accepts a string, applies the given regular expression against it, and returns an array of
matches:

/never/.exec("Never, never pour salt in your eyes.");

//-> ["never"]

/never/i.exec("Never, never pour salt in your eyes.");

//-> ["Never"]

You’ll notice the matches themselves are arrays, too. The first item in this array is the
full match. If there are any captures in the expression—indicated by parentheses—then
those submatches are also given in the order they occur. Since we’re trying to figure out if
“never” is capitalized or not, let’s capture the first letter of the pattern:

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS168

/(n)ever/i.exec("Never, never pour salt in your eyes.");

//-> ["Never", "N"]

Armed with this insight, let’s go back to gsub and swap out the second argument.
We’ll turn it into a function—one that decides on a proper replacement string for each
match.

"Never, never pour salt in your eyes.".gsub(/(n)ever/i, function(match) {

if (match[1] === match[1].toUpperCase()) return "Always";

else return "always";

});

//-> "Always, always pour salt in your eyes."

Notice that this function takes one argument, match, which corresponds to each
match of the pattern as would be returned by String#match.

Two other methods, sub and scan, work in a very similar way. String#sub replaces
only the first match of a given pattern in a string:

"Never, never pour salt in your eyes.".sub(/never/i, 'Always');

//-> "Always, never pour salt in your eyes."

And String#scan is used for executing a function against each match of a pattern:

// find all four-letter words in a phrase

var warning = "Never, never pour salt in your eyes.", fourLetterWords = [];

warning.scan(/\b\w{4}\b/, function(match) { fourLetterWords.push(match[0]); });

console.log("Four-letter words: " + fourLetterWords.join(', '));

//-> "Four-letter words: pour, salt, your, eyes"

To review, all three of these methods let you search for a pattern in a string. There-
fore, all three expect either a string or a regular expression as the first argument. Two
of these methods, gsub and sub, replace one substring with another—gsub acts on every
occurrence, while sub acts on only the first. So both can take either a string or a func-
tion as the replacement. Finally, scan doesn’t do any replacement at all; it just calls a
function for every occurrence of a pattern.

The strip Method

Sounds scandalous, I know, but it’s pretty mundane. String#strip simply removes all
leading and trailing spaces from a string:

" foo ".strip(); //-> "foo"

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 169

In the unpredictable browser environment, where whitespace fills every crack and
crevice, strip helps normalize strings for comparison:

var a = "bar ", b = " bar";

a == b; //-> false

a.strip() == b.strip(); //-> true

The stripTags, escapeHTML, and unescapeHTML Methods

It’s frustrating to deal with HTML in string form, but it’s often necessary. Many Prototype
methods, like Element#insert and Element#update, accept HTML strings as one way to
place content into a page.

It’s also important to write code that’s both defensive and secure. Let’s look at an
example:

<form id="blog_comment" action="/path/to/action/page">

<p>

<label for="comment_name">Name </label>

<input id="comment_name" name="comment_name" type="text" />

</p>

<p>

<label for="comment_text">Comment</label>

<textarea id="comment_text" name="comment_text"></textarea>

</p>

</form>

<div id="live_preview"></div>

Assume that this is a standard blog comment form. We want to let the commenter
preview her comment before submitting, so we’ll set a listener that will update the div
with each keystroke:

function updateLivePreview() {

var commentText = $('comment_text').value;

$('live_preview').update(commentText);

}

Event.observe(window, 'load', function() {

$('comment_text').observe('keyup', updateLivePreview);

});

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS170

Load this example in a browser, and you’ll see that this code behaves the way we
expect. We can type something into the textarea and see a live version in the div below
(Figure 8-1).

Figure 8-1. Live comment preview

But it’s not enough to test typical input. We’ve also got to test how resilient it is by
feeding it unexpected input. Sure enough, this code handles plain text deftly, but doesn’t
like HTML all that much (see Figure 8-2).

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 171

Figure 8-2. The code doesn’t sanitize user input.

From a server-side perspective, failing to sanitize user input is a huge security risk.
From a client-side perspective, it’s also a monkey wrench in your page design. If we’re not
allowing HTML in blog comments, then we’ve got to escape the input so that every char-
acter is treated as a literal value (see Figure 8-3):

function updateLivePreview() {

var commentText = $('comment_text').value.escapeHTML();

$('live_preview').update(commentText);

}

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS172

Figure 8-3. Comment preview with escaped HTML

String#escapeHTML finds characters with special meaning in HTML—specifically angle
brackets (<>)—and converts them to their HTML entity equivalents:

"Never, never pour salt in your eyes.".escapeHTML();

//-> "Never, never pour salt in your eyes."

As you might expect, String#unescapeHTML does the exact opposite:

"Never, never pour salt in your eyes.".unescapeHTML();

//-> "Never, never pour salt in your eyes."

So that’s one approach we can take. Another would be to ignore anything that looks
like HTML, rather than display it literally:

"Never, never pour salt in your eyes.".stripTags();

//-> "Never, never pour salt in your eyes."

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 173

In fact, this solution better captures the commenter’s original intent.
String#stripTags removes all HTML from a string, leaving behind only plain text (see
Figure 8-4).

■Caution Never, ever use client-side sanitization as a replacement for server-side sanitization. Client-side
sanitization is trivial to bypass and gives you a false sense of security. Instead, decide how the server will
handle unusual input, and then write client-side code to mirror that behavior. Live comment preview is a UI
feature—not a security measure.

Figure 8-4. HTML no longer has an effect on the page.

The camelize, underscore, and dasherize Methods

These string-formatting methods spring from identical methods in the popular Rails
framework. They’re used to convert between different methods of word delimiting.
I’ll let the code explain itself:

"lorem-ipsum-dolor".underscore(); //-> "lorem_ipsum_dolor"

"lorem_ipsum_dolor".dasherize(); //-> "lorem-ipsum-dolor"

"lorem-ipsum-dolor".camelize(); //-> "loremIpsumDolor"

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS174

You can see that underscore converts hyphens to underscores, dasherize converts
underscores to hyphens (yes, hyphens, even though the method calls them dashes!), and
camelize removes hyphens while capitalizing the letters that follow (otherwise known as
camel case).

For instance, Prototype allows you to call Element#setStyle and pass CSS property
names in either their hyphenated or their camelized variants:

$('foo').setStyle({ paddingBottom: '10px' });

$('foo').setStyle({ 'padding-bottom': '10px' });

Element#setStyle makes this possible by calling String#camelize to ensure that all
property names are in camel case.

The capitalize and truncate Methods

These methods format strings so that they’re fit for user consumption. String#capitalize
will convert the first letter of a string to uppercase and all other letters to lowercase:

"never".capitalize(); //-> "Never";

"NEVER".capitalize(); //-> "Never";

"Never".capitalize(); //-> "Never";

String#truncate is quite interesting. It will return the first n characters of a string,
along with an ellipsis to indicate the truncation:

var warning = "Never, never pour salt in your eyes."

var truncation = warning.truncate(15); //-> "Never, never..."

truncation.length; //-> 15

The first argument, naturally, indicates how long you’d like the resulting string to be.
The optional second argument lets you specify a custom truncation, if you’re not a fan of
the default (...). Keep in mind that the length of the truncation is included in the length
of the returned string.

var otherTruncation = warning.truncate(20, ">>>>>");

//-> "Never, never po>>>>>"

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 175

The include, startsWith, endsWith, empty, and blank Methods

Last of all are five methods that test the content of strings. All five return a Boolean—
true or false.

String#include tests for a simple substring match. String#startsWith and
String#endsWith do the same, but test whether the anchored substring exists at the
beginning or the end of the string, respectively:

var warning = "Never, never pour salt in your eyes."

warning.include("salt"); //-> true

warning.startsWith("salt"); //-> false

warning.startsWith("N"); //-> true

warning.startsWith("n"); //-> false

warning.endsWith("your eyes.") //-> true

All three of these methods are case sensitive.
String#empty and String#blank take no arguments—they simply test if the string is

empty (has a length of 0) or blank (contains only whitespace):

" ".blank(); //-> true

" ".empty(); //-> false

"".empty(); //-> true

"".blank(); //-> true

All empty strings are blank, but not all blank strings are empty.

The Template Class and String Interpolation

Think of your favorite programming language right now. (If your favorite language is
JavaScript, you’re an anomaly. Think of your second favorite.) The language you’re think-
ing of certainly has some handy way of mixing variables into existing strings.

PHP and Ruby, for instance, give us variable interpolation:

// PHP:

echo "Touchdown scored by ${position} ${first_name} ${last_name}!";

// Ruby:

puts "Touchdown scored by #{position} #{first_name} #{last_name}!";

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS176

In both these languages, we can mark certain parts of a string to be replaced by vari-
ables. We notify the language’s interpreter by using a special pattern in the string.

JavaScript doesn’t have variable interpolation, but since when has that stopped us?
We can fake it.

Using the Template Class

Prototype gives us a class named Template. Let’s play around with it.

var t = new Template("The quick brown #{first} jumps over the lazy #{second}.");

We declare a new instance of Template and pass it a string. You should recognize the
special syntax we use inside the string—it’s identical to Ruby’s.

Now we can use this template over and over again, passing different values for inter-
polation, with Template#evaluate:

t.evaluate({ first: "fox", second: "dog" });

//-> "The quick brown fox jumps over the lazy dog."

t.evaluate({ first: "yak", second: "emu" });

//-> "The quick brown yak jumps over the lazy emu."

t.evaluate({ first: "tree", second: "human" });

//-> "The quick brown tree jumps over the lazy human."

Ignore the increasing improbabilities of these statements. Instead, note that
Template#evaluate takes one argument, an Object, with properties corresponding to the
names we used in the original string. Note also that we need only create the template
once—but we can use it over and over to generate strings that conform to the same
pattern.

Since an array is just a special kind of object with numeric property names, you can
define a template that uses numbered replacements:

var t = new Template("The quick brown #{0} jumps over the lazy #{1}.");

t.evaluate(["bandicoot", "hyena"]);

//-> "The quick brown bandicoot jumps over the lazy hyena."

Of course, sometimes you won’t need to interpolate more than once. So there’s also
String#interpolate:

"The quick brown #{first} jumps over the lazy #{second}."

.interpolate({ first: "ocelot", second: "ibex" });

//-> "The quick brown ocelot jumps over the lazy ibex."

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 177

Advanced Replacement

Recall in the previous chapter how we created classes for football players, where each
instance of a class was a specific player. Each had properties like firstName, lastName, and
points that held useful metadata about the player.

We also defined a custom toString method, taking advantage of the fact that
JavaScript uses a method by that name whenever it needs to coerce an object into a
string. Our toString method returned the first and last names of the player:

var qb = new Quarterback("Andrew", "Dupont");

qb; //-> [Object];

qb + " just won the Heisman trophy.";

//-> "Andrew Dupont just won the Heisman trophy."

Because concatenating (+) a string to another object involves automatic string
coercion, our instance of Quarterback knew how to represent itself in that context.

Template and String#interpolate do something similar. If the object you’re inter-
polating with has a special method called toTemplateReplacements, then the result of that
method will be used to fill in the template string:

var blatantLie = new Template(

"#{position} #{firstName} #{lastName} just won the Heisman trophy.");

blatantLie.evaluate(qb);

//-> " Andrew Dupont just won the Heisman trophy."

// adding an instance method to the Quarterback class

Class.extend(Quarterback, {

toTemplateReplacements: function() {

return {

position: "QB",

firstName: this.firstName,

lastName: this.lastName

};

}

});

blatantLie.evaluate(qb);

//-> "QB Andrew Dupont just won the Heisman trophy."

Here, we’ve done a before-and-after comparison. The first time we call
Template#evaluate, the Quarterback instance itself is used—its own properties filling

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS178

in the holes of the template string. That instance has firstName and lastName properties,
but it doesn’t have a position property, so an empty string is used instead.

When we add Quarterback#toTemplateReplacements, though, we’re supplying a substi-
tute object to use for interpolation. So we’re able to specify properties above and beyond
those that already exist on the object. In this case, we’re defining a position property to
go into the evaluated string.

The larger purpose of defining toTemplateReplacements is the same as the purpose
as defining toString: it allows you to specify in one place how your object will behave in
a given context. For user-defined classes, it also promotes encapsulation, one of those
hallowed OOP virtues.

It’s all part of the theme that was established in Chapter 3: ensuring that objects
come with instructions for use. Just like we rely on objects that mix in Enumerable to know
how to enumerate themselves, here we’re relying on objects to know how to represent
themselves in a Template context.

Bringing It Back to String#gsub

The versatility of JavaScript objects gives us a bonus way to use Template. Remember that
an array is really just an object with numerals as keys, so Template and String#interpolate
can be used with arrays as well:

var sample = new Template("The quick brown #{0} jumps over the lazy #{1}");

sample.evaluate(["fox", "dog"]);

//-> "The quick brown fox jumps over the lazy dog."

Items of an array respond to property lookups just like any other object.
Finally, then, I can share an Easter egg of sorts—template strings like these can be

used in String#gsub:

var warning = "Never, never pour salt in your eyes."

warning.gsub(/(salt) in your (eyes)/, "#{2} in your #{1}");

//-> "Never, never pour eyes in your salt."

You may also recall that the first item in a match array is the entire string that
matches the pattern; any subsequent items are substrings that match specific captures in
the regular expression. The preceding example, then, is shorthand for either of these:

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 179

warning.gsub(/(salt) in your (eyes)/, function(match) {

return match[2] + " in your " + match[1];

});

// or...

warning.gsub(/(salt) in your (eyes)/, function(match) {

return "#{2} in your #{1}".interpolate(match);

});

OK, I take it back: maybe strings are more awesome than we realized.

Using JSON
Strings are the building blocks of high-level protocols like HTTP. A client and a server
communicate in plain text, which, while much less friendly than the rendered view of a
browser, is nonetheless human-readable.

Each time your browser requests an HTML file, it receives one gigantic string, which
it then converts into a tree of objects for rendering. It converts between the two accord-
ing to the rules of HTML. It can be said, then, that HTML is a serializer: it takes something
inherently nonlinear and makes it linear for storage purposes.

The interesting stuff is done at higher levels, with more complex data types. But on
the Web, sooner or later, it all ends up as a string. JSON (JavaScript Object Notation) is
simply a way to represent these complex structures as strings.

What Does JSON Look Like?

Prototype likes to leverage the literal syntax for object creation, so code like this should
be nothing new to you:

var vitals = {

name: "Andrew Dupont",

cities: ["Austin", "New Orleans"],

age: 25

};

We can describe data structures in JavaScript with a minimum of syntactic cruft. By
comparison, let’s see what this data would look like in XML:

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS180

<vitals>

<name>Andrew Dupont</name>

<cities>

<city>Austin</city>

<city>New Orleans</city>

</city>

<age>25</age>

</vitals>

XML is verbose by design. What if we don’t need its extra features? That’s where JSON
comes in.

Why JSON?

There are a million different ways to exchange data between client and server; what’s so
special about JSON?

Very little, really. It’s not magical; it’s simply the right tool for the job in JavaScript-
heavy web apps. There are JSON libraries for all the common server-side languages: PHP,
Ruby, Python, Java, and many others. It’s far simpler than XML, and thus far more useful
when you don’t need all of XML’s bells and whistles.

We’ll revisit JSON in Part 2 of this book when we look into advanced topics in Ajax.
But let’s familiarize ourselves with the basics right now.

Serializing with Object.toJSON

The best way to learn about the structure of JSON is to try it out yourself. Let’s create a
few different JavaScript data types and see how they look in JSON:

var str = "The Gettysburg Address";

var num = 1863;

var arr = ["dedicate", "consecrate", "hallow"];

var obj = {

name: "Abraham Lincoln",

location: "Gettysburg, PA",

length: 269

};

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 181

Object.toJSON(str); //-> '"The Gettysburg Address"'

Object.toJSON(num); //-> '1863

Object.toJSON(arr);

//-> '["dedicate", "consecrate", "hallow"]'

Object.toJSON(obj);

//> '{ "name": "Abraham Lincoln", "location": "Gettysburg, PA",

"length": 269 }'

These examples teach you several new things:

• Object.toJSON will convert anything to JSON, regardless of type.

• Object.toJSON always returns a string.

• The way items are represented in JSON is identical to how they’re represented in
JavaScript. JSON conforms to the syntax and grammar of JavaScript.

In other words, in each of these cases, the string representation of the data matches
the keyboard characters you’d type to describe them yourself.

JSON can serialize any JavaScript data type except for functions and regular expres-
sions. The Date type gets half credit: there’s no literal notation for dates, so they’re
converted to a string representation.

Unserializing with String#evalJSON

The ease of dealing with JSON in JavaScript should be obvious: since it’s valid code, it can
simply be evaluated. JavaScript includes an eval function that will evaluate a string as
though it were code:

var data = eval('{ "name": "Abraham Lincoln", "location": "Gettysburg, PA",

"length": 269 }');

//-> [Object]

But there’s a problem. It’s always dangerous to evaluate arbitrary code unless you
know exactly where it’s coming from. Prototype’s String#evalJSON will evaluate a string as
code, but it takes an optional Boolean; if true, it will make sure the given string is valid
JSON—and therefore not a security risk.

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS182

var str = '{ "name": "Abraham Lincoln", "location": "Gettysburg, PA",

"length": 269 }';

str.evalJSON(); //-> [Object]

// Ensuring it's valid JSON

str.evalJSON(true); //-> [Object]

// Now try it with invalid, malicious JSON

str = '{ "name": "Abraham Lincoln" }; doSomethingMalicious();'.evalJSON(true);

//-> SyntaxError: Badly formatted JSON string

Most of the time, you’ll be using JSON simply as a way to communicate with your
own server, so security won’t be an issue. But if you happen to be handling JSON from a
third party, you must make sure it’s safe to use.

Overriding the Default Serialization

Object.toJSON will produce a generic serialization for any object—but, as with toString
and toTemplateReplacements, you can override this default. For instance, we can give
our Player class (and all its subclasses) instructions on how to serialize themselves—
reporting some properties and ignoring all others:

// Just first name, last name, and points

Class.extend(Player, {

toJSON: function() {

return Object.toJSON({

firstName: this.firstName,

lastName: this.lastName.

points: this.points

});

}

});

// But maybe subclasses should also report their position...

Class.extend(Quarterback, {

toJSON: function() {

return Object.toJSON({

position: 'QB',

firstName: this.firstName,

lastName: this.lastName,

points: this.points

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 183

});

}

});

var player = new Player("Johnny", "Generic");

Object.toJSON(player);

//-> '{ "firstName": "Johnny", "lastName": "Generic", "points": 0 }'

var qb = new Quarterback("Andrew", "Dupont");

Object.toJSON(qb);

//-> '{ "position": "QB", "firstName": "Andrew",

//-> "lastName": "Dupont", "points": 0 }'

You need only define a toJSON method to tell your object how to encode itself into
JSON.

The preceding example illustrates one of JSON’s drawbacks: it isn’t a “lossless” for-
mat. Since these classes contain functions, there’s no way they can be converted to JSON
and come back wholly intact. But this is the minimum amount of information we need to
restore the class as it existed originally. JSON can’t do this automatically, but we can do it
manually without much effort.

Using Object Methods
Prototype defines quite a few methods on Object, the generic constructor and patriarch
of the JavaScript family. Unlike the String methods just covered, these aren’t instance
methods—they’re attached to Object itself.

Type Sniffing with Object.isX

The hasty conception and standardization of JavaScript in the 1990s left a few gaping
holes in the language. One of the biggest holes is the typeof operator; in theory it gives
us useful information about an item, but in practice it acts like Captain Obvious.

Sure, it handles the simple cases just fine:

typeof "syzygy"; //-> 'string'

typeof 37; //-> 'number'

typeof false; //-> 'boolean'

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS184

But when it’s asked to do more complex checks, it falls flat on its face:

typeof [1, 2, 98]; //-> 'object'

typeof new Date(); //-> 'object'

typeof new Error('OMG'); //-> 'object'

Arrays, Dates, and Errors are objects, of course, but so are all non-primitives. Imagine
if you asked me, “Do you know what time it is?” and I responded only with “Yes.” My
answer is both narrowly correct and completely useless.

The one other value returned by typeof is function, but that applies both to functions
and regular expressions:

typeof $; //-> 'function'

typeof /ba(?:r|z)/; //-> 'function'

In other words, typeof arbitrarily singles out functions, even though they’re
instances of Object just like Array, Date, and Error types. And the fact that RegExp is a
function (if we’re being technical about it) just makes it harder to distinguish them
from true functions—what a useless taxonomy.

Prototype includes the type checking that the language left out. In a dynamic,
browser-based scripting environment, some checks happen again and again. Prototype
defines a handful of methods that test for certain data types: they all accept one argu-
ment and return either true or false.

The Object.isString, Object.isNumber, Object.isFunction Methods

The three simplest of these functions behave exactly like their typeof equivalents:

Object.isString("foo"); //-> true

Object.isNumber("foo"); //-> false

Object.isFunction($); //-> true;

Object.isNumber(4); //-> true

Object.isNumber(3 + 9); //-> true

Object.isNumber("3" + 9); //-> false

Skeptics may wonder why these methods are defined at all—if the behavior is identi-
cal to typeof, why not use typeof instead? These methods are slightly shorter to type than
the alternative, but they exist mostly so that you’ll get out of the habit of using typeof. If
that bothers you, feel free to ignore them for philosophical reasons.

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 185

The Object.isUndefined Method

Here’s another nugget of JavaScript trivia, in case you didn’t know: null and undefined are
two separate values. If you asked to borrow a dollar, null would be a firm, loud reply of
“No!”; undefined would be a distant stare, as if I hadn’t heard your question.

In other words, undefined means that a value has not been set for a variable, and null
means that the value has been explicitly set to nothing. For example, if I omit a named
argument from a function, it will be set to undefined:

function amigos(first, second, third) {

alert(typeof third);

}

amigos("Lucky", "Ned", "Dusty"); // alerts "string"

amigos("Lucky", "Ned"); // alerts "undefined"

JavaScript treats these two properties differently just to screw with our heads:

typeof undefined; // "undefined"

typeof null; // "object"

Huh? Why is null an object? Do you mean for us to scream?
Fortunately, you can test for null by using a strict equivalence check (using three

equals signs, rather than two). For example, consider Element#readAttribute, which
returns null if the specified attribute does not exist:

if ($('lastname').readAttribute('required') === null)

alert("Last name not required.");

On the other hand, the canonical way to check for undefined is to use typeof. We
cannot allow that, however. Instead, we’ll use Object.isUndefined:

function amigos(first, second, third) {

alert(Object.isUndefined(third));

}

The Object.isArray, Object.isHash, Object.isElement Methods

The three remaining type-checking methods test for arrays, hashes (instances of Proto-
type’s Hash class), and DOM element nodes. Each of these would respond to typeof with
“object,” but this is unacceptable for arrays and DOM nodes in particular, since they’re
among the most commonly used objects in the browser environment.

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS186

var amigos = ["Lucky", "Ned", "Dusty"];

typeof amigos; //-> 'object'

Object.isArray(amigos); //-> true

var villain = $('el_guapo');

typeof villain; //-> 'object'

Object.isElement(villain); //-> true

var partyFavors = $H({

cake: 1,

amigos: 3,

pinatas: "plethora"

});

typeof partyFavors; //-> 'object'

Object.isHash(partyFavors); //-> true

Using Type-Checking Methods in Your Own Functions

JavaScript’s weak typing is a boon to API developers, since it allows for functions that
can take many different combinations of arguments. Consider Prototype’s own $: it can
accept any number of arguments, each of which can be either a string or an element.
Let’s look at the source code for $:

function $(element) {

if (arguments.length > 1) {

for (var i = 0, elements = [], length = arguments.length; i < length; i++)

elements.push($(arguments[i]));

return elements;

}

if (Object.isString(element))

element = document.getElementById(element);

return Element.extend(element);

}

The first if statement handles the case where there is more than one argument: $
loops through the arguments, cleverly calls itself on each one, and then places each result
into an array, returning that array.

The final three lines deal with the common case: element is either a DOM element
node or a string, so the function sniffs for strings and calls document.getElementById to
convert them into elements. Thus, by the last line, element is guaranteed to be a true
DOM node.

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 187

Less dynamic languages like Java would require that we define $ twice: once for pass-
ing it a string and once for passing it an element. (Passing an indeterminate number of
arguments wouldn’t work at all.) JavaScript, on the other hand, lets us write one function
for all these use cases; we have the tools to inspect these arguments ourselves.

In the case of $, performing a simple type check within the function saves the devel-
oper’s time: she can write functions that accept strings and DOM nodes indifferently.
Calling $ within those functions will ensure that the end result is an element.

Think how much time you could save by automating the annoying type coercions
that your functions demand? Prototype’s type-checking methods allow your code to read
your mind just a bit better.

Using Array Methods
Way back in Chapter 3, I covered Enumerable and the methods it adds to collections.
Arrays receive these methods, of course, but they also receive a handful of methods
tailored specifically for arrays.

The reverse and clear Methods

The first two methods document themselves. Array#reverse inverts the order of an array;
Array#clear removes all of an array’s items.

Array#reverse returns a new array by default, but takes an optional Boolean argu-
ment to reverse the original array:

var presidents = ["Washington", "Adams", "Jefferson", "Madison", "Monroe"];

presidents.reverse();

//-> ["Monroe", "Madison", "Jefferson", "Adams", "Washington"]

presidents;

//-> ["Washington", "Adams", "Jefferson", "Madison", "Monroe"];

presidents.reverse(true);

//-> ["Monroe", "Madison", "Jefferson", "Adams", "Washington"]

presidents;

//-> ["Monroe", "Madison", "Jefferson", "Adams", "Washington"]

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS188

For obvious reasons, Array#clear always acts on the original array:

presidents.clear();

presidents; //-> []

The uniq and without Methods

Two other methods winnow the contents of the array. Array#uniq takes its behavior and
its odd name from the corresponding Ruby method—it returns an array without any
duplicate values:

var presidents = ["Washington", "Adams", "Jefferson",

"Madison", "Monroe", "Adams"];

presidents.uniq();

//-> ["Monroe", "Madison", "Jefferson", "Adams", "Washington"]

[1, 2, 3, 3, 2, 3, 1, 3, 2].uniq();

//-> [1, 2, 3]

Array#without accepts any number of arguments and returns a new array without the
specified values:

var presidents = ["Washington", "Adams", "Jefferson",

"Madison", "Monroe", "Adams"];

presidents.without("Adams", "Monroe");

//-> ["Washington", "Jefferson", "Madison"];

Summary
Now that I look back on it, I realize that this chapter hasn’t been too embarrassing for
either of us. I managed to fill in a few of the cracks I had skipped over in previous chap-
ters, and you got a broader look at the some of the APIs Prototype provides.

Part 2 of this book will focus on script.aculo.us and its robust effects library and
set of UI controls. We’ll revisit everything covered in this chapter as we explore
script.aculo.us through hands-on examples.

CHAPTER 8 ■ OTHER HELPFUL THINGS: USEFUL METHODS ON BUILT- INS 189

script.aculo.us

P A R T 2

What You Should Know About
DHTML and script.aculo.us

DHTML is the term assigned to a collective set of technologies used to create dynamic
web content, including HTML, JavaScript, and CSS. The dynamism in DHTML comes
from the fact that we’re modifying the structure and presentation layers of the document
(HTML and CSS) after the page has been loaded. This definition is broad enough to cover
animations (elements moving across the page over time), new interaction models (drag-
and-drop), and new controls (sliders, combo boxes, and in-place editors).

DHTML isn’t a special language; it’s just a term for what becomes possible when the
DOM APIs for markup and style are made available to JavaScript. Some of it relies on sta-
ble, agreed-upon standards like the DOM; some of it relies on the mystical APIs that were
introduced a decade ago as part of the browser wars. It exists at the intersection of the
visual and the analytical, making designers and developers equally uncomfortable.

We’ll deal with the analytical parts as we go. The visual parts require a crash course
in CSS concepts and a quick look at the APIs that let us control how elements are dis-
played through JavaScript.

Introducing the CSS Box Model
Web design is all about rectangles, to put it plainly. Every element represented visually
is a rectangle of some sort. (That we aren’t dealing with circles, triangles, or irregular
polygons is a blessing. Be thankful.)

Typically, these rectangles are placed onto the page in a way that represents their
hierarchical relationship. The rectangle created by a table cell, for instance, will appear
inside the one created by its table row. A parent element, then, acts as a containing block
for its children.

193

C H A P T E R 9

This is the default rendering behavior for most elements because it’s a visual con-
veyance of the elements’ semantics. Most parent-child relationships have meaning. A list
item belongs to an unordered list; a legend belongs to a fieldset; a table cell belongs to a
table row.

As you’ll learn, though, there are ways to override this default arrangement. With
CSS, you can have near-perfect control of how elements are placed.

Visualizing with Block-Level Elements

Visually, most elements are represented as blocks—big rectangles, if you prefer—and are
thus called block-level elements.

As the primary pieces of page construction, block-level elements are broadly cus-
tomizable. Through CSS, you can control their dimensions, colors, and spacing. Also
remember that many CSS properties inherit—some properties defined on an element
propagate to its children unless specifically overridden.

Block-level elements have implicit line breaks. If there are two paragraph ele-
ments in a row, for instance, the second will render below the first. By default, they
won’t compete for horizontal space. Figure 9-1 illustrates this behavior.

Figure 9-1. The markup on the left translates roughly to the structure on the right.

But, as Figure 9-2 illustrates, any element can be made to behave like a block-level
element, even if it isn’t one, by setting that element’s CSS display property to block.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US194

Figure 9-2. An element meant for inline display can act like a block-level element if its CSS
display property is changed.

Formatting Blocks with Inline Elements

Other elements don’t lend themselves to block formatting. Many—like anchor (a),
emphasis (em), and strong (strong)—are meant to be formatted within the lines of a
paragraph or other block-level element. They’re inline elements—small rectangles, if
you prefer—and are not as greedy or imposing, space-wise, as their block-level
brethren. Figure 9-3 illustrates.

Figure 9-3. By default, inline elements adopt the size and shape of the text they envelop.

Inline elements can contain text and other inline elements, but not block-level
elements:

<!-- RIGHT: -->

<p>Never pour salt in your eyes.</p>

<!-- WRONG: -->

<p>Never pour salt in your eyes.</p>

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 195

Inline elements don’t have implicit line breaks. If you wish to start a new line, you
must use a line break (br) or wrap at least one of the elements inside a block-level
element.

You can make any element behave like an inline element by setting its display prop-
erty to inline.

We’ll revisit inline display later. For now, though, let’s take a closer look at block dis-
play and the box model.

Thinking Outside the Box: Margins, Padding, and Borders

The box model is day-one material for those learning CSS. But even experts can be sur-
prised by its nuances.

The dimensions of an element are nominally controlled by the CSS width and height
properties, but these control the dimensions of the usable content area, not the entire
box. A block-level element can also have padding (space inside the box) and margin
(space outside the box).

In between margin and padding lies the box’s border. A developer can also control
a border’s thickness, color, and style (see Figure 9-4).

Figure 9-4. An illustration of common measurements in the CSS box model, along with
related DHTML properties

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US196

This might all be clearer in example form (see Figure 9-5):

<!-- HTML: -->

<p id="box">Never pour salt in your eyes.</p>

/* CSS: */

#box {

width: 50px;

height: 50px;

background-color: #ddd;

margin: 25px;

padding: 10px;

border: 5px solid #aaa;

}

Figure 9-5. The visual result of the given markup and CSS

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 197

Giving one value for margin or padding will apply that value to all sides of an element.
And the border property is shorthand for specifying a border’s width, style, and color all
at once. So we’ve got a box with 10 pixels of padding, 25 pixels of margin, and 5 pixels of
border on all sides.

There are several ways to measure the box’s dimensions:

The most obvious way to the human eye is to measure from the outside edges of
the border. By this measurement, our box is 80 pixels wide (50 pixels of content,
plus 10 pixels of padding on either side and 5 pixels of border on either side) and
80 pixels tall. Let’s call this the border box. This corresponds to the offsetWidth and
offsetHeight DHTML properties.

A related approach would be to measure from the inside edges of the border. By this
measurement, our box is 70 pixels wide (50 pixels of content, plus 10 pixels of
padding on either side) and 70 pixels tall. Let’s call this the padding box. It corre-
sponds to the clientWidth and clientHeight DHTML properties.

The way CSS approaches it is to measure the dimensions of the invisible content
box. How much usable space is there within the box? By this measurement (exclud-
ing all margins, padding, and border), our box would be 50 pixels square, just like
we wrote in the CSS. Let’s call this the content box. A computed style call (i.e.,
Element.getStyle) would report these dimensions.

The all-encompassing approach involves the total amount of space this element
occupies. In other words, how big would its parent element need to be in order to
contain it? By this measurement, our box would be 130 pixels square: 25 pixels of
margin, 5 pixels of border, 10 pixels of padding, 50 pixels of content, 10 more pixels
of padding, 5 more pixels of border, and 25 more pixels of margin. Let’s call this the
margin box.

All four of these approaches have an argument for representing the “true” dimen-
sions of a box. In an ideal world, we’d have a pleasant, uniform API for retrieving all four.
But in the actual world, only two come easily; the rest are left as an arithmetic exercise for
developers.

DHTML Properties

Two properties, clientWidth and clientHeight, are available on every DOM node to report
the dimensions of an element’s padding box. These two properties return integers:

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US198

$('box').clientWidth; //-> 50

$('box').clientHeight; //-> 50

Likewise, offsetWidth and offsetHeight report the dimensions of an element’s
border box:

$('box').offsetWidth; //-> 80

$('box').offsetHeight; //-> 80

For the content box, it’s not quite as simple. The quickest path to the answer is
a call to Element.getStyle, parsing the result into an integer:

var width = $('box').getStyle('width'), height = $('box').getStyle('height');

width; //-> "50px"

height; //-> "50px"

parseInt(width, 10); //-> 50

parseInt(height, 10); //-> 50

This tactic has the disadvantage of being far slower. Luckily, offsetWidth and
clientWidth are often good enough, approximating the actual values nearly enough to
justify the optimization. Don’t use the computed style approach unless you need total
accuracy.

CSS Positioning (Static, Absolute, and Relative)

Those of you who are comfortable with CSS may not need a crash course, but CSS posi-
tioning is complex enough that it warrants coverage. CSS defines four different values for
the position property, corresponding to four different ways to determine an element’s
position on the page. Three of them enjoy wide support: static, absolute, and relative.

Static Positioning

The default value, static, works the way you’re used to. Elements are arranged from top
to bottom in the order they appear on the page. In this mode, the CSS properties for posi-
tioning (top, bottom, left, and right) have no effect.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 199

Absolute Positioning

Here’s where things get weird. Absolute positioning doesn’t care about the order of ele-
ments on the page. It treats the entire document as a grid, letting you place elements
according to pixel coordinates.

For instance, I can create a box and place it on the screen anywhere I want (see
Figure 9-6):

<!-- HTML: -->

<div id='box'>Absolutely positioned</div>

/* CSS: */

#box {

position: absolute;

width: 600px;

height: 300px;

top: 50px;

left: 25px;

background-color: #ddd;

}

Figure 9-6. An absolutely positioned block-level element

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US200

In this example, the top-left corner of the page is the origin of the grid. A top value of
50px means that the top edge of the box will be placed 50 pixels from the top edge of the
canvas. Likewise, the left edge of the box will be placed 25 pixels from the left edge of the
canvas (see Figure 9-7).

<!-- HTML: -->

<div id='box'>Absolutely positioned</div>

<div id='box2'>Also absolutely positioned</div>

/* CSS: */

#box {

position: absolute;

width: 600px;

height: 300px;

top: 50px;

left: 25px;

background-color: #ddd;

}

#box2 {

position: absolute;

width: 600px;

height: 300px;

top: 100px;

left: 75px;

background-color: #888;

}

When an element is given absolute positioning, it’s taken out of the ordinary docu-
ment “flow”—its statically positioned brethren no longer account for it or make space
for it.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 201

Figure 9-7. Two absolutely positioned block-level elements

The z-index Property

I wasn’t entirely accurate when I said that order doesn’t matter with absolute positioning.
In this example, the two elements overlap quite a bit, so order is used to determine which
one should be “on top.”

But the CSS z-index property lets us override that default ordering (see Figure 9-8):

#box {

position: absolute;

width: 600px;

height: 300px;

top: 50px;

left: 25px;

background-color: #ddd;

z-index: 2;

}

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US202

Figure 9-8. Two absolutely positioned elements. The first has a larger z-index value than the
second, so it appears in front.

The grid analogy serves us well here. Imagine that left/right and top/bottom con-
trol the x and y axes of the grid; z-index controls the z axis, otherwise known as the
depth. Numbers refer to layers on the page; a higher number represents a layer
“closer” to the user. That’s why the second box appears on top of the first.

If two elements have the same z-index value (or have no z-index defined), then
their order on the page determines which one is on top. But here, by giving the first
box a z-index of 2, we’ve ensured that it will appear above the second box.

Relative Positioning

Relative positioning is the most confusing—it’s a mix of static and absolute positioning.
Like absolute positioning, it responds to the top, bottom, left, and right properties.
Unlike absolute positioning, it does not remove an element from the document flow.

Also, the element is positioned relative to its own top-left corner—not the top-left
corner of the document (see Figure 9-9).

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 203

#box {

position: relative;

width: 600px;

height: 300px;

background-color: #ddd;

top: 50px;

left: 25px;

}

Figure 9-9. A relatively positioned element

This example means to say, “Render the element as you would normally, except place
it 50 pixels lower and 25 pixels to the right.” Figure 9-10 shows the difference when com-
pared to static positioning.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US204

Figure 9-10. The same element, but with static positioning

Offset Parents and Positioning Context

There’s one final wrinkle. Elements can be placed relative to the document as a whole,
but they can also be placed relative to any other element. We’ll call this the element’s
positioning context. It alters the meaning of CSS properties like top.

We can see for ourselves how changing the positioning mode of an element affects
how that element’s children are rendered (see Figure 9-11):

<!-- HTML: -->

<div id="box">

<div id="box2"></div>

</div>

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 205

/* CSS: */

#box {

width: 300px;

height: 300px;

position: static;

background-color: #ddd;

}

#box2 {

width: 100px;

height: 100px;

position: absolute;

bottom: 15px;

right: 15px;

background-color: #333;

}

Figure 9-11. The black box positions itself in the context of the entire document.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US206

In this example, the child box is positioned relative to the entire document. But when
we change its parent’s position from static to relative, things look much different (see
Figure 9-12).

Figure 9-12. By changing the gray box’s position to relative, we define a new context for its
child, the black box.

Any value for position other than the default static creates a new positioning con-
text for its children. In both examples, the child box is positioned 15 pixels from the
bottom and right edges of the canvas; but when we changed the parent box’s positioning,
we changed the canvas.

Assigning relative positioning to an element won’t affect its placement unless it’s
accompanied by pixel values for left, right, top, or bottom. A position value of relative,
then, can be used to assign a new positioning context for all the element’s children while
leaving it otherwise unchanged.

When we discuss an element’s offset parent, we’re referring to the parent that defines
that element’s positioning context.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 207

Positioning with Offset Properties

The previously discussed offsetWidth and offsetHeight properties, which measure an
element’s border box, have three useful cousins. The first two, offsetLeft and offsetTop,
measure the distance from an element’s outside edge to the outside edge of its offset
parent.

And, luckily, the offsetParent property exists so that we can easily determine an
element’s offset parent.

var box = $('box2');

box.offsetTop; //-> 185

box.offsetLeft; //-> 185

box.offsetParent; //-> <div id="box">

Once again, these properties are nonstandard. But even the most rabid of
standardistas will find it hard not to use them. Stop worrying and learn to love them.

Introducing script.aculo.us
Is your head spinning yet? Aren’t you glad script.aculo.us is here to make all this easier?

script.aculo.us is a UI library built upon Prototype. It includes an effects framework,
implementations of several kinds of UI widgets, and a drag-and-drop system. Prototype
solves general problems; script.aculo.us uses Prototype to solve specific problems.

script.aculo.us was developed by Thomas Fuchs, a talented JavaScript developer who
is also a member of Prototype Core. The two projects—Prototype and script.aculo.us—
have been separate since almost the beginning, but have always had coordinated release
schedules. They’re fraternal twins.

Similarities to Prototype

If you know Prototype, you’ll have no trouble picking up script.aculo.us.

• It’s MIT-licensed. script.aculo.us carries the same permissive license as Prototype
and Ruby on Rails, so it can be used in any project, whether it’s commercial or
noncommercial.

• It’s bundled with Ruby on Rails. The built-in helpers in Rails use script.aculo.us,
but the library can easily be used in any context.

• It has its own site with documentation. The script.aculo.us documentation is
collaborative and wiki-based.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US208

• It follows the API conventions of Prototype. It uses many of the patterns you’ve
seen already.

• It has an emphasis on solving the 80 percent of problems common to all web
apps. If you’ve got very specific needs, you can write custom code on top of
script.aculo.us.

The script.aculo.us Web Site

You can learn more about script.aculo.us at its web site, at http://script.aculo.us, which
includes collaborative, wiki-based documentation and other resources to help you when
you get stuck.

Contributing to script.aculo.us

Like Prototype, script.aculo.us welcomes bug fixes and enhancements. The bug tracker is
open to the public and contains a list of pending script.aculo.us bug reports and feature
requests. Patches of all kinds are enthusiastically encouraged.

Getting Started with script.aculo.us
Unlike Prototype, script.aculo.us is distributed as a set of files, instead of just one file.
That’s because it’s divided into modules, most of which are optional.

Figure 9-13 shows what script.aculo.us looks like when you download and unzip it.

Figure 9-13. The directory structure of a downloaded script.aculo.us bundle

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 209

The lib folder contains a copy of Prototype, just in case you don’t have it already.
We’ll stick with the one we’ve already got; oftentimes the version bundled with
script.aculo.us is a little behind the stand-alone version. But the latest script.aculo.us
and the latest Prototype, each fetched from its respective web site, are guaranteed to
work together.

The src folder contains the files we’re interested in:

• scriptaculous.js is the main file, the one that declares the script.aculo.us version
number and ensures that Prototype is already loaded.

• effects.js provides animations and advanced UI flourishes.

• dragdrop.js provides drag-and-drop support—the ability to define certain ele-
ments on a page as “draggables” that can be dropped onto other elements.

• controls.js provides several advanced UI controls, among them an auto-
completer (a text field that offers suggestions as you type) and an in-place
editor (allowing a user to view and edit content on the same page).

• slider.js provides a scrollbar-like “slider”—a button that a user can drag to any
point along a track.

• sound.js provides a simple API for playing sounds on a web page.

• builder.js is a utility file for DOM element creation. Because none of the afore-
mentioned scripts rely on it and it provides no end-user functionality, we won’t
be covering this part.

• unittest.js is a utility file that’s used for script.aculo.us unit tests.

Speaking of unit tests, the test folder contains a bunch of unit and functional
(automated and manual) tests. These tests assert that script.aculo.us does what it
claims to do in a cross-browser manner. We won’t be bothering with this folder either.

Loading script.aculo.us on a Page

There are several ways to load script.aculo.us into a web page. All of them begin the same
way that Prototype is loaded. First, as in Chapter 1, create a boilerplate index.html file,
and include a script tag that references prototype.js:

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US210

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>Blank Page</title>

<script type="text/javascript" src="prototype.js"></script>

</head>

<body>

<h1>Blank Page</h1>

</body>

</html>

To include script.aculo.us, you’ll need to copy the contents of the src folder into
the folder where index.html resides. For this example, your JavaScript and HTML code
all lives in the same place. It doesn’t have to, of course; just make sure that all the
script.aculo.us files reside in the same directory. Treat them as one unit.

Once you’ve copied the files over, include a reference to scriptaculous.js in your
HTML:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>Blank Page</title>

<script type="text/javascript" src="prototype.js"></script>

<script type="text/javascript" src="scriptaculous.js"></script>

</head>

<body>

<h1>Blank Page</h1>

</body>

</html>

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 211

You’re done. The file you included, scriptaculous.js, inserts references to the other
files (builder.js, effects.js, dragdrop.js, controls.js, slider.js, and sound.js) into your
document dynamically.

In other words, script.aculo.us loads every module by default. If there are certain
modules you don’t need, you can leave them out by explicitly stating which modules you
want to load:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html; charset=utf-8" />

<title>Blank Page</title>

<script type="text/javascript" src="prototype.js"></script>

<script type="text/javascript"

src="scriptaculous.js?load=effects,dragdrop"></script>

</head>

<body>

<h1>Blank Page</h1>

</body>

</html>

The query string at the end of the URL should contain a comma-separated list of the
modules you want to load.

Loading these script.aculo.us modules through one central script is helpful to you,
the developer; among other things, it verifies that your versions of Prototype and
script.aculo.us are compatible with one another. When your site goes live, however,
it’s a good idea to reference the modules you need directly. A standard Ruby on Rails
application uses a subset of script.aculo.us and references the modules by name:

<script type="text/javascript" src="/javascripts/prototype.js"></script>

<script type="text/javascript" src="/javascripts/effects.js"></script>

<script type="text/javascript" src="/javascripts/dragdrop.js"></script>

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US212

Summary
Part 1 of this book dealt in the abstract, but Part 2 will be concrete and hands-on. You’ll
build a site from scratch, using Prototype and script.aculo.us to ensure a rich, intuitive
UI model.

Because script.aculo.us is so rooted in Prototype, you’ll recognize some methods
and classes along the way, and you’ll even notice how groundwork laid by Prototype
enables a specific feature of script.aculo.us.

In other words, Part 2 isn’t separate and distinct from Part 1; it’s an application of
what you’ve already learned. Feel free to jump back to Part 1 whenever you need a
refresher on how a certain aspect of Prototype works.

CHAPTER 9 ■ WHAT YOU SHOULD KNOW ABOUT DHTML AND SCRIPT.ACULO.US 213

Introduction to script.aculo.us
Effects

What Are Effects?
Bear with me for the next few pages. I’m going to introduce a lot of terms that, while
general, are used in script.aculo.us in very specific ways.

In script.aculo.us, an effect is the modification, over time, of any aspect of an
element. For an animation of any sort, you need three things:

• The target of the animation: an element

• Starting and ending points: typically integers, like pixel values

• A way to get from beginning to end incrementally: a function

All the effects in script.aculo.us—and any custom effects you create on your own—
consist of these three things. For example, I can make an element move across the page
by positioning it absolutely and then changing its left CSS property little by little. To
describe the effect, I’d need to identify the element I want moved, figure out starting and
ending values, and then explain how to apply those values to the left property.

More abstractly, some effects can be seen as time-lapse versions of other transforma-
tions. Instead of simply hiding an element (by calling Element#hide on it), I can call a
“fade” effect, which hides the element over time by gradually decreasing its opacity.

Why Effects?
I can hear the mob outside my door. Don’t waste our time and patience with superfluous
animations! Surely you’re not suggesting we take our design cues from 30-second Flash
intros so ubiquitous that even the dog catcher’s campaign site includes one?

Extinguish your torches. Put down your pitchforks. Let me explain.
Animations and effects are not the same thing. Effects are well established in the

desktop world. When you minimize a window, Windows will show the window collapsing
215

C H A P T E R 1 0

into its title bar and then shrinking into its slot in the task bar. Mac OS X will show the
window getting sucked, genie-like, into its reserved space in the dock.

These animated effects are meant to reinforce the result of an action. They’re not
Disney-esque pixie dust following your mouse pointer or window frames pulsating to the
tempo of techno music.

For our purposes, we can divide animations into two groups: the purposeful and the
superfluous. A window that shrinks when minimized belongs to the former group. It’s
friendly because it serves as a guide that reinforces the action. It illustrates that the win-
dow has assumed a different form.

Effects are designed to attract the user’s attention, so be sure to use them only when
the user’s attention is needed. Constantly calling attention to mundane things is a great
way to annoy people. (“Look! There’s a wastebasket!”) Don’t be that guy.

But the point remains—there are legitimate use cases for animated effects in your
web app. Don’t avoid all effects; avoid gratuitous effects.

When Effects Are Good

Effects in web apps grab the user’s attention, so your application should embrace effects
as a way to mark what’s important. Here are a handful of good reasons to use effects in
your web app:

To show motion: Many applications employ some sort of spatial metaphor—a user
can move things around on the page. A “to-do list” application might organize items
into two sections, “completed” and “not yet completed”; checking a box would move
an item from the latter into the former. Without a reinforcing effect, this action could
startle the user. It’s important to show that the item hasn’t disappeared outright. The
obvious way to express this is through actual motion—the item moves in a straight
line from its original spot to its destination—but other effects can be used, as well.

To alert the user of new content: As web apps move toward a single-page model, in
which all content is fetched through Ajax instead of through traditional page loads, it
becomes more important to show the user when things change on the page. Imagine
a news reader application that fetches headlines from major sites. When new head-
lines get added to the page, they’ll more easily be noticed if they fade in. If, on the
other hand, they suddenly appear on the page, the user may not notice unless he’s
looking at the screen at that very instant.

To show what’s changed on a page: A similar (but slightly different) use case is alerting
the user when existing content changes.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS216

The Basics of Effects
Consider an element that’s 50 pixels square and absolutely positioned at the top-left cor-
ner of the page, as in Figure 10-1.

/* CSS: */

#box {

position: absolute;

width: 50px;

height: 50px;

top: 0;

left: 0;

background-color: #999;

border: 2px solid #000;

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

text-transform: uppercase;

text-align: center;

line-height: 50px;

font-size: 10px;

}

<!-- HTML: -->

<div id="box">Box</div>

Figure 10-1. An absolutely positioned div

If we want to move it down and to the right, we can do so instantaneously:

var box = $('box');

box.setStyle({ left: '50px', top: '50px' });

Here, we’re changing the element’s left and top properties from 0px to 50px. When we
set the new style, it happens instantaneously—the box jumps down to its new place, as in
Figure 10-2.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 217

Figure 10-2. The div’s style has been dynamically altered.

But let’s try moving the element gradually—by increasing the top and left values
little by little until we arrive at the desired 50px. Our first attempt might look something
like this:

var box = $('box');

for (var i = 1; i <= 50; i++)

box.setStyle({ left: i + 'px', top: i + 'px' });

Unfortunately, when we run this code, we find that it behaves exactly the same way
as the first example—the box seems to jump to its new coordinates without any steps in
the middle. Why?

Take a moment to think like a computer. It doesn’t take that much time to change
a CSS property—let’s say around 1ms. Multiply that by 50 and you’ve got 50ms, still less
than one-tenth of a second. The animation is happening, but far too fast for a human to
notice. It might even be happening faster than the rendering engine can update.

But speed problems are easy to work around. We need to slow things down by paus-
ing after each frame of the animation so that our human eyes (and the browser’s
rendering engine) can catch up. Remember that JavaScript has no sleep statement; we
can’t tell the interpreter to halt, but we can tell it to do other things for a while, and that’s
good enough:

function incrementBox(value) {

$('box').setStyle({ left: value + 'px', top: value + 'px' });

if (value < 50) incrementBox.delay(0.01, ++value);

}

incrementBox(1);

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS218

Remember Function#delay? It’s an excellent way to schedule a function to run later—
one hundredth of a second later, in this case. Here, incrementBox schedules itself to run
later, over and over, until we reach the desired value. We need to call it only once to set
the effect in motion. Figure 10-3 shows the “before” and “after” states of the box.

Figure 10-3. The element animates into its new position.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 219

So let’s look at the ingredients of this effect:

• The element (<div id="box">) is the target of the effect.

• The starting and ending points are pixel coordinates (0, 0 to 50, 50).

• The incrementing is done by Element#setStyle.

This method works, but not as well as it could. It’s far too dependent on the speed of
the computer it runs on, and it’s not guaranteed to move at a constant pace. Our call to
Function#delay guarantees that our function will be run at least 10ms later, but if the
JavaScript engine is busy with something else, we could be waiting for quite a bit longer.
We’re guaranteed to get 50 frames of animation, but the element might not move at a
constant speed.

script.aculo.us Effects
Fortunately, script.aculo.us manages all these annoying details for you. It creates a base
class for running effects, and then defines scads and scads of specific effects that inherit
from that base class. The effects themselves vary wildly, but they all have several things in
common:

• They all act on an element.

• They all involve transforming that element’s style from a starting point to an end-
ing point over a specified amount of time. No matter how slow the computer or
how overwhelmed the JS engine, script.aculo.us effects will always execute in the
amount of time specified.

• They all accept callbacks that let us run our own functions at certain milestones in
the animation. These callbacks are very similar to the Ajax callbacks covered in
Chapter 4.

The previous exercise was meant to give you an idea of how effects work under the
hood. script.aculo.us defines a base class that solves all the problems we encountered—
a boilerplate for any sort of browser-based effect. It then defines subclasses that do spe-
cific things: one animates opacity, another animates position, and so on. These are called
core effects. Finally, it defines some functions that build on these core effects by running
two or more in parallel. These are called combination effects.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS220

Using Effect.Morph

Simple cases first, though—let’s look at Effect.Morph, the most generic (and most versa-
tile) of all effects. It works like a time-lapse version of Element#setStyle: it takes an
element and some CSS rules to apply to the element, and slowly “morphs” the element
according to the new rules (see Figure 10-4).

new Effect.Morph('box', {

style: "left: 50px; top: 50px;",

duration: 1.0

});

Figure 10-4. The Effect.Morph call animates the box into the desired position.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 221

In other words, from the starting and ending values of each element’s properties,
Effect.Morph figures out which CSS properties it needs to change and gradually adjusts
them over the specified period of time.

Effect.Morph uses the options-argument pattern we’ve come to love. The first param-
eter, style, can be either a string or an object in the form expected by Element#setStyle.
An optional duration argument indicates how long the effect should last; if absent, it
defaults to 0.5 seconds.

script.aculo.us also adds Element#morph for maximum convenience. This code exam-
ple is equivalent to the preceding one:

$('box').morph("left: 50px; top: 50px;", { duration: 1.0 });

Effect.Morph works because a vast majority of CSS properties lend themselves to
tweening—figuring what goes in between a starting point and an ending point. Anything
with a quantitative value—pixels, ems, hex color values, and so on—can be morphed.

$('box').morph("width: 500px");

$('box').morph("font-size: 1.6em");

$('box').morph("background-color: #cc5500");

How Does It Do That?

As we’ve established, all effects need to know several things: the element to change, the
aspect of that element to change, and starting and ending values. Effect.Morph lets us
specify, in very precise form, all of those things except for one—we don’t need to specify
a starting value because it’s assumed we want to start at whatever state the element is
already in. This shortcut limits the overall expressive power of Effect.Morph, but broadens
its applicability.

To illustrate this, let’s place our element at a different starting point:

#box {

position: absolute;

width: 50px;

height: 50px;

top: 200px;

left: 100px;

background-color: #999;

border: 2px solid #000;

font-family: "Helvetica Neue", Helvetica, Arial, sans-serif;

text-transform: uppercase;

text-align: center;

line-height: 50px;

font-size: 10px;

}

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS222

Our JavaScript needn’t be changed:

new Effect.Morph('box', {

style: "left: 50px; top: 50px;",

duration: 1.0

});

Now, instead of moving down and to the right, the box moves up and to the left, as
shown in Figure 10-5. Effect.Morph is smart enough to figure out how to get from A to B.

Figure 10-5. The element starts somewhere else, but ends up where the previous animation
started.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 223

Morphing in Parallel

Perhaps the best thing about Effect.Morph is its ability to animate several different things
at once. Let’s see how it handles some curveballs:

/* CSS: */

#box {

position: absolute;

width: 50px;

height: 50px;

top: 0;

left: 0;

background-color: #999;

border: 2px solid #000;

font-family: "Helvetica Neue";

text-transform: uppercase;

text-align: center;

line-height: 50px;

font-size: 10px;

}

/* JS: */

$('box').morph({

width: "100px",

height: "100px",

top: "125px",

left: "150px",

backgroundColor: "#000",

borderColor: "#bbb",

color: "#fff",

lineHeight: "100px",

fontSize: "18px",

textTransform: "lowercase",

}, { duration: 2.5 });

Still with me? We’re animating a lot of properties here: the box’s size, positioning,
background color, and border color; plus the text’s color, size, and line height. (We
change line height in order to keep the text vertically aligned in the center of the box.)

We set a longer duration for this effect to make sure all these changes are happening
in parallel. Effect.Morph handles it with aplomb (see Figure 10-6).

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS224

Figure 10-6. Effect.Morph can animate any number of CSS properties at once.

Notice, however, that our text-transform property was ignored. There’s no way to
animate the switch from uppercase to lowercase, so Effect.Morph can’t do anything
with it.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 225

Before we move on to other effects, let’s try one more thing. Take all the styles in the
preceding morph call and place them into their own CSS class:

#box.big-box {

width: 100px;

height: 100px;

left: 150px;

top: 125px;

background-color: #000;

border-color: #bbb;

color: #fff;

line-height: 100px;

font-size: 18px;

text-transform: lowercase;

}

After all, this is where style information belongs. Stuffing it all into a JavaScript
string made things awkward. Moving it into CSS makes our code much cleaner (see
Figure 10-7):

$('box').morph('big-box', { duration: 2.5 });

There’s some magic going on in Figure 10-7. Effect.Morph can tell we’re giving it a
class name instead of a string of CSS rules, so it reads the style information to figure out
what needs to be animated. It performs the animation just as before, but at the very end
it adds the class name onto the element.

So you’ve seen that Effect.Morph is a time-lapse version of both Element#setStyle
and Element#addClassName. In other words, instead of using these two methods to change
element styles instantly, you can use Effect.Morph to change them gradually over a span
of time.

You’ve also seen the advantage of giving Effect.Morph a class name: our untweenable
property, text-transform, is no longer ignored. It takes effect at the end of the animation—
when the big-box class name is added to our box.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS226

Figure 10-7. Effect.Morph can handle CSS class names as well.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 227

Other Core Effects

script.aculo.us sports several core effects for use when Effect.Morph can’t do the job.
They’re called core effects because they’re the building blocks of the effects library—each
one modifies elements in one specific way. They can be combined to form more elabo-
rate effects, some of which we’ll look at later on.

Effect.Move

Effect.Move handles positioning—moving an element any number of pixels (see
Figure 10-8):

new Effect.Move('box', { x: 50, y: 50 });

Effect.Move takes a mode parameter with two possible values—relative and
absolute—which mirror the two CSS positioning modes of the same names. The default,
relative, indicates motion relative to the element’s current position. The x and y parame-
ters, then, indicate movement in the horizontal and the vertical directions. In absolute
mode, the x and y parameters indicate where to place the element relative to its offset
parent.

Effect.Move handles nearly all block-level elements with grace, even those that have
a CSS position of static. It will “absolutize” or “relativize” the element before changing its
position.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS228

Figure 10-8. Effect.Move animates an element’s position.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 229

Effect.Scale

Effect.Scale handles, well, scaling—changing the size of an element (and, optionally, the
size of its contents) by a given percentage (see Figure 10-9):

new Effect.Scale('box', 150);

Figure 10-9. Effect.Scale animates an element’s height and width.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS230

The second argument is an integer that represents the scaling percentage. In this
example, the element grows to 150 percent of its original size. (Note that the contents
of the box have been scaled as well—the text is also 150 percent bigger.) Effect.Scale
also supports several optional parameters for more granular control of the effect (see
Figure 10-10):

new Effect.Scale('box', 100,

{ scaleContent: false, scaleFrom: 50.0, scaleFromCenter: true });

Figure 10-10. Effect.Scale is broadly configurable.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 231

First, we have scaleContent, which, when set to false, will scale only the box and not
the text inside. The second parameter, scaleFrom, can be used to set a different initial per-
centage. Here, the box will jump to 50 percent of its original size, and then animate back
to 100 percent of its original size. Finally, by setting scaleFromCenter to true, we can
ensure that the center of the box, not the top-left corner, remains fixed throughout the
effect. Figure 10-11 shows the result.

new Effect.Scale('box', 150, { scaleX: false, scaleY: true });

Figure 10-11. Effect.Scale can be told to animate only height or width.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS232

We can also restrict the scaling to one dimension: scaleX and scaleY both default to
true, but setting one to false will prevent it from growing along that axis. (Setting both to
false would be plainly silly.)

Effect.Highlight

Effect.Highlight simplifies a common use case for effects: the pulse-like animation
of an element’s background color, otherwise known as the “yellow fade technique.”
Popularized by 37signals’s web apps, the effect is an elegant, subtle way to call atten-
tion to a region of the page that has changed—for instance, as the result of an Ajax
call. Figure 10-12 shows the technique.

new Effect.Highlight('box');

Figure 10-12. Effect.Highlight “pulses” a background color on an element.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 233

As you might expect, the default highlight color is a light shade of yellow, but the
parameters startcolor and endcolor let us set the colors for the first and last frames of the
effect, respectively; and restorecolor lets us set the color that the element will become
after the effect is complete (see Figure 10-13):

new Effect.Highlight('box',

{ startcolor: "#ffffff", endcolor: "#000000", restorecolor: "#999999" });

Figure 10-13. Effect.Highlight with custom colors

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS234

Effect.ScrollTo

Effect.ScrollTo is far more focused than the other core effects. It animates the scrolling
of the browser viewport to bring the specified element into view. In other words, it’s a
time-lapse version of Prototype’s Element#scrollTo function.

To illustrate this effect, let’s change the CSS so that our box is “below the fold” on
page load. My viewport isn’t very tall, so bumping it down 500 pixels will do it. Let’s also
change the height of the page so that we’ll have some space below the box:

/* CSS: */

#box {

position: absolute;

width: 50px;

height: 50px;

top: 500px;

left: 0;

background-color: #999;

border: 2px solid #000;

font-family: "Helvetica Neue";

text-transform: uppercase;

text-align: center;

line-height: 50px;

font-size: 10px;

}

body {

height: 1500px;

}

/* JS: */new Effect.ScrollTo('box');

This effect, shown in Figure 10-14, simulates the “smooth scrolling” behavior that’s
now used in many applications. It helps the reader jump to a different part of the page
without losing her original position.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 235

Figure 10-14. Effect.ScrollTo animates the viewport’s scroll offset.

Introduction to Combination Effects

We’ve only scratched the surface of script.aculo.us effects. As I mentioned earlier, the true
power lies in writing combination effects—groups of core effects that run in parallel to
create more complex animations. You’ll get to write your own effects later on, but first
let’s look at some of the combination effects given to you out of the box.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS236

The first three examples of combination effects illustrate different ways to animate
hiding and showing elements—each pair is a time-lapse version of Element#hide and
Element#show. There are many different ways to get from visible to invisible.

Effect.Fade and Effect.Appear

The first pair, Effect.Fade and Effect.Appear, animate the opacity of the element. Thus,
Effect.Fade will decrease the element’s opacity until it’s invisible, and then hide it; and
Effect.Appear will show the element fully transparent, and then increase opacity gradu-
ally until it fades into view (see Figure 10-15).

new Effect.Fade("box");

Figure 10-15. Effect.Fade decreases an element’s opacity until it’s invisible.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 237

Naturally, Effect.Fade communicates something “fading away” (like an old soldier),
so it’s best used on items that will disappear and not be used again. Likewise,
Effect.Appear suggests the creation of something new, so it’s best used on items that
haven’t been shown on the page before.

Effect.BlindUp and Effect.BlindDown

The next pair, Effect.BlindUp and Effect.BlindDown, work like the window blinds they’re
named after. Calling Effect.BlindUp will cover the element vertically, line by line, starting
with the bottom of the element (see Figure 10-16). Effect.BlindDown is the same anima-
tion in reverse.

new Effect.BlindUp('box');

Figure 10-16. Effect.BlindUp hides an element by covering up a progressively larger part of
the element, starting from the bottom.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS238

Effect.BlindUp suggests that the element has simply been covered up; thus, it feels
less “permanent” than Effect.Fade. Use this pair of effects for items that can be hidden,
but can also be shown again.

Effect.SlideUp and Effect.SlideDown

Finally, Effect.SlideUp and Effect.SlideDown work like dresser drawers. Calling
Effect.SlideUp will hide the element vertically, line by line, starting with the top of the
element (see Figure 10-17). Effect.SlideDown is the same animation in reverse.

These effects carry one caveat: to work properly, they require the element in question
be double-wrapped in a block-level element. Here, we’re using a div, so we’ll place
another div inside it:

<!-- HTML: -->

<div id="box"><div>Box</div></div>

/* JS: */

new Effect.SlideUp('box');

Figure 10-17. Effect.SlideUp hides an element by “pushing” it from the bottom and covering
it from the top.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 239

Effect.SlideUp suggests that the element is disappearing into the element right
above it. So this pair of effects is useful for collapsible panels, accordion menus, and even
things like expandable trees.

Effects Are Asynchronous

We’ve already covered how JavaScript has no sleep statement, so it can’t halt all execu-
tion. Remember how effects work at their core: a function is called, over and over again,
via setTimeout. Each call advances the animation by one frame. But any other code can
run in the “gaps” between these “scheduled” animation frames.

To illustrate, we can start an effect, and then invoke the Firebug debugger with the
special debugger keyword. Script execution will be paused so that we can step through the
code.

Effect.Fade('box'); debugger;

Figure 10-18 shows the state of the page when the debugger starts.

Figure 10-18. The debugger has paused execution before our effect has finished.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS240

The element we told to fade out is still visible—it’s only just begun animating. That’s
because the interpreter doesn’t wait around; it schedules the frames of the animation,
and then moves on to the next line.

script.aculo.us gives us two ways around this. The first way is using effect callbacks,
which are very similar to the Ajax callbacks you learned about in Chapter 4. The second is
using effect queues, which can force effects to wait their turn behind other effects.

Callbacks

Both core effects and combination effects treat certain parameters passed into the
options argument as callbacks:

• beforeSetup and afterSetup are called before and after the “setup” stage of an
effect—in which the effect makes any necessary modifications to the element
itself.

• beforeStart and afterStart are called before and after the first frame of an effect,
respectively.

• beforeUpdate and afterUpdate are called before and after each frame of an effect.

• beforeFinish and afterFinish are called before and after the “finish” stage of an
effect, in which the effect reverts any changes it made in the “setup” stage.

To ensure that our alert dialog appears after the effect is complete, we can use the
afterFinish callback:

Effect.Fade('box', {

afterFinish: function(effect) { debugger; }

});

Figure 10-19 shows that the element is completely invisible before the debugger
starts.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 241

Figure 10-19. By moving the debugger statement to a callback, we ensure that it runs after
the effect has finished.

Taken together, these callbacks provide hooks into every single frame of an effect.
They’re the ultimate override. Most of the time, afterFinish will be all you need, but it’s
nice to know the rest are there.

Each callback takes the effect instance itself as the first argument. Since the
Effect.Base class (from which all effects derive) defines some instance properties, you’re
able to use these same properties in your callbacks:

Effect.Fade('box', {

afterFinish: function(effect) {

effect.element.remove();

}

});

You may also use several other properties: options to access the effect’s options,
startOn and finishOn to access the integer timestamps that mark the effect’s duration,
and currentFrame to access the number of the last frame rendered.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS242

Queues

Effect queues address a subset of the collision problem described earlier. Let’s wire up a
button to our box—one that will fade the box out when clicked:

<input type="button" name="go" value="Go" id="effect_button" />

<div id="box">

Lorem ipsum.

</div>

<script type="text/javascript" charset="utf-8">

$('effect_button').observe('click', function() {

new Effect.Highlight('box');

});

</script>

Clicking the button pulses the box, just like we’d expect. But clicking twice rapidly
fires two highlight effects—they get tangled almost immediately, leaving the element per-
manently yellow (see Figure 10-20).

Figure 10-20. Triggering Effect.Highlight twice in rapid succession leaves the element with a
permanent yellow background color.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 243

To be fair, it’s only doing what you tell it to do. By default, an effect starts animating
as soon as it’s called. But the savvy developer can manage the state of an effect—telling it
when to wait and when not to run at all.

When we click the button twice, we want the first effect to start right away, but the
second effect to start once the first is done. The queue option lets us do so:

new Effect.Highlight('box', { queue: ‘end’ });

The end value merely says to place the effect at the end of whatever effect is already
running on the page, rather than the default parallel. A third option, front, halts what-
ever effect is already playing in order to give the new effect priority.

Now we can click the button as much as we want—if we click it ten times in the span
of a second, we’ll see ten highlight effects fire patiently, one after the other.

Putting It All Together
We’re going to go through one last example in this chapter. It pulls in some of the work we
did in previous chapters and adds an effects-inspired garnish.

In Chapters 4 and 5, we wrote the code to simulate a data provider—one that sup-
plies ever-changing statistics for our fictional fantasy football game. We hooked it up to
an Ajax poller that checks for new scores every 30 seconds and fires a custom event
whenever it gets a response. We laid all this groundwork without a clear example of when
we’d be able to use it next.

Similarly, in Chapter 7 we wrote a utility class for adding up numbers. The use case
we had in mind was a data table in which each row had a numeric value—and a “total”
row in the table footer that would show the sum of the values from all rows.

Effects give us the final piece. We’re going to build a game summary page for our fan-
tasy football league. It will display both teams’ scores, side by side, with a breakdown by
player of where the points are coming from.

Writing the Markup

First, let’s get this all onto the page in the form of markup. Then we can style it to aes-
thetic perfection.

Create a new file called game.html with script tags pointing to prototype.js and
scriptaculous.js:

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS244

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Game Page</title>

<script src="js/prototype.js" type="text/javascript"></script>

<script src="js/scriptaculous.js" type="text/javascript"></script>

</head>

<body>

</body>

</html>

In the body of the page, we’ll place some divs to serve as rough guides for where our
elements will go:

<div id="wrapper">

<h1>Box Score</h1>

<div id="teams">

<div id="team_1_container">

<h2>The Fighting Federalists</h2>

<!-- TABLE GOES HERE -->

</div> <!-- #team_1_container -->

<div id="team_2_container">

<h2>Washington's Generals</h2>

<!-- TABLE GOES HERE -->

</div> <!-- #team_2_container -->

</div> <!-- #teams -->

</div> <!-- #wrapper -->

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 245

Finally, let’s look at the data table itself. It’s going to have four columns: position,
name, score, and summary (a short text description of the player’s stats). All these pieces
of data exist in the JSON feed except for the player’s name; instead, we’ll be using our
shorthand to refer to players by position (e.g., QB, WR1, RB2).

So one table might look like this:

<table id="team_1">

<thead>

<tr>

<!-- We can't fit the word "position" in this column, so let's

abbreviate and put the full word inside a "title" attribute. -->

<th class="pos" title="Position">Pos.</th>

<th>Name</th>

<th>Stats</th>

<th class="score">Points</th>

</tr>

</thead>

<!-- In accordance with the HTML spec, the TFOOT occurs _before_ the TBODY

in the markup, even though it's placed _after_ the TBODY visually. -->

<tfoot>

<tr>

<td colspan="3" class="total">Total</td>

<!-- This table cell will display the total. It has an ID so that we

can grab it easily. -->

<td id="team_1_total" class="score"></td>

</tr>

</tfoot>

<tbody>

<!-- Each table row has the position shorthand (RB1, WR2, etc.) as a

class name. Table cells have class names as hooks for both scripting

and styling. -->

<tr class="QB">

<td class="pos">QB</td>

<td>Alexander Hamilton</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS246

<tr class="RB1">

<td class="pos">RB</td>

<td>James Madison</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

<tr class="RB2">

<td class="pos">RB</td>

<td>John Jay</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

<tr class="WR1">

<td class="pos">WR</td>

<td>John Marshall</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

<tr class="WR2">

<td class="pos">WR</td>

<td>Daniel Webster</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

<tr class="TE">

<td class="pos">TE</td>

<td>Samuel Chase</td>

<td class="summary"></td>

<td class="score">0</td>

</tr>

</tbody>

</table>

We’ll place two such tables into our page—one for each team.

Adding Styles

This page is begging for some styling. Create a new file, styles.css, and link to it from
game.html:

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 247

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Game Page</title>

<link rel="stylesheet" type="text/css" href="styles.css" />

<script src="js/prototype.js" type="text/javascript"></script>

<script src="js/scriptaculous.js" type="text/javascript"></script>

</head>

Now you’re free to style this page however you like. Let your inner designer run wild.
I’m going to go with something minimal (see Figure 10-21).

Figure 10-21. The scoring page with styles applied

The technical details aren’t very interesting; I changed the default font, sized the
tables so that they appear side by side, and styled the “score” table cells to stand out.

Bringing in Help

Now we’re going to search back through the examples from earlier chapters. We’ll be sal-
vaging three files in all. The first two, scores.php and score_broadcaster.js, were created
in Chapter 5. The third, totaler.js, was created in Chapter 7. Move all three to the same
directory as game.html.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS248

As you may remember, score_broadcaster.js is our beacon in the sky: it talks to our
“server” (the scores.php file) and fires a custom event every 30 seconds with the latest
player data. Soon we’ll write code to listen for this event and act upon it.

The third file will handle the boring job of calculating the totals for each team. The
Totaler class we wrote is perfectly suited to summing and resumming each team’s
point totals.

First, include the two JavaScript files in the document head. Be sure to include them
after Prototype and script.aculo.us.

<head>

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>Game Page</title>

<link rel="stylesheet" type="text/css" href="styles.css" />

<script src="js/prototype.js" type="text/javascript"></script>

<script src="js/scriptaculous.js" type="text/javascript"></script>

<script src="score_broadcaster.js" type="text/javascript"></script>

<script src="totaler.js" type="text/javascript"></script>

</head>

Finally, we’ll write about 20 lines of code in another script block that will handle the
logic of updating our player tables.

Bells and Whistles

Now we’re going to write some page-specific code to wire all this together. It will update
the player table with the raw JSON data, highlight those rows that have changed, and
finally tell the tables to recompute their totals.

Start with the following code in your document head:

<script type="text/javascript" charset="utf-8">

document.observe("dom:loaded", function() {

var team1totaler = new Totaler('team_1', 'team_1_total', {

selector: 'tbody .score' });

var team2totaler = new Totaler('team_2', 'team_2_total', {

selector: 'tbody .score' });

});

</script>

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 249

On the dom:loaded event (the custom event that fires as soon as the DOM can be modi-
fied) we’re declaring two instances of Totaler—one for each table. The selector option is
a CSS selector that identifies all the cells we want to add together.

The next step is to write the logic to iterate through the data and update each table.
The JSON we receive will be divided up by team, so think of this as taking the data,
breaking it in half, and feeding one half to the first table and the other half to the sec-
ond. Both sides need the same logic, so let’s write a function that expects one table and
one team’s stats.

<script type="text/javascript" charset="utf-8">

function updateTeam(table, json) {

table = $(table);

// a team is divided into several positions

var positionStats, row;

for (var position in json) {

positionStats = json[position];

// match up the JSON property name (WR1, RB2, TE, etc.) with the

// table row that has the corresponding class name

row = table.down('tr.' + position);

// update the score cell with the player's point total from the JSON

row.down('td.score').update(positionStats.points);

}

}

document.observe("dom:loaded", function() {

var team1totaler = new Totaler('team_1', 'team_1_total', {

selector: 'tbody .score' });

var team2totaler = new Totaler('team_2', 'team_2_total', {

selector: 'tbody .score' });

});

</script>

Remember the score:updated custom event? That’s the indicator that new stats have
arrived. So let’s listen for that event:

<script type="text/javascript" charset="utf-8">

function updateTeam(table, json) {

table = $(table);

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS250

// a team is divided into several positions

var positionStats, row;

for (var position in json) {

positionStats = json[position];

// match up the JSON property name (WR1, RB2, TE, etc.) with the

// table row that has the corresponding class name

row = table.down('tr.' + position);

// update the score cell with the player's point total from the JSON

row.down('td.score').update(positionStats.points);

}

}

document.observe("dom:loaded", function() {

var team1totaler = new Totaler('team_1', 'team_1_total', {

selector: 'tbody .score' });

var team2totaler = new Totaler('team_2', 'team_2_total', {

selector: 'tbody .score' });

document.observe("score:updated", function() {

// the "memo" property holds the custom data we attached to the event

var json = event.memo;

// break the JSON in half -- one piece for each table.

updateTeam('table_1', json.team_1);

updateTeam('table_2', json.team_2);

});

});

</script>

Let’s see if this works the way we expect. Open up game.html in your browser. It
should look like Figure 10-22.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 251

Figure 10-22. The players’ up-to-date point totals are now shown in the table.

You’ll have to wait at least 30 seconds (one interval) to confirm that the scores are
updating with each Ajax response—but it should work. There are two problems, though.
First, unless you’re looking right at a row, you won’t notice when its point value changes.
Second, the totals at the bottom of each table aren’t updating.

Let’s take the second problem first. We can fix it easily by using the updateTotal
instance method that we wrote when we created Totaler. Once the updateTeam function
has set the new data, we’ll tell our Totaler instances to recompute the sums:

<script type="text/javascript" charset="utf-8">

function updateTeam(table, json) {

table = $(table);

// a team is divided into several positions

var positionStats, row;

for (var position in json) {

positionStats = json[position];

// match up the JSON property name (WR1, RB2, TE, etc.) with the

// table row that has the corresponding class name

row = table.down('tr.' + position);

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS252

// update the score cell with the player's point total from the JSON

row.down('td.score').update(positionStats.points);

}

}

document.observe("dom:loaded", function() {

var team1totaler = new Totaler('team_1', 'team_1_total', {

selector: 'tbody .score' });

var team2totaler = new Totaler('team_2', 'team_2_total', {

selector: 'tbody .score' });

document.observe("score:updated", function() {

// the "memo" property holds the custom data we attached to the event

var json = event.memo;

// break the JSON in half -- one piece for each table.

updateTeam('table_1', json.team_1);

updateTeam('table_2', json.team_2);

team1totaler.updateTotal();

team2totaler.updateTotal();

});

});

</script>

In other words, recomputing the total needs to be the last thing we do when a score
updates.

Now we need to emphasize rows when they change. This is the perfect use case for
Effect.Highlight—the effect that “pulses” an element’s background color to draw atten-
tion to it. For this, we’ll need to add some logic to our updateTeam function:

<script type="text/javascript" charset="utf-8">

function updateTeam(table, json) {

table = $(table);

// a team is divided into several positions

var positionStats, row;

for (var position in json) {

positionStats = json[position];

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 253

// match up the JSON property name (WR1, RB2, TE, etc.) with the

// table row that has the corresponding class name

row = table.down('tr.' + position);

var scoreCell = row.down('td.score'), oldValue = Number(scoreCell.innerHTML);

// update the score cell with the player's point total from the JSON

scoreCell.update(positionStats.points);

// is the new value larger than the old value?

if (position.points > oldValue) {

new Effect.Highlight(row);

}

}

}

document.observe("dom:loaded", function() {

var team1totaler = new Totaler('team_1', 'team_1_total', {

selector: 'tbody .score' });

var team2totaler = new Totaler('team_2', 'team_2_total', {

selector: 'tbody .score' });

document.observe("score:updated", function() {

// the "memo" property holds the custom data we attached to the event

var json = event.memo;

// break the JSON in half -- one piece for each table.

updateTeam('table_1', json.team_1);

updateTeam('table_2', json.team_2);

team1totaler.updateTotal();

team2totaler.updateTotal();

});

});

</script>

Now, as we cycle through the table rows, we check whether the new point value for
that row is greater than the current one. If so, we declare a new Effect.Highlight to draw
attention to that row.

We’re done! Reload the page and congratulate yourself for doing something awe-
some. Figure 10-23 shows the fruits of your labor.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS254

Figure 10-23. Rows are highlighted as their point values change.

Summary
We’ve spent quite a few pages on effects for good reason: they’re the meat and potatoes of
script.aculo.us, and the only piece that’s a dependency for all the rest. The script.aculo.us
UI widgets all rely on the subtle and purposeful animations we’ve surveyed.

In fact, certain other parts of script.aculo.us allow for pluggable effects—for instance,
if you don’t like how an element animates when it’s dragged and dropped, you may spec-
ify a custom or built-in effect to replace it. These parts of script.aculo.us will be covered
in the next two chapters.

CHAPTER 10 ■ INTRODUCTION TO SCRIPT.ACULO.US EFFECTS 255

Enabling Draggables,
Droppables, and Sortables

Drag-and-drop is a UI pattern that seems to have been around since the mouse was
invented, but until recently it wasn’t used very often in web applications. But why not?
The technological capabilities are there. DOM scripting lets us listen for the mousedown,
mousemove, and mouseup events that comprise a drag. It also lets us modify the CSS posi-
tioning of an element so that it can “follow” the mouse pointer around the screen.

In this chapter, we’ll look at the two low-level objects, Draggable and Droppables,
provided by script.aculo.us for drag-and-drop. Then we’ll look at a high-level object,
Sortable, that adapts drag-and-drop for a specific task.

Exploring Draggables
In script.aculo.us, a draggable is anything that can, not surprisingly, be dragged around
the page. There are a number of things you can customize about the drag itself, but the
simplest way to make something draggable is to declare a new instance of the Draggable
class:

new Draggable('some_element');

Let’s create a sandbox for playing around with draggables. Create draggable.html and
add this markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Draggable demo</title>

257

C H A P T E R 1 1

<style type="text/css" media="screen">

body {

font-family: 'Trebuchet MS', sans-serif;

}

#container {

width: 200px;

list-style: none;

margin-left: 0;

padding-left: 0;

}

#container li {

border: 1px solid #ccc;

margin: 10px 0;

padding: 3px 5px;

}

</style>

<script src="js/prototype.js" type="text/javascript"></script>

<script src="js/scriptaculous.js" type="text/javascript"></script>

</head>

<body>

<ul id="container">

<li id="item_1">Lorem

<li id="item_2">Ipsum

<li id="item_3">Dolor

<li id="item_4">Sit

<li id="item_5">Amet

</body>

</html>

The bold section of markup represents the items we’ll make draggable. Save this
page, load it in Firefox, and then type the following into the Firebug console:

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES258

$$('container li').each(function(li) {

new Draggable(li);

});

We’re grabbing all the li elements within the ul and declaring each to be a draggable.
Run this code, and you’ll be able to drag the five list items anywhere on the page, as
shown in Figure 11-1.

Figure 11-1. Declaring an instance of Draggable adds dragging behavior to an element.

These draggables don’t do anything yet, of course, but we’ll address that when we go
over droppables. This example tells you a few things about the Draggable class, but the
fact that they can now be dragged around on the screen illustrates how the Draggable
class works.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 259

Making Draggables

Making draggables is easy. The Draggable constructor (the initialize method that gets
called when you instantiate a class) takes care of assigning the events that control drag-
ging; it also handles communication with any droppables it encounters.

The default options for Draggable enable an element to be moved anywhere on the
page—but to make an element interact with potential drop targets, you’ll have to specify
some options of your own.

So let’s add some options. Reload the page, and then run this code in the console:

$('container').select('li').each(function(li) {

new Draggable(li, { revert: true });

});

Play around with the draggables and you’ll notice the difference: they now move back
(or revert) to their original positions at the end of the drag.

Another option controls how much freedom the draggable has in its movement.
Reload and try this code:

$('container').select('li').each(function(li) {

new Draggable(li, { snap: 50 });

});

Notice that these draggables move far less fluidly. The 50 value for snap tells them to
“snap” to points on the page that are separated by 50 pixels in both directions. Before,
each movement of the mouse also moved the draggable; now, the draggable moves to the
closest x/y coordinates that are both multiples of 50.

We could also have specified two values for snap; [10, 50] creates a grid of points
10 pixels apart on the x axis and 50 points apart on the y axis. Better yet, we can set snap
to a function that determines, on each movement of the mouse, where the draggable
should snap to. Advanced usage of draggables will be covered later in the chapter.

One other option deserves mention. The handle option lets you specify a smaller
piece of the draggable—not the whole draggable—to serve as the drag-enabled area of
the element. A drag operation intercepts all clicks and cancels the associated events, so
handles can be used to enable dragging without interfering with form element inter-
action, link clicking, and so on.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES260

Let’s change part of our HTML to see this in action:

<ul id="container">

<li id="item_1">@ Lorem

<li id="item_2">@ Ipsum

<li id="item_3">@ Dolor

<li id="item_4">@ Sit

<li id="item_5">@ Amet

These spans will act as our “handles,” so let’s style them to stand out:

#container .handle {

background-color: #090;

color: #fff;

font-weight: bold;

padding: 3px;

cursor: move;

}

The standard “move” cursor (which looks like arrows in four directions on Windows,
and a grabbing hand on the Mac) provides a visual clue to the user that the handles are
clickable.

Make these changes, reload the page, and run this in the console:

$('container').select('li').each(function(li) {

new Draggable(li, { handle: 'handle' });

});

You’ll be able to drag the items around using their handles, but the rest of the ele-
ment won’t respond to clicking and dragging. Notice, for instance, how you can select the
text inside each element—an action that was prevented when the draggable hogged all
the mouse actions on the element (see Figure 11-2).

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 261

Figure 11-2. Draggables are now moved by their handles.

Other Draggable Options

I’ve covered the most important options for Draggable, but there are others you might
find handy as well.

The constraint Option

The constraint option can restrict a draggable to movement along one axis. Setting it to
"horizontal" limits the draggable to horizontal movement only; setting it to "vertical"
limits it to vertical movement only. By default, this option is not set. This option is typi-
cally used by sortables to enforce linear ordering of items.

The ghosting Option

The ghosting option controls how the draggable behaves while being dragged. When it is
set to false, which is the default, dragging an element moves the element itself. When it

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES262

is set to true, dragging an element copies the element and moves the copy. At the end of
the drag operation, this “ghost” element will be removed (but not before reverting to its
original spot, if it needs to).

I can think of two common scenarios in which ghosting should be enabled. One is
when the drag implies duplicating an item, rather than moving it (i.e., the original item
will remain when the drag is done). The other is when the tentativeness of the drag oper-
ation needs to be emphasized. For instance, think of the Finder or Windows Explorer;
files are ghosted upon drag because the drop could fail for a number of reasons. Perhaps
the destination is read-only, or perhaps there are file name conflicts at the destination.
Instead of the file being visually removed from one space, it remains there until the OS
can be sure it can move the file to the destination folder.

The zindex Option

script.aculo.us sets a default CSS z-index value of 1000 on the dragged element; in most
cases, this is a high enough value that the draggable will appear above everything else on
the page. If your web app defines z-index values higher than 1000, you should use the
zindex property to specify a higher value when you construct draggables.

Start, End, and Revert Effects

By default, an element that’s being dragged becomes translucent, as you may have
noticed. This is the draggable’s start effect. The opacity change is a common pattern to
signify something is being moved—both Windows Explorer and Mac OS X’s Finder
employ it—but this effect can be customized if need be.

To override the start effect, set the starteffect parameter to a function that takes
an element as its first argument. That function will be called any time a drag starts.

new Droppable('foo', {

starteffect: function(element) {

element.morph("background-color: #090");

}

});

This should remind you of the callback pattern you’ve encountered already—most
recently in Chapter 10 in the discussion on effects.

There are two other kinds of effects: the end effect and the revert effect. The end
effect, of course, is called when the drag ends—when the user releases the mouse and
“drops” the draggable. The revert effect is called when a draggable reverts to its original
location; keep in mind that the revert option must be set to true for this effect to play.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 263

Exploring Droppables
The counterpart to Draggable, Droppables is the object that manages all draggable-
friendly containers. When an element is made a droppable, it listens for mouseover
events to determine when an element is being dragged into it. Then it negotiates with
the given draggable to determine if they’re compatible.

Making Droppables

The interface to Droppables is a bit different from that of Draggable. It’s not a class, so you
don’t declare instances of it. Instead, you use the Droppables.add method:

Droppables.add('some_element', options);

To illustrate, let’s add a new ul to our page. It will be empty at first, but will accept
any li that’s dragged into it. (Note that we’ve removed the handles we added in the previ-
ous exercise.)

<ul id="container">

<li id="item_1">Lorem

<li id="item_2">Ipsum

<li id="item_3">Dolor

<li id="item_4">Sit

<li id="item_5">Amet

<ul id="drop_zone">

Let’s also style the two containers so that we can clearly see their boundaries. We’ll
also float them to the left so that they appear side by side rather than stacked.

#container, #drop_zone {

width: 200px;

height: 300px;

list-style-type: none;

margin-left: 0;

margin-right: 20px;

float: left;

padding: 0;

border: 2px dashed #999;

}

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES264

All this typing into the Firebug console is getting tedious, so let’s add some code to
draggable.html that will run on dom:loaded:

<script type="text/javascript">

document.observe("dom:loaded", function() {

$('container').select('li').each(function(li) {

new Draggable(li);

});

Droppables.add('drop_zone');

});

</script>

Here, we’re declaring our new ul as a droppable, but we’re not providing an options
argument. By default, this droppable will “accept” any draggable that is dropped onto it.

Reload the page and drag an item from the left box to the right box. Nothing hap-
pens. You can drag the list items wherever you like, but you could do that already.

Don’t worry, this is by design. script.aculo.us does not make any assumptions about
the purpose of the drag/drop operation, so it will only do what you tell it to do.

Using Callbacks for Droppables

There are two callbacks for droppables: onHover and onDrop. When a draggable is dragged
over a compatible droppable (i.e., a droppable that would accept it), the onHover callback
fires. When it is dropped onto a droppable, the onDrop callback fires.

To illustrate this in the simplest way possible, let’s add an onDrop callback to the pre-
ceding code:

Droppables.add('drop_zone', {

onDrop: function() { console.log("dropped!"); }

});

Now reload the page and try again. Make sure the Console tab of Firebug is visible so
that you can see when messages are logged. You should see something like Figure 11-3.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 265

Figure 11-3. Firebug logs our sanity-check event handler.

Aha! Progress. As a developer, you might expect a drop to correspond with a move-
ment in the DOM. The act of dragging an li over a ul feels like it ought to detach that li
from its current parent and attach it to the new ul. But Firebug’s HTML tab, pictured in
Figure 11-4, shows that the target ul is still empty.

Figure 11-4. Firebug confirms that the drag-and-drop action did not change the draggable’s
position in the document.

We can use our onDrop callback to append the draggable to the droppable. It takes
three arguments: the draggable element, the droppable element, and the mouseup event
linked to the drop.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES266

Let’s start by writing a general function that will get called for drops. We can use
appendChild, the built-in DOM method, to add the draggable as a child of the droppable.

function appendOnDrop(draggable, droppable, event) {

droppable.appendChild(draggable);

}

We don’t have to detach the draggable first; appendChild works for moving elements.
(We could have used Element#insert in the same way; it behaves just like appendChild if it’s
passed a single element.)

Now we should use this function as the onDrop callback for the droppable. With these
changes, your script block should look like this:

<script type="text/javascript">

document.observe("dom:loaded", function() {

function appendOnDrop(draggable, droppable, event) {

droppable.appendChild(draggable);

}

$('container').select('li').each(function(li) {

new Draggable(li);

});

Droppables.add('drop_zone', { onDrop: appendOnDrop });

});

</script>

Now reload the page. Before you try the drag again, go to Firebug’s HTML tab and
look at the source tree. Expand the body tag and you’ll see our two uls—one with children,
one without. If our code works correctly, though, the first list will lose a child and the sec-
ond will gain a child. We’ll see these changes in the source tree—a node gets highlighted
for a moment when its DOM subtree is modified.

Drag one of the items from the left column to the right. Whoa—the element jumps
to the right when we let go of the mouse. Why does this happen?

Firebug tells us we got it right—the second ul now has a child. Expanding it in the
source tree reveals that the droppable is now a child of the second ul. We need to take
a closer look at this.

Reload the page and expand the Firebug source tree again. Drill down to one of the
draggable elements and click it in the tree (or you can click the Inspect button, and then
click a draggable). The element is now highlighted in blue in the source tree, and its CSS
styling is shown in the rightmost pane (see Figure 11-5).

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 267

Figure 11-5. Firebug lets us inspect an element’s entire style cascade.

This pane shows the style cascade of the element—the properties from all CSS rules
that apply to the element, with more specific selectors nearer to the top. At the very top,
under element.style, are the styles that have been assigned to that element directly—
whether through inline styles (the element’s style attribute) or through JavaScript (the
DOM node’s style property).

Firebug shows CSS changes in real time, just like DOM changes. Click and drag on
the element you’re inspecting, and move it around the page—but don’t drop it on the
other ul just yet. You’ll notice that the element.style rules update as you move the ele-
ment. When you’re done moving it, the CSS pane should look like Figure 11-6.

Figure 11-6. Firebug helps us understand how our draggable determines its position.

So now we know how the element gets moved around the page—it’s given a position
of relative, along with top and left values that correspond to the position of the mouse.
The style rules persist even after the drag ends.

Now drag the element over the empty ul and drop it. Once again, the element moves
to the right. Do you understand why now?

Remember that when an element has a CSS position of relative, the top and left
properties move the element relative to its original position on the page. In other words,
when top and left are both 0, the element is in its normal spot—the same place it would
occupy if it had a position of static.

When we moved the element from one parent to another, we changed the way its
positioning was calculated. It’s now offset from the normal space it would occupy in its
new parent ul.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES268

If we want to position the draggable inside the new ul, we can set its left and top
properties to 0 in the onDrop callback:

function appendOnDrop(draggable, droppable, event) {

droppable.appendChild(draggable);

draggable.setStyle({ left: '0', top: '0' });

}

Reload draggable.html. Now when items are dragged from the first list to the second,
they “snap” into place in the new list (see Figure 11-7).

Figure 11-7. Now that we adjust the element’s positioning when it’s dropped, it appears to
fall into its receiving droppable.

Drag-and-Drop: Useful or Tedious?

Does this feel a bit more “manual” than usual? Do you think that some of the code you
wrote should’ve been handled by script.aculo.us automatically?

Keep in mind that Draggable and Droppables are low-level tools. They don’t make
assumptions about use cases; in fact, they don’t do much without your explicit mandate.
They are designed to eliminate the largest headaches related to drag-and-drop. It’s no fun

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 269

to write your own code that determines when one element “overlaps” another. It’s no fun
to write the same three event handlers for every element that can be dragged. These
problems are best solved by code that’s as widely applicable as possible.

That said, you can (and should) build custom controls on top of the base logic of
Draggable and Droppables. And that brings us to a specialized control that leverages drag-
and-drop—script.aculo.us’s own Sortable object uses them for drag-reordering of lists.

Exploring Sortables
Sortables are a specialized yet common application of drag-and-drop. Sortables are con-
cerned with the sequence of a certain group of items, so rather than moving elements
from one container to another, the user moves the elements relative to one another.

Use cases for sortables are everywhere to be found. Think of, for example, your
favorite rental-by-mail service, for which you maintain a queue of DVDs and/or video
games you’d like to play. It’s crucial for you to be able to arrange that list in order of most-
desired to least-desired.

Making Sortables

Making a sortable is much like making a droppable. There is one object, Sortable, that
manages all sortables on a page. Creating a new one requires a call to Sortable.create:

Sortable.create('container');

As with Droppables.add, the first argument refers to the element that will act as a con-
tainer. In fact, this simple example already works with our example markup—swap out
the code you wrote earlier with this code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Draggable demo</title>

<style type="text/css" media="screen">

body {

font-family: 'Trebuchet MS', sans-serif;

}

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES270

#container {

width: 200px;

list-style-type: none;

margin-left: 0;

padding-left: 0;

}

#container li, .foo {

background-color: #f9f9f9;

border: 1px solid #ccc;

padding: 3px 5px;

padding-left: 0;

margin: 10px 0;

}

#container li .handle {

background-color: #090;

color: #fff;

font-weight: bold;

padding: 3px;

}

#container, #drop_zone {

width: 200px;

height: 300px;

list-style-type: none;

margin-left: 0;

margin-right: 20px;

float: left;

padding: 0;

border: 2px dashed #999;

}

</style>

<script src="prototype.js" type="text/javascript></script>

<script src="scriptaculous.js" type="text/javascript></script>

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 271

<script type="text/javascript">

document.observe("dom:loaded", function() {

Sortable.create('container');

});

</script>

</head>

<body>

<ul id="container">

<li class="foo" id="item_1">Lorem

<li class="foo" id="item_2">Ipsum

<li class="foo" id="item_3">Dolor

<li class="foo" id="item_4">Sit

<li class="foo" id="item_5">Amet

</body>

</html>

Aside from the script element, the only change we’ve made is to remove the “drop
zone” container, which we don’t need anymore.

Reload this page, and you’ll find that the container is already behaving like a sortable.
The list items inside it can be dragged and reordered; when a dragged element gets near a
new “slot,” the elements on either side part to give it room. When dropped, the element
stays in its new place.

Sortable Options

We were able to use Sortable.create so effortlessly because our markup conformed to
many of its default options. The more specialized the usage, however, the more configu-
ration will be needed. The following subsections describe some of the other options you
might use with sortables.

The tag Option

Sortable.create looks for children of a certain tag name to declare as draggables. This
option, tag, is a string that refers to that tag name. It defaults to li, the semantic child of
unordered and ordered lists (ul and ol). If your draggables are not going to be list items,
you must specify the tag name.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES272

The only Option

The only option is a string that, if set, represents a CSS class that all children must have
in order to be treated like draggables. This is a way to further winnow down the set of
draggables—for instance, if only certain children are eligible for reordering.

The overlap Option

The overlap option expects a string—either vertical or horizontal. Vertical sortables are
the default; horizontal sortables can be created with a smack of CSS trickery and a grasp
of element floating rules.

The containment Option

The containment option is tricky—it expects an array of element nodes (or strings that
refer to element IDs). If an array is given, sortables will be allowed to be dragged outside
of their parent, and can be dropped into any of the given elements. Or, to be briefer, this
option allows for drag-and-drop between two sortables.

The scroll Option

Picture your file manager of choice—Windows Explorer or Mac OS X’s Finder. The visual
model for interacting with files is easy to learn: you can select a file, drag it into a folder,
and thus move the file into that directory as though you were filing real papers into a
folder.

The model isn’t leak-proof, however. An Explorer or Finder window can only show
so much at once; what happens if the file and the folder are far apart? Both of these file
managers solve the problem by trying to “sense” when the user wants to drag to some-
place out of view. When the user moves the mouse near the edge of the viewport, it
starts inching in that direction, little by little (or sometimes lightning-fast, if your motor
skills aren’t too sharp). When the target folder is in view, the user moves toward it and
away from the edge of the viewport, and the scrolling stops.

Sortables pose a similar problem, and script.aculo.us contains a similar solution.
The scroll parameter, if set, will scroll the given container when an item is dragged
toward one of its edges.

We can test this behavior on the window itself by resizing it to a very small height.
We must pass window as the value of the scroll parameter:

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 273

<script type="text/javascript">

document.observe("dom:loaded", function() {

Sortable.create('container', { scroll: window });

});

</script>

Reload the page and test the behavior yourself. Notice in Figure 11-8 how the page
scrolls smoothly when you drag an item to the bottom of the viewport.

Figure 11-8. The window scrolls when an item is dragged near the top or bottom of the
viewport.

Because any container can have scrollbars (as determined by its CSS overflow prop-
erty), any container can be used as the value of scroll. For instance, we can tweak our CSS
to make our ul container much smaller:

#container {

width: 200px;

height: 100px;

overflow: auto;

list-style-type: none;

margin-left: 0;

margin-right: 20px;

float: left;

padding: 0;

border: 2px dashed #999;

}

As you can see in Figure 11-9, the sortable container itself scrolls when necessary.
Another UI innovation freed from the monopolistic clutches of the desktop!

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES274

Figure 11-9. The scroll parameter works on all elements. Here, the container scrolls when an
item is dragged near its top or bottom edge.

Summary
In this chapter, you learned that script.aculo.us contains both high-level and low-level
tools. Draggable and Droppables are low-level tools—middleware for the sorts of places
where you’d use drag-and-drop in your applications. Sortable is a high-level tool—a
specific usage of drag-and-drop that is ready out of the box.

The next chapter will deal with more high-level tools: UI goodies that solve very spe-
cific problems.

CHAPTER 11 ■ ENABLING DRAGGABLES, DROPPABLES, AND SORTABLES 275

Advanced Controls:
Autocompleters,
In-Place Editors, and Sliders

In the last chapter, we discussed two types of controls provided by script.aculo.us: low-
level controls (like drag-and-drop and effects) and high-level controls (like sortables).
The former are building blocks for the latter.

In this chapter, we’ll look at more of the high-level controls. They’re UI widgets
tailored for specific use cases, so we’ll be discussing where to use them as well as how
to use them.

Adding Autocomplete Functionality
Autocompleter is a control similar to the one built into browsers: when the user begins
to type in a text box, a menu appears below the text offering completion suggestions.

All major web browsers use this type of UI control for their address bars—typing the
beginning of a URL will display a list of URLs in your history that begin with what you’ve
typed. Most also use it on any input field you’ve typed text into before, although that
depends on whether you’ve configured your browser to remember those values.

The script.aculo.us autocompleter replicates this control, but gives the developer
control of the suggestion list. It does so by augmenting an ordinary text box (an input
with a type of text) with an element for displaying the results (typically a div with a ul
inside) and a listener on the text box that observes what’s being typed.

When to Use Autocompleter

You can ask yourself one question to figure out whether an autocompleter is the right
solution in a certain place: would this degrade to a text box or a drop-down menu? In
other words, if you weren’t able to use an autocompleter and had to choose between the
ordinary controls provided by HTML, which would you choose? 277

C H A P T E R 1 2

The difference between them, of course, is that a text box allows for free-form input,
while a drop-down menu restricts input to whatever choices have been set in the HTML.

Autocompleter degrades to an ordinary text box. When JavaScript is turned off, it
behaves exactly like a text box.

Keep your eye on the usability ball—UI controls are meant to solve problems first
and foremost. If you can’t decide whether to use an autocompleter or a select element,
choose the latter. Fight the urge to treat the autocompleter as if it were a flashier version
of the standard drop-down menu.

Use Case: Suggesting Players

A fantasy football league has legions upon legions of players. Many belong to a specific
team in the league; many more are free agents, able to be picked up at any time. They’re
the leftovers, the players nobody picked in the fantasy draft.

Every season, several no-name players break out, amassing yards and touchdowns
as they introduce themselves to a national audience. A clever fantasy owner can spot
these diamonds in the rough before anyone else if he pays attention to the numbers.

Create a new folder called chapter12 and add an index.html file from the standard
template. To start off, we’ll need only two elements inside the body of the page: the text
box and the container to hold suggestions.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Chapter 12</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<script src="../js/prototype.js" type="text/javascript"""></script>

<script src="../js/scriptaculous.js" type="text/javascript"""></script>

</head>

<body>

<input type="text" name="player_name" id="player_name" size="30" />

<div id="player_suggestions"></div>

</body>

</html>

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS278

Using Autocompleter

Autocompleter comes in two flavors. One, named Autocompleter.Local, keeps an array of
possible suggestions for instantaneous feedback. The other, Ajax.Autocompleter, relies on
a remote server to give it suggestions—making an Ajax call whenever suggestions need to
be retrieved.

Naturally, Autocompleter.Local has less overhead, since it does not need to talk to the
server; as a result, its suggestions will usually appear far more quickly. You’ll only want to
fall back to Ajax.Autocompleter if the pool of suggestions is simply too large to keep on the
client side, or if the logic for picking suggestions is more complicated than an ordinary
string match. We’ll cover these cases several pages from now, but for now let’s use the
local version for simplicity’s sake.

Using Autocompleter.Local

The syntax for declaring a new Autocompleter.Local is

new Autocompleter.Local(inputElement, updateElement, array, options);

where inputElement is the text box, updateElement is the element that will hold the sugges-
tions, array is the list of possible suggestions, and options is the configuration object
we’ve come to know so well.

Let’s add a script tag to the page and declare an Autocompleter.Local on page load:

<script type="text/javascript">

document.observe('dom:loaded', function() {

new Autocompleter.Local('player_name', 'player_suggestions',

['James Polk', 'James Buchanan', 'Franklin Pierce',

'Millard Fillmore', 'Warren Harding', 'Chester Arthur',

'Rutherford Hayes', 'Martin Van Buren']);

});

</script>

Our array contains a short list of nonnotable American presidents—the benchwarm-
ers of our fictional league. Rather than make the user choose from an endless drop-down
menu or force her to remember how many ls are in Fillmore, Autocompleter will offer pos-
sible name completions after only a few keystrokes.

Save index.html and open it in a browser. You’ll see a text box, of course, as shown in
Figure 12-1.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 279

Figure 12-1. The autocompleter in its ordinary state

There’s more going on here than would appear. Bring up the Firebug pane and move
to the HTML tab (see Figure 12-2).

Figure 12-2. Firebug’s view of the panel that will hold our suggestions

Two things have already happened. Our container div is hidden; it won’t appear until
it has at least one suggestion to present. But expanding the div shows that there’s now an
empty ul inside.

Let’s put that div to work. Click the text box and start typing the name “James.” You
won’t even need to finish the name—two suggestions will appear before you’re done (see
Figure 12-3).

Figure 12-3. Two possible completions appear.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS280

You should notice two things. First, the list of possible suggestions is populated
dynamically by Autocompleter. When there is at least one match from the suggestion
bank, the container div is shown and its child ul is filled with one list item for each
match. When there are no matches, the container div is hidden, and its child ul is
stripped of all its items.

Second, the list looks awful. It doesn’t even look like a menu. There’s no affordance,
nothing that says, “I can be clicked.” But that’s by design. Autocompleter constructs the
HTML for your list, but leaves the styling up to you. Look at the HTML tree in Firebug to
see what I mean:

<div id="player_suggestions">

<li class="selected">

James Polk

James Buchanan

</div>

So we know that the individual choices are list items, and that the “active” choice
will have a class name of selected. A portion of each choice is wrapped in a strong ele-
ment, highlighting the substring that matches what you’ve typed. As you type more
characters, the strongly emphasized part of the phrase will grow.

We need to style this HTML to look more like the drop-down menus that users are
familiar with. It needn’t look exactly like a native drop-down menu, of course, but it
should resemble one enough that a user can recognize its purpose.

Add a style tag in the head of index.html:

<style type="text/css">

body {

font: 67.5% "Lucida Grande", Verdana, sans-serif;

}

/* a thin border around the containing DIV */

#player_suggestions {

border: 1px solid #999;

background-color: #fff;

}

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 281

/* get rid of the bullets and un-indent the list */

#player_suggestions ul {

list-style: none;

margin: 0;

padding: 0;

}

#player_suggestions li {

padding: 2px 3px;

}

#player_suggestions strong {

font-weight: bold;

text-decoration: underline;

}

/* the "active" item will have white text

on a blue background */

#player_suggestions li.selected {

color: #fff;

background-color: #039;

}

</style>

The devil is in the details when you’re trying to make styled HTML look like built-in
controls and widgets (see Figure 12-4). If we wanted to do something more elaborate, we
could replace the selected item’s background color with a background image—one that
has a slight gradient—to give the item some texture (as an homage to Mac OS X). Or we
could decrease the opacity of the menu itself, matching the transparency of Windows
Vista’s pull-down and drop-down menus. It’s up to you. HTML is your canvas and you’re
Bob Ross.

Figure 12-4. CSS makes the list of suggestions look more like a native control.

Time to see what this thing’s made of. Bring focus to the text box and start typing
“James” once again. Experiment with the several ways you can choose from the menu:

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS282

• Click a suggestion.

• Use the up/down arrow keys to highlight a suggestion, and then press Enter.

• Use the up/down arrow keys to highlight a suggestion, and then press Tab.

Now try several ways to dismiss the menu:

• Click outside of the text box or move focus somewhere else with the keyboard.

• Press the Escape key.

• Finish typing the desired choice. For example, if you type “James Buchanan,” the
menu will disappear as you type the final n, since there’s no more completing to
be done.

When a user recognizes our list as a drop-down menu, he’ll expect it to act like one.
For the user’s sake, Autocompleter tries very hard to ape the behavior of a drop-down.

Robust Autocompleter, the Ajax Version

The more robust version of Autocompleter is Ajax.Autocompleter. Rather than store the
suggestion bank locally, it gets a list of suggestions from the server. This approach has
two large advantages:

• Autocompleter.Local does a simple text match against the string. In an autocom-
pleter that suggests US cities, when I type “New,” I’ll get offered “New Orleans” and
“New York” (among others) as suggestions.

But when I type MSY, the airport code for New Orleans (as can be done on many
travel sites), I receive no suggestions. The logic that matches an airport code to a
city is beyond the scope of Autocompleter.Local.

Ajax.Autocompleter punts on that logic. It tells the server what the user typed and
accepts whatever is returned. On the server side, I can do a more complicated
match—I can search for string matches against city names, airport codes, or any
other identifiers I choose.

• Ajax.Autocompleter makes perfect sense when dealing with humongous data sets.
In our case, we’re pulling from a small list, but a professional football league has
around 30 teams and 53 active players per team—roughly 1,600 players. It’s possi-
ble to use Autocompleter.Local with such a huge data set, but do you really want to
place a 1,600-item array in your page and transfer it over the pipe?

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 283

To demonstrate Ajax.Autocompleter, we’ll first need to write a script that can return
suggestions when it’s called via Ajax.

■Note For this part, you’ll need to be running a web server (either locally or remotely) that supports PHP.
Naturally, the concept is similar for other server environments.

Create a file called autocomplete_players.php in the same folder as your
index.html file:

<?php

// For this sample script we'll use another array; in a

// real-world app, we'd probably search a database instead.

$suggestions = array(

'James Polk', 'James Buchanan', 'Franklin Pierce',

'Millard Fillmore', 'Warren Harding', 'Chester Arthur',

'Rutherford Hayes', 'Martin Van Buren'

);

$value = isset($_REQUEST['player_name']) ? $_REQUEST['player_name'] : "";

$matches = array();

foreach ($suggestions as $suggestion) {

// Look for a match (case-insensitive).

// If found, wrap the matching part in a STRONG element,

// wrap the whole thing in a LI,

// and add it to the array of matches.

if (FALSE !== stripos($suggestion, $value)) {

$match = preg_replace('/' . preg_quote($value) . '/i',

"$0", $suggestion, 1);

$matches[] = "${match}\n";

}

}

// Join the matches into one string, then surround it

// with a UL.

echo "\n" . join("", $matches) . "\n";

?>

The output of this PHP script is the literal HTML to be inserted into the page.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS284

Now we’ll add the JavaScript that sets up the autocompleter on page load. The syn-
tax for Ajax.Autocompleter is identical to that of Autocompleter.Local, except for the third
argument:

new Ajax.Autocompleter(inputElement, updateElement, url, options);

Instead of array, we provide the URL for the Ajax request. We can give a simple rela-
tive URL, since index.html and autocomplete_players.php are in the same directory:

<script type="text/javascript">

document.observe('dom:loaded', function() {

new Ajax.Autocompleter('player_name', 'player_suggestions',

'autocomplete_players.php');

});

</script>

Reload the page. Make sure the Firebug console is visible. Click the text box, but this
time type very slowly. First, type a J, and then look at the console (see Figure 12-5).

Figure 12-5. Line indicating an Ajax request went out

A line appears in the console to tell us that an Ajax request went out. Look at the
details of the request, specifically the Post and Response tabs.

Now move back to the text field and add an A, and then an M. There will be two
more logged Ajax calls in the console. You’ve probably figured it out: Ajax.Autocompleter
is sending out an Ajax request each time the text box’s value changes.

Seems wasteful, doesn’t it? If the Internet were a series of tubes, this is the sort of
thing that would clog them up.

In fact, Ajax.Autocompleter does some clever throttling: it waits for a pause in the
input before it sends out a request. To see for yourself, clear the text field, and then
type “James” at your normal typing speed. Unless you’re a hunt-and-peck typist,
Ajax.Autocompleter won’t make a request until you’ve pressed all five keys.

Common Options and Features

Let’s not forget about the fourth argument—the one that lets us go under the hood. The
two versions of Autocompleter share some configuration options:

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 285

• tokens lets you “reset” the suggestions every time a given key is pressed. Think of an
e-mail client: when you compose a new message, most clients display suggestions
as you type in the To and CC fields of the message window. Addresses are delimited
by semicolons; pressing the semicolon key tells the client that you’ve entered one
address and are ready to enter another.

The tokens option accepts either a string or an array of strings. It lets you specify
delimiters for your suggestions. The following code will split on commas and semi-
colons:

new Ajax.Autocompleter('player_name', 'player_suggestions',

'autocomplete_players.php', { tokens: [',', ';'] });

• frequency controls how long of a pause, in seconds, is needed to trigger sugges-
tions. (This is the source of the “throttling” described previously.) Naturally, this
behavior is more useful with the Ajax flavor—if the remote server is sluggish to
respond, you may want to make this value larger than the default of 0.4.

• minChars controls how many characters need to be typed before the autocompleter
presents suggestions. It’s set to 1 by default, but if the suggestion bank is especially
large, the list of suggestions after one character will be long, unwieldy, and unhelp-
ful. Also, raising this value is another way to reduce the number of Ajax requests
made by Ajax.Autocompleter.

This option is token-aware; if you’ve specified any tokens, the autocompleter will
wait the proper number of keystrokes after each token before it starts offering
suggestions.

Several callback options let you hook into Autocompleter at important points:

• onShow and onHide control how the completion menu reveals and hides itself. If
specified, they will replace the default hide/show behaviors. (By default, the menu
uses Effect.Appear and Effect.Fade.) If you override onShow, be prepared to handle
the sizing and positioning of the menu on your own.

These callback functions take two parameters: the text box and the menu con-
tainer (i.e., the first two arguments passed to the constructor).

• updateElement and afterUpdateElement are used to replace or augment what takes
place when the user selects a suggestion from the menu.

updateElement takes one argument—the li that was chosen—and replaces the
default logic (i.e., set the value of the text box to the text content of the li).
afterUpdateElement takes two arguments—the input element and the li element—
and fires after the updateElement callback.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS286

Adding In-Place Editing Functionality
Ajax.InPlaceEditor is a script.aculo.us class for a UI pattern that is becoming more and
more common on web sites. Picture the following:

1. You’re on the page for your fantasy football team. It displays your team’s name and
a roster of your players.

2. You move your mouse over the team name and notice that the background color
changes slightly. You click. The ordinary text transforms into a compact form—a
text box prepopulated with your existing team name and a save button alongside
it. Farther to the right is a cancel link that restores the original view.

3. You place focus in the text box and make a change to your team name. You click
the save button. After a short pause, the original view is restored—except that the
new team name is now shown (see Figure 12-6).

Figure 12-6. The user workflow for an Ajax in-place editor

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 287

For obvious reasons, this is called an in-place editor. This pattern, when executed
well, can obviate the administration section—the back end of a content management
system where all the editing is done. Instead, the read mode and edit mode are merged.

The scenario just described illustrates how this pattern allows a fantasy owner to
change her team name. Naturally, permissions would be important—when she’s on her
own team’s page, her team’s name could be edited, but she’d be prevented from editing
the names of her opponents’ teams.

Let’s think through how to turn this user workflow into code. We’ll need to represent
the content in two different ways: read mode and edit mode. Read mode will be the ele-
ment’s ordinary markup; edit mode will be an HTML form with a text box and an OK
button. We’ll also insert a cancel link in case the user changes his mind.

To pull this off, we’ll need help from the DOM (to switch dynamically from a read
view to an edit view) and Ajax (to tell the server when a value has been changed).

As you may have guessed, the script.aculo.us Ajax.InPlaceEditor handles all these
details. The wonders never cease.

Using Ajax.InPlaceEditor

The syntax for declaring a new Ajax.InPlaceEditor is the following:

new Ajax.InPlaceEditor(element, url, options);

As usual, element refers to the element we want to make editable, and options refers
to our object of configuration parameters. The second argument, url, specifies the URL
that should be contacted in order to save the data.

Let’s create a new page called inplaceeditor.html. It won’t need much markup—just
an element with text that we can edit.

■Note As with the previous example, for this part you’ll need to be running a web server (either locally or
remotely) that supports PHP. Naturally, the concept is similar for other server environments.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Chapter 12</title>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>

<script src="prototype.js" type="text/javascript"""></script>

<script src="scriptaculous.js" type="text/javascript"""></script>

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS288

<style type="text/css" media="screen">

body {

font: 67.5% "Lucida Grande", Tahoma, sans-serif;

}

</style>

</head>

<body>

<h1 id="team_name">The Fighting Federalists</h1>

</body>

</html>

The h1 that contains the team name is annotated with an ID so that we can pass it
easily into the Ajax.InPlaceEditor constructor. So let’s add a code block to initialize the
in-place editor when the DOM is ready. Add this to the head of your document:

<script type="text/javascript">

document.observe('dom:loaded', function() {

new Ajax.InPlaceEditor('team_name', 'save.php');

});

</script>

We don’t need to add any configuration options yet. We’ve set the url argument to a
URL that doesn’t exist yet, but we’ll take care of that later. This one line is enough to hook
up all the client-side behaviors for the in-place editor.

Open the page in a browser, and check that all of these behaviors work:

• When you move your mouse over the h1 element, you should see its background
color change to a subtle yellow, inviting you to click it.

• When you click, the element should be replaced with a text box, a button that says
“ok,” and a link that says “cancel.”

• The text in the text box should be highlighted already, so that you can type over it
immediately.

• Clicking the “cancel” link should restore the h1 to its initial state.

• Clicking the h1 should bring up the form once again.

We’ve tested everything except submitting the form—for that, we’ll need to write a
script that will receive the save request.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 289

Create a new file called save.php in the same directory as inplaceeditor.html. The in-
place editor will, when saved, make an HTTP POST request to the given URL with a value
parameter; that’s the name of our text box. Its value will be whatever the user typed into
the text box.

In response, the script should send as output whatever the new value of the element
should be. This value will nearly always be the same one that the script received. (A pro-
duction script would also want to store the new value, but we needn’t bother.)

So we need only write a PHP script that echoes the value we give it. Here’s what your
save.php file should look like:

<?php echo $_REQUEST['value']; ?>

Yeah, that’s the whole file. Save it.
Now we’ll reload inplaceeditor.html and try an actual save. Click the element,

rename your team, and click the “ok” button.
That was fast, wasn’t it? An instant after you clicked the button, the in-place editor

returned to its read state, but with the new value. An Effect.Highlight call makes it clear
to the user that the value is “fresh.” If you’re trying out these examples on a remote server,
it probably took a bit longer; but those of us who are running a local web server will need
to introduce some fake latency to better simulate the lag of an HTTP round trip. We can
tell our save.php script to wait for a second before responding:

<?php

sleep(1);

echo $_REQUEST['value'];

?>

After adding this line to save.php, try modifying the value in our in-place editor once
more (see Figure 12-7). Now you can see much more clearly how it works. As soon as you
click the “ok” button, the edit mode disappears and is replaced with a “Saving . . .” mes-
sage while the Ajax request is made. When the browser receives the response, it switches
back to the in-place editor’s read mode.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS290

Figure 12-7. The in-place editor’s edit mode

Making It Pretty

Astute readers will have already noticed that an h1 element looks much different from a
text box with the same text content. We can fix that quite easily with CSS.

Click the in-place editor to put it into edit mode once again—then use Firebug to
inspect the text box that appears. (With the Firebug pane visible, click Inspect, and then
click in the text box.) The HTML inspector shows us that the input element has a class
name of editor_field, and that its form parent node has an ID of team_name-inplaceeditor
(in other words, it adds -inplaceeditor to the ID of the original element.

Armed with this information, we can write a CSS selector that targets both read
mode and edit mode. Add this to the style element in your document’s head:

h1#team_name,

form#team_name-inplaceeditor .editor_field {

font-size: 19px;

font-weight: bold;

}

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 291

Now the element looks the same in either mode, as shown in Figure 12-8. Maintain-
ing the text’s styling helps the user navigate a new and perhaps unfamiliar UI pattern.

Figure 12-8. The read mode (on the left) and the edit mode (on the right) are now far less
disjointed-looking, resulting in a friendlier user interface.

Common Options and Features

Ajax.InPlaceEditor is, like its script.aculo.us brethren, endlessly configurable. Here are
some of the most useful options:

• okButton and okText control the display of the button that submits the value to the
server. Setting okButton to false hides the button altogether—the form can only be
submitted via the Enter key. The okText parameter (which defaults to "ok") lets you
change the label of the button (e.g., "Save", "Go", or "Make it Happen!").

• cancelLink and cancelText control the display of the link that cancels the edit oper-
ation. Setting cancelLink to false hides the link. The cancelText parameter lets you
change the label of the link from the default "cancel" to something far sillier, like
"oops!" or "I've Made a Huge Mistake.".

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS292

• savingText changes the message that is displayed after you submit the form, but
before the server responds. As shown, it defaults to "Saving...".

• rows defaults to 1. If a greater value is given, the in-place editor’s edit mode will
show a multiline textarea (of the given number of rows) rather than the single-
line input.

• cols is undefined by default; if specified, it controls how large the text entry field is.
(For textareas, this is dictated by the cols attribute; for inputs, it’s dictated by the
size attribute.)

Adding Sliders
The script.aculo.us slider control is one implementation of a control that, for whatever
reason, has no native implementation in web browsers. The ability to drag a “handle” to
a specific spot on a horizontal or vertical “track” has a quasi-analog feel that makes it
ideal for zooming in and out, setting the size of an item, distributing resources among
several tracks, and countless other scenarios.

Creating a Slider

The syntax for creating a slider is the following:

new Slider(handle, track, options);

Here, handle and track refer to the DOM elements that will serve as the “handle” and
“track” of the slider, respectively. Configuration can be done with the options argument.
But for our first example, we won’t need to do any configuration.

Create a file called slider.html and make it look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html>

<head>

<title>Chapter 12</title>

<script src="js/prototype.js" type="text/javascript></script>

<script src="js/scriptaculous.js" type="text/javascript"></script>

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 293

<style type="text/css" media="screen">

body {

font: 67.5% "Lucida Grande", Tahoma, sans-serif;

}

#track {

width: 300px;

height: 25px;

border: 2px solid #555;

}

#slider {

width: 50px;

height: 25px;

background-color: #ccc;

font-size: 20px;

text-align: center;

}

</style>

<script type="text/javascript">

document.observe('dom:loaded', function() {

new Control.Slider('handle', 'track');

});

</script>

</head>

<body>

<div id="track">

<div id="handle"></div>

</div>

</body>

</html>

The highlighted parts of this HTML file show that we’re creating two elements with
IDs of track and handle and placing the latter inside the former. We’re also styling these
elements so that they look roughly like a scrollbar thumb and a scrollbar track.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS294

The highlighted line of JavaScript is enough to attach the event listeners to make the
handle draggable within the confines of the track. Open up slider.html in a web browser
and you should see the slider shown in Figure 12-9.

Figure 12-9. The slider with draggable handle

In other words, the handle knows the dimensions of both itself and its parent (the
track); it knows to stop whenever its left edge hits the left edge of the track or its right
edge hits the right edge of the track.

We can add more polish to this slider with some of Control.Slider’s options.

Common Options

A slider is used to set a value within a given range—to map a pseudo-analog control to a
digital value. If your slider is 300 pixels long and a valid value is any integer from 0 to 11,
then each pixel in the slider will map to a value between 0 and 11.

Many of the following options control the relationship between the visual represen-
tation of the slider and the internal range of values to which it maps.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS 295

Here are the options you’ll use most often to configure your slider:

• axis controls the slider’s direction of movement. It can be set to horizontal (the
default) or vertical.

• range allows you to set the minimum and maximum values for your slider. It
expects an ObjectRange—the construct discussed in Chapter 3. For example,
$R(0, 11) describes all integers between 0 and 11 (inclusive).

• Instead of using range to set an explicit minimum and maximum, you can use
increment to describe how pixels map to values. For example, setting increment to
1 means that the value will change by 1 for every pixel moved.

• Finally, you can use values to specify, in array form, the exact values that will be
allowed (e.g., [1, 2, 5, 10, 20]). The slider handle will snap to those points on
the track that represent these values.

Callbacks

Naturally, a slider is useless without callbacks to hook into. Control.Slider provides two
callbacks:

• The onSlide callback is called continuously as the handle is dragged along the
track.

• The onChange callback is called when the user finishes moving the handle and lifts
the mouse button.

Both callbacks take the slider’s current value as a first argument.

Summary
You learned about three specific sorts of controls in this chapter, but in the process you
also saw several good examples of how JavaScript behaviors should be encapsulated.
Notice how each of these examples involves declaring an instance of a class with a partic-
ular element as the “base” of the control.

In Chapter 13, we’ll try to spot more patterns like these and glean some development
principles and best practices.

CHAPTER 12 ■ ADVANCED CONTROLS: AUTOCOMPLETERS, IN-PLACE EDITORS, AND SLIDERS296

Prototype As a Platform

Prototype’s features exemplify the functionality that distinguishes frameworks from
libraries. It provides more than just shortcuts—it gives you new ways to structure
your code.

In this chapter, we’ll look at some of these tactics and patterns. We’ll move beyond
an explanation of what the framework does and into higher-level strategies for solving
problems. Some of these are specific code patterns to simplify common tasks; others
make code more modular and adaptable.

Using Code Patterns
A script written atop Prototype has a particular style (to call it flair would perhaps be
overindulgent). It’s peppered with the time-saving patterns and terse syntactic shortcuts
that are Prototype’s trademark.

I’m calling these code patterns, but please don’t treat them as copy-and-paste sec-
tions of code. They’re more like recipes; use them as a guide, but feel free to modify an
ingredient or two as you see fit.

Staying DRY with Inheritance and Mixins

Prototype’s class-based inheritance model lets you build a deep inheritance tree. Sub-
classes can call all the methods of their parents, even those that have been overridden.

Prototype itself uses inheritance with the Ajax classes. The simplest of the three,
Ajax.Request, serves as a superclass for both Ajax.Updater and Ajax.PeriodicalUpdater.
script.aculo.us uses inheritance even more liberally. For instance, all core effects inherit
from an abstract class called Effect.Base. Any Prototype or script.aculo.us class can be
subclassed by the user and customized.

Inheritance is a simple solution for code sharing, but it isn’t always the best solution.
Sometimes several classes need to share code but don’t lend themselves to any sort of
hierarchical relationship.

297

C H A P T E R 1 3

That’s where mixins come in. Mixins are sets of methods that can be added to any
class, independent of any sort of inheritance. A class can have only one parent class—
multiple inheritance is not supported—but it can have any number of mixins.

Prototype uses one mixin that you’ll recognize instantly: Enumerable. Enumerable con-
tains a host of methods that are designed for working with collections of things. In
Prototype, mixins are simply ordinary objects:

var Enumerable = {

each: function() { /* ... */ },

findAll: function() { /* ... */ },

// ... and so on

};

We can use mixins in two ways:

• We can pass them to Class.create. The arguments we give to Class.create are sim-
ply groups of methods that the class will implement. The order of the arguments is
important; later methods override earlier methods.

• We can use Class#addMethods to add these methods after initial declaration.

var Foo = Class.create({

initialize: function() {

console.log("Foo#Base called.");

},

/* implement _each so we can use Enumerable */

_each: function(iterator) {

$w('foo bar baz').each(iterator);

}

});

// mixing in Enumerable after declaration

Foo.addMethods(Enumerable);

// mixing in Enumerable at declaration time

var Bar = Class.create(Enumerable, {

initialize: function() {

console.log("Bar#Base called.");

},

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM298

/* implement _each so we can use Enumerable */

_each: function(iterator) {

$w('foo bar baz').each(iterator);

}

});

The difference between a mixin and a class is simple: mixins can’t be instantiated.
They’re morsels of code that are meaningless on their own but quite powerful when used
in the right context.

Enough about Enumerable. Let’s look at a couple of modules you can write yourself.

Example 1: Setting Default Options

Many classes you write will follow the argument pattern of Prototype/script.aculo.us:
the last argument will be an object containing key/value pairs for configuration. Most
classes’ initialize methods have a line of code like this:

var Foo = Class.create({

initialize: function(element, options) {

this.element = $(element);

this.options = Object.extend({

duration: 1.0, color: '#fff', text: 'Saving...'

}, options || {});

}

});

Here we’re starting with a default set of options and using Object.extend to copy over
them with whatever options the user has set. We can extract this pattern into one that’s
both easier to grok and friendlier to inherit.

First, let’s move the default options out of the constructor and into a more perma-
nent location. We’ll declare a new “constant” on the Foo class; it won’t technically be a
constant, but it’ll have capital letters, which will make it look important. That’s close
enough.

Foo.DEFAULT_OPTIONS = {

duration: 1.0,

color: '#fff',

text: 'Saving...'

};

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 299

Now, let’s create a mixin called Configurable. It’ll contain code for working with
options.

var Configurable = {

setOptions: function(options) {

// clone the defaults to get a fresh copy

this.options = Object.clone(this.constructor.DEFAULT_OPTIONS);

return Object.extend(this.options, options || {});

}

};

To appreciate this code, you’ll need to remember two things. First, observe how we
clone the default options. Since objects are passed by reference, we want to duplicate the
object first, or else we’ll end up modifying the original object in place. And, as the impos-
ing capital letters suggest, DEFAULT_OPTIONS is meant to be a constant.

Second, remember that the constructor property always refers to an instance’s class.
So an instance of Foo will have a constructor property that references Foo. This way we’re
able to reference Foo.DEFAULT_OPTIONS without using Foo by name.

Now we can simplify the code in our Foo class:

var Foo = Class.create({

initialize: function(element, options) {

this.element = $(element);

this.setOptions(options);

}

});

Now, if you’ve been counting lines of code, you’ll have discovered that we wrote
about eight lines in order to eliminate about two. So far we’re in the hole. But let’s take
Configurable one step further by allowing default options to inherit:

var Configurable = {

setOptions: function(options) {

this.options = {};

var constructor = this.constructor;

if (constructor.superclass) {

// build the inheritance chain

var chain = [], klass = constructor;

while (klass = klass.superclass) chain.push(klass);

chain = chain.reverse();

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM300

for (var i = 0, len = chain.length; i < len; i++)

Object.extend(this.options, klass.DEFAULT_OPTIONS || {});

}

Object.extend(this.options, constructor.DEFAULT_OPTIONS);

return Object.extend(this.options, options || {});

}

};

OK, this one was a big change. Let’s walk through it:

1. First, we set this.options to an empty object.

2. We check to see whether our constructor has a superclass. (Remember that magi-
cal superclass property I told you about? It has a purpose!) If it inherits from
nothing, our task is simple—we extend the default options onto the empty object,
we extend our custom options, and we’re done.

3. If there is a superclass, however, we must do something a bit more complex. In
short, we trace the inheritance chain from superclass to superclass until we’ve col-
lected all of the class’s ancestors, in order from nearest to furthest. This approach
works no matter how long the inheritance chain is. We collect them by pushing
each one into an array as we visit it.

4. When there are no more superclasses, we stop. Then we reverse the array so that
the furthest ancestor is at the beginning.

5. Next, we loop through that array, checking for the existence of a DEFAULT_OPTIONS
property. Any that exist get extended onto this.options, which started out as an
empty object but is now accumulating options each time through the loop.

6. When we’re done with this loop, this.options has inherited all the ancestors’
default options. Now we copy over the default options of the current class, copy
over our custom options, and we’re done.

Still with me? Think about how cool this is: default options now inherit. I can instan-
tiate Grandson and have it inherit all the default options of Son, Father, Grandfather,
GreatGrandfather, and so on. If two classes in this chain have different defaults for an
option, the “younger” class wins.

You might balk at the amount of code we just wrote, but think of it as a trade-off. Set-
ting options the old way is slightly ugly every time we do it. Setting them with the
Configurable mixin is really ugly, but we need to write it only once!

So much of browser-based JavaScript involves capturing this ugliness and hiding it
somewhere you’ll never look. Mixins are perfect for this task.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 301

Example 2: Keeping Track of Instances

Many of the classes we’ve written are meant to envelop one element in the DOM.
This is the element that we typically pass in as the first argument—the element we
call this.element.

There should be an easy way to associate an element and the instance of a class that
centers on said element. One strategy would be to add a property to the element itself:

Widget.Foo = Class.create({

initialize: function(element, options) {

this.element = $(element);

// store this instance for later

this.element._fooInstance = this;

}

});

This approach works, but at a cost: we’ve just introduced a memory leak into our
application. Internet Explorer 6 has infamous problems with its JavaScript garbage col-
lection (how it reclaims memory from stuff that’s no longer needed): it gets confused
when there are circular references between a DOM node and a JavaScript object. The
element property of my instance refers to a DOM node, and that node’s _fooInstance
property refers back to the instance.

So in Internet Explorer 6, neither of these objects will be garbage collected—even if
the node gets removed from the document, and even if the page is reloaded. They’ll con-
tinue to reside in memory until the browser is restarted.

Memory leaks are insidious and can be very, very hard to sniff out. But we can
avoid a great many of them if we follow a simple rule: only primitives should be stored
as custom properties of DOM objects. This means strings, numbers, and Booleans are
OK; they’re all passed by value, so there’s no chance of a circular reference.

So we’ve settled that. But how else can we associate our instance to our element?
One approach is to add a property to the class itself. What if we create a lookup table
for Widget.Foo’s instances on Widget.Foo itself?

Widget.Foo.instances = {};

Then we’ll store the instances as key/value pairs. The key can be the element’s ID—
it’s unique to the page, after all.

Widget.Foo = Class.create({

initialize: function(element, options) {

this.element = $(element);

Widget.Foo[element.id] = this;

}

});

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM302

Brilliant! Now, to grab a class instance from the associated element, we can use its ID:

var someInstance = Widget.Foo.instances[someElement.id];

We could stop right here and be happy with ourselves. But let’s consider some edge
cases first:

What if the element doesn’t have an ID? Then our key will be null. To ensure that the
element has an ID, we can use Element#identify. The method returns the element’s
ID if it already exists; if not, it assigns the element an arbitrary ID and returns it to us.

What if we don’t know the name of the class? In order to move this code into a mixin,
we’ll have to remove any explicit references to the class’s name. Luckily, we’ve already
got the answer to this one: the instance’s constructor property, which points back to
the class itself.

What if that element already has an instance and another one gets created? For this
case, we’ll assume that only one instance per element is needed. When a new one
gets declared, it would be nice if we cleaned up the old one somehow.

First, let’s make a mixin called Trackable. It’ll contain the code for keeping track of a
class’s instances. Let’s also create a register method, which should be the only one we
need for this exercise. It’ll add the instance to the lookup table.

var Trackable = {

register: function() {

}

};

Now we’ll solve our problems one by one. First, let’s grab the element’s ID. If the class
doesn’t have an element property, we’ll simply return false. (You may choose to throw an
exception instead; just make sure you handle this case one way or another.)

var Trackable = {

register: function() {

if (!this.element) return false;

var id = this.element.identify();

}

};

Next, we’ll use the constructor property to reach the class itself. This way we don’t
have to call it by name. We’ll also create the instances property if it doesn’t already exist.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 303

var Trackable = {

register: function() {

if (!this.element) return false;

var id = this.element.identify();

var c = this.constructor;

if (!c.instances) c.instances = {};

c.instances[id] = this;

}

};

Now we’ll address that last edge case. If a class needs some sort of cleanup before it
gets removed, we’ll have to rely on the class itself to tell us how. So let’s adopt a conven-
tion: assume the cleanup “instructions” are contained in a method called destroy. This
method might remove event listeners, detach some nodes from the DOM, or stop any
timers set using setTimeout or setInterval.

This method will handle cleanup when we need to replace an instance that’s already
in the table. We can check the instance to be replaced to see whether it has a destroy
method; if so, we’ll call it before replacing the instance in the lookup table.

var Trackable = {

register: function() {

if (!this.element) return false;

var id = this.element.identify();

var c = this.constructor;

if (!c.instances) c.instances = {};

if (c.instances[id] && c.instances[id].destroy)

c.instances[id].destroy();

c.instances[id] = this;

}

};

And we’re done. Our new mixin is small but useful. And including it in a class is as
simple as passing it into Class.create. The only other thing to remember is to call the
register method sometime after assigning the element property.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM304

Widget.Foo = Class.create(Trackable, {

initialize: function(element, options) {

this.element = $(element);

this.register();

this.addObservers();

},

addObservers: function() {

// We store references to this bound function so that we can remove them

// later on.

this.observers = {

mouseOver: this.mouseOver.bind(this),

mouseOut: this.mouseOut.bind(this);

}

this.element.observe("mouseover", this.observers.mouseOver);

this.element.observe("mouseout", this.observers.mouseOut);

},

destroy: function() {

this.element.stopObserving("mouseover", this.observers.mouseOver);

this.element.stopObserving("mouseout", this.observers.mouseOut);

}

});

The mixin takes care of the rest. Write it once and it’ll be useful for the remainder of
your scripting career.

Solving Browser Compatibility Problems:
To Sniff or Not to Sniff?
So, if some browsers are more ornery than others, how can we tell which is which? The
obvious approach would be sniffing—checking the browser’s user-agent string. In
JavaScript, this string lives at navigator.userAgent. Looking for telltale text (e.g., “MSIE”
for Internet Explorer or “AppleWebKit” for Safari) usually lets us identify the specific
browser being used, even down to the version number.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 305

Browser sniffing is problematic, though—the sort of thing you’d get dirty looks for at
web design meetups and tech conferences. Among the biggest problems is that there are
more browsers on earth than the average web developer knows about, and when doing
browser sniffing, it’s too easy to write code that leaves some poor saps out in the cold.

Also troublesome is that browsers have an incentive to imitate one another in their
user-agent strings, thereby diluting the value of the information. For years, Opera (which
supports a number of Internet Explorer’s proprietary features) masqueraded as Internet
Explorer in its user-agent string. Better to do so than to be arbitrarily shut out of a site
that would almost certainly work in your browser.

Finally, though, the problem with browser sniffing is arguably one of coding philoso-
phy: is it the right question to ask? Quite often we need to distinguish between browsers
because of their varying levels of support for certain features. The real question, then, is
“Do you support feature X?” instead of “Which browser are you?”

This debate is oddly complex. It’s important because we need to assess what a user’s
browser is capable of. But before we go further, we ought to make a distinction between
capabilities and quirks.

Capabilities Support

Capabilities are things that some browsers support and others don’t. DOM Level 2 Events
is a capability; Firefox supports it, but Internet Explorer does not (as of version 7). DOM
Level 3 XPath is a capability; Safari 3 supports it, but Safari 2 does not.

Other capabilities are supported by all modern browsers, so we take them for granted.
All modern browsers support document.getElementById (part of DOM Level 1 Core), but
once upon a time this wasn’t true. Nowadays only the most paranoid of DOM scripters
tests for this function before using it.

Capabilities are not specific to browsers. They’re nearly always supported by specifi-
cations (from the W3C or the WHATWG, for instance) and will presumably be supported
by all browsers eventually.

To write code that relies on capabilities, then, you ought to be singularly concerned
with the features a browser claims to support, not the browser’s name. Since functions
are objects in JavaScript, we can test for their presence in a conditional:

// document.evaluate is an XPath function

if (document.evaluate) {

// fetch something via XPath

} else {

// fetch something the slower, more compatible way

}

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM306

Here we’re testing whether the document.evaluate function exists. If so, the condi-
tional evaluates to true, and we reap the benefits of lightning-fast DOM traversal. If not,
the conditional evaluates to false, and we reluctantly traverse the DOM using slower
methods.

Testing for capabilities makes our code future-proof. If a future version of Internet
Explorer supports XPath, we don’t have to change our detection code, because we’re test-
ing for the feature, not the browser.

Therefore, it’s a far better idea to test for capabilities than to infer them based on the
name of a browser. It’s not the meaningless distinction of a pedant. Code written with a
capability-based mindset will be hardier and of a higher quality.

Quirks and Other Non-Features

There’s a dark side, though. JavaScript developers also have to deal with quirks. A quirk is
a polite term for a bug—an unintended deviation from the standard behavior. Internet
Explorer’s aforementioned memory leaks are a quirk. Internet Explorer 6, a browser that
many web users still run today, has been around since 2001, enough time to find all sorts
of bizarre bugs in rendering and scripting.

To be clear, though, all browsers have quirks (some more than others, to be sure). But
quirks are different from capabilities. They’re nearly always specific to one browser; two
different browsers won’t have the same bugs.

I wish I could present some sort of uniform strategy for dealing with quirks, but
they’re too varied to gather in one place. Let’s look at a few examples.

Quirk Example 1: Internet Explorer and Comment Nodes

The DOM specs treat HTML/XML comment nodes (<!-- like these -->) differently
from, say, element nodes. Comments have their own node type, just like text nodes or
attribute nodes.

In Internet Explorer, comment nodes are treated as element nodes with a
tag name of !. They report a nodeType of 1, just like an element would. Calling
document.getElementsByTagName('*') will, alongside the element nodes you’d expect,
return any comments you’ve declared in the body.

This is incorrect, to put it mildly. More vividly, it’s the sort of bug that would make
a developer embed her keyboard into her own forehead if she weren’t aware of it and
had encountered it on her own.

So how do we work around quirks? It depends. One strategy is to treat them just
like capabilities—see if you can reproduce the bug, and then set some sort of flag if
you can:

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 307

var thinksCommentsAreElements = false;

if (document.createElement('!').nodeType === 1) {

thinksCommentsAreElements = true;

}

Once you’ve set this flag, you can use it inside your own functions to give extra logic
to Internet Explorer.

This approach has the same upsides of capability detection: instead of blindly
assuming that all versions of Internet Explorer exhibit this quirk, we find out for sure.
If Internet Explorer 8 fixes this bug, it avoids the workaround altogether.

Quirk Example 2: Firefox and Ajax

Versions of Firefox prior to 1.5 exhibit a behavior that can throw a wrench into the
Ajax gears. An affected browser will, in an Ajax context, sometimes give the wrong
Content-Length of an HTTP POST body—thereby flummoxing servers that find a line
feed after the request was supposed to have ended.

The workaround is simple enough: force a Connection: close header so that the
server knows not to keep listening (in other words, tell the server that the line feed
can be ignored). But figuring out when the workaround is needed turns out to be
very, very ugly.

Here are a few lines from the Prototype source code. We’ve dealt with this bug so
that you won’t have to, but here’s the workaround:

/* Force "Connection: close" for older Mozilla browsers to work

* around a bug where XMLHttpRequest sends an incorrect

* Content-length header. See Mozilla Bugzilla #246651.

*/

if (this.transport.overrideMimeType &&

(navigator.userAgent.match(/Gecko\/(\d{4})/) ||

[0,2005])[1] < 2005)

headers['Connection'] = 'close';

I hate to bring this code out for exhibition. It’s like bringing your angst-ridden
teenage poetry to a first date. But unlike the melodramatic sonnets you wrote after your
junior prom, this code is quite purposeful.

We can’t treat this quirk like a capability because we can’t test for it. To test for it, we’d
need to send out an Ajax request while the script initializes. Likewise, we can’t apply the
workaround to all browsers, because we’d interfere with use cases where the connection
should not be closed (like HTTP keep-alive connections).

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM308

So we must search the browser’s user-agent string to see whether it uses the affected
engine—then we must look at the release year of the engine to figure out whether it’s old
enough to be affected.

Of course, Prototype fixes this so that you, as a developer, need not worry about it.
And the quirks you’ll encounter probably won’t be so tenacious. But eventually, if you
write enough code, you’ll need to do some occasional browser sniffing. Do it, apologize
to yourself, and move on.

If it makes you queasy, good! It should make you queasy. That’ll stop you from using
it more often than you ought to. And the fact that you’re ashamed of your old poetry sim-
ply affirms the sophistication of your adult tastes.

If You Must . . .

So if you’ve got no other options . . . yes, it’s OK to sniff. But you’ve got to do it right.
Perform the following steps or else suffer the wrath of the browser gods.

Get a Second Opinion

First, assuage your guilt. Find a friend or coworker—across the hall, on Instant Messen-
ger, in IRC—and summarize your dilemma. Often your consultant will suggest an
approach you hadn’t thought of. But if he can’t think of a better way, you’ll feel more
secure in your decision.

Take Notes

Write a comment that explains the problem and why you’ve got to sniff. Put it as close as
possible to the offending line of code. Be verbose. This is for your own benefit: six months
from now you won’t remember why you wrote that code the way you did, so think of it as
a message to Future You.

Walk a Straight Code Path

Most importantly, write code without unnecessary kinks and contortions. If Internet
Explorer needs one thing, but all other browsers need another, write your function to
handle the other browsers. If one approach uses the DOM standard and the other uses
a proprietary Internet Explorer method, write your function to use the DOM standard—
then, at the beginning of the function, send Internet Explorer into a different function
to handle the weird case.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 309

The purpose is to avoid the “black holes” that come from excessive sniffing. Consider
this code:

function handleFoo() {

if (navigator.userAgent.match(/Gecko\//))

return handleFoo_Firefox();

if (navigator.userAgent.match(/MSIE/))

return handleFoo_MSIE();

}

Safari, Opera, OmniWeb, iCab, and browsers far off the beaten path will fall straight
through this function—because your code never “caught” them. Again, you’re not con-
cerned with what the browser is; you’re concerned with what it says it can do. You can’t
possibly test in every browser on earth, so embrace standards as a compromise: if a
browser follows web standards, it ought to be able to read your code, even if you didn’t
code with it in mind.

Holding Up Your End of the Bargain

Even though I’m giving you permission to write “dirty” code once in a while, I mean to
open only the tiniest of loopholes. The early days of JavaScript taught us that bad things
happen when developers abuse user-agent sniffing. I’d recommend against it altogether
if it weren’t for the handful of edge cases that require sniffing.

In other words, when we as developers sniff unnecessarily, it’s our fault. When we
discover situations in which sniffing is the only option, it’s the browser maker’s fault. So
think of developing with web standards as a social contract between developers and
vendors: do your part, and we’ll do ours. Make your scripting environment behave pre-
dictably and rationally, and we won’t need to take drastic steps to code around bugs.

Making and Sharing a Library
Written something useful? Something you think would be valuable to others? All the
major JavaScript toolkits have an ecosystem of plug-ins and add-ons. If you’ve created
a script that makes your life easier, there’s a good chance it will make someone else’s life
easier, too.

Maybe you’ve done something big, like a really cool UI widget or client-side charting.
Maybe it’s big enough to warrant a Google Code project and a release schedule. Or maybe
you’ve written a way to do simple input validation in 30 lines of code and just want to put
it on the Web, as is, so that others can learn from it.

Here are some best practices for releasing your add-on. Most of them relate to the
difficulty of writing code that satisfies both your needs and the needs of the public.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM310

Make Your Code Abstract

The hardest thing about turning your code into public code is handling abstraction.
When you first wrote it, you might have embraced the conventions of your own circum-
stances in order to simplify things; now you’ve got to go back and handle scenarios you
didn’t foresee.

Do One Thing Well (or Else Go Modular)

Don’t try to be a Swiss Army knife. Code that does one thing well is easier to understand,
easier to set up, and faster for the end user to download. It’s one thing to write a 5 KB
script that depends on Prototype; it’s another thing to write 80 KB of JavaScript that
depends on Prototype, most of which John Q. Developer won’t even need.

I should clarify: it’s fine to do many things well, as long as those things are not
interdependent. If your script does three unrelated things, break it up into three unre-
lated scripts. Bundle them together if you like, but don’t require all three unless you’ve
got a very good reason. Notice that script.aculo.us is modular: you don’t have to load all
the UI stuff if the effects are all you want.

Embrace Convention

With apologies to Jakob Nielsen, a developer will spend far more time working with
other people’s code than with your code. Each major framework has a distinct coding
style that can be seen in the structure of its API, the order of arguments, and even its
code formatting. (Spaces, not tabs! No—tabs, not spaces!)

Follow those conventions! Make your add-on feel like a part of Prototype. Design
your classes to take an options argument. Embrace the patterns, coding style, and lexi-
con. Nobody reads the documentation (at least not at first), so even the smallest details
of code writing can help a person intuit how to use your code.

Make Things Configurable

All of the classes in Prototype and script.aculo.us share a powerful design principle:
they’re able to be exhaustively configurable and dead-simple to use at the same time.

Is there anything about your code that someone might need to tailor to his needs?
Does your widget set a background color? Make it a configurable option. Does your date
picker control support arbitrary date formats (like DD/MM/YYYY, which is the most
common format outside of North America)? If not, write it now; someone will ask for that
feature. Does your widget fade out over a span of 0.5 seconds? Someone will argue pas-
sionately for it to be 1 second instead.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 311

That takes care of the “exhaustively configurable” part. To make your add-on dead-
simple to use, take care to hide this complexity below the surface until it’s needed. Make
as many options as you like, but give an intelligent default for each one.

Make sure the options argument can be omitted together. They’re called options
because they’re optional; if a particular parameter can’t have a default and can’t be omit-
ted, move it out of the options object and into a positional argument.

Add Hooks

Often your add-on will be an almost-but-not-quite-perfect solution to someone’s prob-
lem. “If only the tooltips stayed in the DOM tree after they fade out!” “This would be
perfect if the widget could follow my cursor around.”

These requests are usually too complex or obscure than can be solved with extra
configuration, but they’re important nonetheless. Don’t bring your fellow developer
95 percent of the way to his destination, and then leave him stranded in the mysterious
town of Doesn’t-Quite-Do-What-I-Want. Give him the tools to travel that final 5 percent
on his own.

There are two prevailing ways to empower the user to make those tweaks: callbacks
and custom events.

We’ve seen callbacks before in nearly all the script.aculo.us controls. They’re func-
tions the user can define that will get called at a certain point in the control’s operation.
They can be called at certain points in your add-on’s life cycle.

For instance, we can leverage the Configurable mixin we wrote earlier to set up
default callbacks that are “empty,” letting the user override them if necessary:

var Widget = Class.create(Configurable, {

initialize: function(element, options) {

this.element = $(element);

this.setOptions(options);

this.options.onCreate();

}

});

Widget.DEFAULT_OPTIONS = {

onCreate: Prototype.emptyFunction

};

// using the callback

var someWidget = new Widget('some_element', {

onCreate: function() { console.log('creating widget'); }

});

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM312

Notice the reference to Prototype.emptyFunction: it’s a function that does nothing.
Instead of checking whether the onCreate option exists, we include it in the default
options; this way, whether the user specifies it or not, the onCreate property refers to
a function.

Custom events are a way to approach this problem from a different angle. Imagine
a tooltip:hidden event that a developer can listen for in order to apply her own logic for
dealing with hidden tooltips. Firing a custom event is a lot like invoking a callback:

var Widget = Class.create({

initialize: function(element, options) {

this.element = $(element);

// fire an event and pass this instance as a property of

// the event object

this.element.fire("widget:created", { widget: this });

}

});

// using the custom event

$('some_element').observe('widget:created', function() {

console.log("widget created");

});

// or observe document-wide:

document.observe("widget:created", function() {

console.log("widget created");

});

var someWidget = new Widget('some_element');

They’re a little more work to set up, but they’re also more robust. Notice that we can
listen for the event on the element itself or on any one of its parent nodes, all the way up
to document. Callbacks don’t provide that kind of flexibility, nor do they allow you to easily
attach more than one listener.

Whichever way you go, be sure to document your hooks. They won’t get used if
nobody knows they exist. Be clear about when the hook fires and what information
accompanies it—parameters passed to the callback or properties attached to the event
object.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM 313

Summary
In this chapter, we explored a number of ways to turn code that’s useful to you into code
that’s useful to others as well. Conciseness, modularity, documentation, and extensibility
are the only things separating the scripts you write from libraries like Prototype and
script.aculo.us.

Have you got an idea for a script? A UI control, a clever use of Ajax, or even a way to
automate a repetitive task? Write it! Get your code out into the wild! Focusing on the pol-
ish needed to write scripts for the public will make you a better developer.

CHAPTER 13 ■ PROTOTYPE AS A PLATFORM314

■Special characters
$ function, 18–21, 136

DOM nodes, 20–21
multiple arguments, 19–20
strings and nodes, 19

$ string, 19
$$ function, 26–28
$$('a[rel]') selector, 28
$$('a[rel~=external]) selector, 28
$$('li.current + li') selector, 28
$$('li.current li') selector, 28
$$('ul#menu a:not([rel])') selector, 28
$$('ul#menu li:not(.current)') selector, 28
$_REQUEST global variable, 63
$A array, 46
$A function, 24–25
$break exception, 47
$break object, 34
$H shortcut, 43
$('input[type="text"]') selector, 28
$super method, 146
$time value, 84

■Numerics
0px property, 217
50px property, 217
80 percent rule, 11

■A
a element, 18, 28
absolute mode, 228
absolute positioning, 200–201
abstract code, 311
action attribute, 98
addClassName method, 117–119
addMethods method, 148
addObservers function, 102, 105
administration section, 288

advanced enumeration, 38–40
Enumerable#inject method, 38–39
Enumerable#invoke method, 40
Enumerable#map method, 38–39
Enumerable#pluck method, 40

after value, 59
afterFinish parameter, 241
afterSetup parameter, 241
afterStart parameter, 241
afterUpdate parameter, 241
afterUpdateElement element, 286
Ajax, 49–89

Ajax object, 50–62
dynamic content, 62–74, 89
and Firefox, 308–309
overview, 49
pros and cons of, 49–50

Ajax Autocompleter, 283–285
Ajax classes, 297
Ajax.Autocompleter class, 279, 283
ajax.html file, 57, 59
Ajax.InPlaceEditor, 288–293

options and features, 292–293
overview, 288–290
styling, 291–292

ajax.js file, 50
Ajax.PeriodicalUpdater, 60, 297
Ajax.Request, 52–56, 297
Ajax.Updater, 56–59, 69, 297
alert dialog, 101, 241
alert function, 7
ancestor nodes, 114
ancestors method, 132
anchor, 195
anonymous function, 8, 92
application/json content type, 88
application/json MIME type, 110
application/x-javascript file, 53
arbitrary properties, 6–7

Index

315

arguments, multiple, $ function, 19–20
arguments variable, 24, 25
Array data type, 5
Array object, 33
Array#clear method, 188
Array#reverse method, 188
Array#sort method, 37
Array#uniq method, 189
Array#without method, 189
Array.prototype, 6
arrays, 8, 188–189
associative array, 41
asynchronous communication, 49
autocomplete_players.php file, 284
Autocompleter class, 278
Autocompleter.Local, 279–283
autocompleters, 277–286

overview, 277
using, 278–286

Ajax Autocompleter, 283–285
Autocompleter.Local, 279–283
options and features, 285–286
overview, 278–279

when to use, 277–278
axis option, 296

■B
base classes, 143–144
before value, 59
beforeFinish parameter, 241
beforeSetup parameter, 241
beforeStart parameter, 241
beforeUpdate parameter, 241
big-box class name, 226
blank data type, 4
blank method, 176
block property, 194
block-level elements, visualizing with, 194
blocks, formatting with inline elements,

195–196
blur handler, 104
body tag, 267
border box, 198
border property, 198
borders, 196–198
bottom property, 203
bottom value, 59

box score page, 76
break keyword, 34
breakfast log example, 62–73

client side, 64–67
error handling, 67–73
overview, 62–63
server side, 63–64

breakfast.js file, 102
breakfast.php file, 63, 68
breakfast.php script, 67, 95
breakpoint, 98
browsers

compatibility problems, 305–310
capabilities support, 306–307
overview, 305–306
quirks, 307–309
sniffing, 309–310

history of, 91–94
bucket element, 58–59
bugs, 8, 209, 307
builder.js file, 210, 212

■C
callbacks, 241–242, 265–269, 296, 312–313
camelize method, 174–175
cancelLink parameter, 292
cancelText parameter, 292
capabilities support, 306–307
capitalize method, 175
Cascading Style Sheets. See CSS
children nodes, 114
class attribute, 118, 127
class name, 118
Class object, 143
Class#addMethods method, 148, 298
Class.create class, 298
Class.create method, 143–144, 304
classes, 142–148

base classes, 143–144
monkeypatching, 148
overview, 142–143
subclasses, 145–147

className property, 118
clear method, 188–189
clearTimeout function, 161
clientHeight property, 198
client-side validation, 102–106

■INDEX316

clientWidth property, 198
code formatting, 311
code patterns, 297–305

inheritance and mixins, 297–305
keeping track of instances, 302–305
overview, 297–299
setting default options, 299–301

overview, 297
collapsed state, 117
collections, 31–48

advanced enumeration, 38–40
Enumerable#inject method, 38–39
Enumerable#invoke method, 40
Enumerable#map method, 38–39
Enumerable#pluck method, 40

enumerable methods, 34–36
Enumerable#detect method, 35
Enumerable#each method, 34–35
Enumerable#partition method, 36
Enumerable#reject method, 36
Enumerable#select method, 36
source code, 46–48

functional programming, 32–33
hash construct, 41–45

enumerable methods on, 44–45
key safety, 41–42
Object.prototype, 42–44

for loop, 31–32
ObjectRange class, 45–46
overview, 31
sorting, 36–38
turning into arrays, 46

cols parameter, 293
combination effects, 220, 236–240

Effect.BlindUp and Effect.BlindDown,
238–239

Effect.Fade and Effect.Appear, 237–238
Effect.SlideUp and Effect.SlideDown,

239–240
overview, 236–237

comment nodes, and Internet Explorer,
307–308

computeTotalForTable function, 136
configurability, 311–312
Configurable method, 300
Configurable mixin, 301, 312
Connection: close header, 308

console.log function, 7, 157
constraint option, 262
constructor property, 300, 303
containment option, 273
content box, 198
Content-Length header, 308
Content-type header, 87
continue keyword, 34
contributing to script.aculo.us, 209
controls.js file, 210, 212
conventions, 311
core effects, 220
CSS box model, 193–208

CSS positioning, 199–207
absolute positioning, 200–201
offset parents and positioning

context, 205–207
with offset properties, 208
overview, 199
relative positioning, 203–204
static positioning, 199
z-index property, 202–203

DHTML properties, 198–199
formatting blocks with inline elements,

195–196
margins, padding, and borders, 196–198
overview, 193–194
visualizing with block-level elements,

194
CSS selector string, 131
currentFrame parameter, 242
currying, 159
custom events, 108–111, 312–313

broadcasting scores, 109–110
listening for scores, 110–111
overview, 108–109

■D
dasherize method, 174–175
data types

inheritance, 4–5
instance methods, 4

Date type, 182
debugger keyword, 240
decay parameter, 61–62
default action, 98
DEFAULT_OPTIONS property, 300–301

■INDEX 317

defer function, 163
descendants method, 132
descendants node, 114
destination argument, 22
destroy method, 304
developer control, 277
DHTML, 193. See also CSS box model
dictionary, 41
disabled attribute, 127
display property, 194, 196
div container, 65
div element, 135, 280
document argument, 313
document element, 129
document object, 110
Document Object Model. See DOM
documentation, 208
document.createTextNode element, 134
document.evaluate function, 307
document.fire function, 110
document.getElementById method, 18,

187, 306
document.getElementsByTagName('* ')

method, 307
DOM API

nodes, 113–115
overview, 113

DOM behavior pattern, 148–158
overview, 148–150
refactoring, 150–153
reuse, 158
testing, 154–157

DOM extensions, 115–137
node creation, 132–135
node modification, 115–128

addClassName method, 117–119
getStyle method, 119–120
hasClassName method, 117–119
hide method, 115–117
insert method, 120–125
readAttribute method, 126–127
remove method, 120–125
removeClassName method, 117–119
replace method, 120–123
setStyle method, 119–120
show method, 115–117
toggle method, 115–117

toggleClassName method, 117–119
update method, 120–122
visible method, 115–117
writeAttribute method, 126–128

traversal and collection, 128–132
ancestors method, 132
descendants method, 132
down method, 129–131
immediateDescendants method, 132
navigating nodes, 128–129
next method, 129–131
nextSiblings method, 132
previous method, 129–130
previousSiblings method, 132
select method, 131
siblings method, 132
up method, 129–131

DOM NodeLists, 25
DOM nodes, 20–21
DOM scripting, 92, 101
dom:loaded event, 109, 250
doSomethingCostly method, 163
down method, 129–131
dragdrop.js file, 210, 212
Draggable object, 257
draggables, 257–263

constraint option, 262
ghosting option, 262–263
making, 260–261
overview, 257–259
start, end, and revert effects, 263
zindex option, 263

drop-down menu, 277
droppables, 264–270

callbacks, 265–269
making, 264–265
overview, 264

Droppables object, 257
Droppables.add argument, 270
Droppables.add method, 264
duration argument, 222
dynamic content, Ajax, 62–74, 89

■E
each function, 34
each loop, 35
each method, 33

■INDEX318

_each method, 47
edit mode, 288
editor_field class, 291
effect callbacks, 241
effect queues, 241
Effect.Appear, 237–238
Effect.Base class, 242, 297
Effect.BlindDown, 238–239
Effect.BlindUp, 238–239
Effect.Fade, 237–238
Effect.Highlight, 233–234, 253, 290
Effect.Morph, 221–226

function of, 222–223
morphing in parallel, 224–226
overview, 221–222

Effect.Move, 228
effects, script.aculo.us, 215–255

adding styles, 247–248
asynchronous, 240–244

callbacks, 241–242
overview, 240–241
queues, 243–244

basics of, 217–220
bringing in help, 248–249
combination effects, 236–240

Effect.BlindUp and
Effect.BlindDown, 238–239

Effect.Fade and Effect.Appear,
237–238

Effect.SlideUp and Effect.SlideDown,
239–240

overview, 236–237
defined, 215
Effect.Highlight, 233–234
Effect.Morph, 221–226

function of, 222–223
morphing in parallel, 224–226
overview, 221–222

Effect.Move, 228
Effect.Scale, 230–233
Effect.ScrollTo, 235
overview, 215–220
reasons for use of, 215–216
writing markup, 244–247

Effect.Scale, 230–233
Effect.ScrollTo, 235
effects.js file, 210, 212

Effect.SlideDown, 239–240
Effect.SlideUp, 239–240
Element constructor, 132, 135
Element object, 21
Element#addClassName class, 226
Element#addClassName method, 118
Element#down element, 134
Element#getStyle method, 119
Element#hide control element, 115
Element#identify method, 303
Element#insert method, 124, 133, 170
Element#morph class, 222
Element#readAttribute method, 126, 186
Element#remove method, 125
Element#removeClassName method, 118
Element#replace method, 123
Element#scrollTo function, 235
Element#select class, 152
Element#select method, 136
Element#setStyle class, 221–222, 226
Element#setStyle method, 119, 128, 175
Element#show control element, 115
Element#toggle method, 116
Element#update method, 122, 134, 136,

170
Element#wrap method, 135
Element#writeAttribute method, 126, 134
Element.extend method, 134
Element.extend object, 21
Element.getStyle property, 199
Element.remove object, 19
element.style attribute, 268
empty method, 176
empty text boxes, 107
end effect, 263
end value, 244
endcolor parameter, 234
endsWith method, 176
enhancements, 209
enumerable methods, 34–36, 43, 298

Enumerable#detect method, 35
Enumerable#each method, 34–35
Enumerable#inject method, 38–39
Enumerable#invoke method, 40
Enumerable#map method, 38–39
Enumerable#max method, 37
Enumerable#min method, 37

■INDEX 319

Enumerable#partition method, 36
Enumerable#pluck method, 40
Enumerable#reject method, 36
Enumerable#select method, 36
Enumerable#sortBy method, 37–38
on hash construct, 44–45
source code, 46–48

error handling, 67–73
escapeHTML method, 170–174
eval function, 182
event argument, 99
Event handlers, 92
event object, 93
Event#element method, 104
Event#preventDefault, 99–101
Event#stop, 99–101
Event#stopPropagation, 99–101
event-driven architecture, 108
Event.observe event, 111
event.preventDefault call, 103
events, 91–111

browsers, 91–94
custom, 108–111
Event#preventDefault, 99–101
Event#stop, 99–101
Event#stopPropagation, 99–101
and forms, 102–108
overview, 91–98

expanded state, 117
exponential decay, 62

■F
fantasy football example, 74–89

Ajax call, 87–89
broadcasting scores, 109–110
code, 80–86
data, 78–80
league, 75–76
listening for scores, 110–111
mocking, 78
overview, 74–75
scoring, 76
stats, 76–77
testing, 86

finishOn option, 242
Firebug, 9, 14

Firebug console, 146
Firefox browser, 9, 308–309
flexible syntax, 8
Foo class, 299–300
food_type parameter, 68
food_type text box, 105
Foo.DEFAULT_OPTIONS property, 300
_fooInstance property, 302
footer cell, 156
for attribute, 127
for loops, 31–32, 34, 47
for.in loop, 24, 42
form element, 107
form parent node, 291
formatting blocks with inline elements,

195–196
Form.getInputs method, 107
forms, and events, 102–108
frequency option, 286
frequency parameter, 60
from method, 33
front option, 244
function literals, 8
function operator, 185
Function#bind, 164–165
Function#curry class, 159–161, 163
Function#defer, 161–163
Function#delay class, 161–163, 219
functional programming, 32–33
functions, 7–8

■G
game.html file, 244, 247–248
GET method, 62
getAttribute method, 126–127
getStyle method, 119–120
ghosting option, draggables, 262–263
gsub method, 167–169

■H
h2s, 61
handle element, 293
handle option, 260
hasClassName method, 117–119

■INDEX320

hash construct, 41–45
enumerable methods on, 44–45
key safety, 41–42
Object.prototype, 42–44

Hash constructor, 43
Hash object, 43
Hash#get method, 43
Hash#set method, 43
Hash#update method, 43
header cell, 156
header function, 88
height property, 196
hide method, 115–117
href attribute, 126
HTML files, 62
HTMLElement object, 20
HTTP library, 49

■I
id attribute, 18
idempotent methods, 116
if statement, 187
immediateDescendants method, 132
import gzip function, 12
include instance method, 45
include method, 176
increment option, 296
incrementBox function, 219
inheritance, 297–305

data types, 4–5
keeping track of instances, 302–305
overview, 297–299
setting default options, 299–301

initialize methods, 146, 260, 299
inject method, 38–39
inline elements, formatting blocks with,

195–196
inline property, 196
innerHTML property, 121
in-place editors, 287–293

Ajax.InPlaceEditor, 288–293
options and features, 292–293
overview, 288–290
styling, 291–292

overview, 287–288
inplaceeditor.html page, 288

input element, 107, 291
input tag, 127
inputElement element, 279
insert method, 120–125
insertion parameter, 60
insertion property, 59
instance methods, 4, 33, 167
instances, keeping track of, 302–305
instances property, 303
Internet Explorer, and comment nodes,

307–308
invalid text box, 104
invoke method, 40
iterator argument, 33

■J
JavaScript, 3–8, 139–165

functional programming, 158–165
Function#bind, 164–165
Function#curry, 159–161
Function#defer, 161–163
Function#delay, 161–163
methods, 159
overview, 158

multiplatform, 8–9
objects, 4–8

arbitrary properties, 6–7
data types, 4–5
functions, 7–8
overview, 4
prototypes, 5–6

OOP, 139–158
brevity, 141
classes, 142–148
cleanliness, 140
DOM behavior pattern, 148–158
encapsulation, 140
information-hiding, 140
namespacing, 141–142
overview, 139–140

overview, 3, 139
JavaScript Object Notation (JSON),

180–184
libraries, 80, 181
overriding default serialization, 183–184
overview, 180

■INDEX 321

reasons to use, 181
serializing with Object.toJSON, 181–182
unserializing with String#evalJSON,

182–183
what looks like, 180–181

join method, 25
JSON. See JavaScript Object Notation
json_encode function, 78

■K
key property, 45
key safety, 41–42

■L
label element, 127
lambda() function, 7
left CSS property, 215
left property, 217, 268
left/right control, 203
length property, 24, 31
li elements, 18, 259
lib folder, 210
libcurl bindings, 49
libraries, 310–313

abstract code, 311
callbacks, 312–313
configurability, 311–312
conventions, 311
custom events, 312–313
modularity, 311
overview, 310

line break, 196
literal value, 127
load event, 98, 109
loading script.aculo.us on page, 210–212
Log Your Breakfast heading, 101

■M
makeTextRed function, 33
map method, 38
margin box, 198
margin property, 198
margins, 196–198
markup, script.aculo.us effects, 244–247
match argument, 169
Matsumoto, Yukihiro, 10
max method, 36

memo property, 110
memo variable, 39
method chaining, 123
method option, 53
method parameter, 65
methods, 159
min method, 36
minChars option, 286
MIT License, 11, 208
mixins, 297–305

keeping track of instances, 302–305
overview, 297–299
setting default options, 299–301

mode parameter, 228
modularity, 311
monkeypatching, 148
morph call, 226
mousedown event, 257
mousemove event, 257
mouseover events, 264
mouseup event, 257

■N
namespacing, 141–142
native drop-down menu, 281
navigating nodes, 128–129
navigator.userAgent method, 305
nested arrays, 79
Net::HTTP class, 49
new content, 216
new Hash method, 43
new keyword, 53, 142
new ObjectRange method, 45
next method, 129–131
nextSibling property, 130
nextSiblings method, 132
nodes

$ function, 19
creation of, 132–135
modification of, 115–128

addClassName method, 117–119
getStyle method, 119–120
hasClassName method, 117–119
hide method, 115–117
insert method, 120–125
readAttribute method, 126–127
remove method, 120–125

■INDEX322

removeClassName method, 117–119
replace method, 120–123
setStyle method, 119–120
show method, 115–117
toggle method, 115–117
toggleClassName method, 117–119
update method, 120–122
visible method, 115–117
writeAttribute method, 126–128

navigating, 128–129
traversal and collection of, 128–132

ancestors method, 132
select method, 131
siblings method, 132
up method, 129–131

noun:verbed naming scheme, 110
null value, 186
numeric index, 131

■O
Object data type, 4
Object methods, 184–188

overview, 184
type sniffing with Object.isX, 184–188

Object.isArray, Object.isHash,
Object.isElement methods, 186

Object.isString, Object.isNumber,
Object.isFunction methods, 185

Object.isUndefined method, 186
overview, 184–185
using type-checking methods in your

own functions, 187–188
object orientation, 4
Object.extend class, 21–24, 299
Object.isArray method, 186
Object.isElement method, 186
Object.isFunction method, 185
Object.isHash method, 186
Object.isNumber method, 185
Object.isString method, 185
Object.isUndefined method, 186
Object.isX, 184–188

Object.isArray, Object.isHash,
Object.isElement methods, 186

Object.isString, Object.isNumber,
Object.isFunction methods, 185

Object.isUndefined method, 186
overview, 184–185
using type-checking methods in your

own functions, 187–188
object-oriented programming (OOP),

139–158
brevity, 141
classes, 142–148

base classes, 143–144
monkeypatching, 148
overview, 142–143
subclasses, 145–147

cleanliness, 140
DOM behavior pattern, 148–158

overview, 148–150
refactoring, 150–153
reuse, 158
testing, 154–157

encapsulation, 140
information-hiding, 140
namespacing, 141–142
overview, 139–140

Object.prototype, 42–44
ObjectRange class, 45–46
objects, 4–8, 142

arbitrary properties, 6–7
data types, 4–5
functions, 7–8
overview, 4
prototypes, 5–6

Object.toJSON, 181–182
observe method, 96, 105
offset parents, 205–208
offsetHeight property, 198–199, 208
offsetLeft property, 208
offsetParent property, 208
offsetTop property, 208
offsetWidth property, 198–199, 208
okButton parameter, 292
okText parameter, 292
onChange callback, 296
onComplete option, 54
onDrop callback, 265, 267
onFailure option, 55
onHide option, 286
onHover callback, 265

■INDEX 323

only option, sortables, 273
onShow option, 286
onSlide callback, 296
onSuccess option, 54
onTextBoxBlur function, 107–108
OOP. See object-oriented programming
Opera browser, 9
options argument, 53, 150, 241, 265, 293,

311
options element, 288
options hash, 58, 69
options method, 279
options object, 54, 60–61
options property, 242
overflow property, 274
overlap option, sortables, 273

■P
p tag, 114
padding, 196–198
page refresh, 77
pair object, 45
parallel option, 244
parent element, 193
parent nodes, 114
parentNode property, 129
Partial application, 159
Player class, 81, 143, 183
Player#initialize method, 146
pluck method, 40
position property, 179, 199, 207, 268
position value, 207
positioning context, 205
positioning, CSS, 199–207

absolute positioning, 200–201
offset parents and positioning context,

205–207
with offset properties, 208
overview, 199
relative positioning, 203–204
static positioning, 199
z-index property, 202–203

POST method, 62
postBreakfastLogEntry function, 93
preventDefault method, 100
previous method, 129–131

previousSiblings method, 132
principle of least surprise, 10
private interface, 140
properties, DHTML, 198–199
Prototype, 10–29

$ function, 18–21
DOM nodes, 20–21
multiple arguments, 19–20
strings and nodes, 19

$$ function, 26–28
$A function, 24–25
Ajax object, 50–62
contributing to, 11–12
creating pages, 12
downloading, 12–13
Object.extend, 21–24
overview, 10, 17–18
philosophy of, 10–11
purpose of, 11
scope of, 11
script tag, 13–14
similarities to script.aculo.us, 208–209
testing, 14–16
web site, 11

Prototype object, 15
prototype property, 5, 20, 142
Prototype.emptyFunction function, 313
prototype.js file, 13–14, 51, 87, 210–212,

244
prototype.js script, 12
prototypes, 5–6
public code, 311
public interface, 140

■Q
Quarterback#initialize method, 146
Quarterback#toTemplateReplacements

method, 179
queues, 243–244
quirks, 8, 307–309

Firefox and Ajax, 308–309
Internet Explorer and comment nodes,

307–308
overview, 307

quotation marks, 92

■INDEX324

■R
range option, 296
read mode, 288
readAttribute method, 126–127
README file, 11
RegExp#exec method, 168
register method, 303–304
regular expressions, 8
rel attribute, 18, 28
relative positioning, 203–204
relative property, 207, 268
remove method, 120–125
removeChild method, 125
removeClassName method, 117–119
replace instance method, 140
replace method, 120–123
request headers, 87
request.responseText, 87
response headers, 87
responseJSON property, 89, 110
responseText property, 89
responseXML object, 56
responseXML property, 89
restorecolor parameter, 234
retotal method, 164
reverse method, 188–189
revert effect, draggables, 263
revert option, 263
right property, 203
rows parameter, 293
Rube Goldberg machines, 91
Ruby, 10
Ruby on Rails, 208
Ruby on Rails Subversion repository, 12

■S
Safari, 9
save.php script, 290
savingText parameter, 293
scaleContent property, 232
scaleFrom property, 232
scaleFromCenter property, 232
scan method, 167–169
score_broadcaster.js file, 109, 248–249
ScoreBroadcaster object, 110

ScoreBroadcaster.setup object, 110
scores.php file, 84, 86, 248
score:updated event, 111, 250
script block, 249, 267
script elements, 122, 155
Script tab, 97
script tag, 13–14, 51, 129, 210, 244
script.aculo.us

contributing to, 209
loading on page, 210–212
overview, 208–210
similarities to Prototype, 208–209
web site, 209

scriptaculous.js file, 210–212, 244
Scripts, 140–141
scroll option, sortables, 273–274
scroll parameter, 273
select element, 278
select method, 131
selector option, 250
Self-documenting code, 11
serializer, 180
server side, breakfast log example, 63–64
setAttribute method, 126
setInterval method, 304
setStyle method, 119–120
setTimeout function, 161, 304
setTimeout property, 240
show method, 115–117
show motion, 216
siblings method, 132
sleep statement, 218, 240
slider.js file, 210, 212
sliders, creating, 293–296

callbacks, 296
options, 295–296
overview, 293–295

sniffing, browser, 309–310
Sortable object, 257
Sortable.create argument, 270, 272, 274
sortables, 270–274

containment option, 273
making, 270–272
only option, 273
overlap option, 273
overview, 270

■INDEX 325

scroll option, 273–274
tag option, 272

sortBy method, 36
sorting collections, 36–38

Enumerable#max method, 37
Enumerable#min method, 37
Enumerable#sortBy method, 37–38

sound.js file, 210, 212
source argument, 22
source object, 23
SpiderMonkey, 9
src folder, 210
start effect, draggables, 263
start method, 61
startcolor parameter, 234
starteffect parameter, 263
startOn option, 242
static classes, 148
static methods, 33
static positioning, 199
static property, 199, 207, 268
stats method, 81
Stephenson, Sam, 11
stop method, 61, 100
stopPropagation method, 100
string methods, 167–180, 184

overview, 167
string utility methods, 167–176

camelize, underscore, and dasherize
methods, 174–175

capitalize and truncate methods, 175
gsub, sub, and scan methods,

167–169
include, startsWith, endsWith, empty,

and blank methods, 176
overview, 167
strip method, 169–170
stripTags, escapeHTML, and

unescapeHTML methods, 170–174
Template class and string interpolation,

176–180
advanced replacement, 178–179
bringing it back to String#gsub, 179
overview, 176–177
using Template class, 177

String object, 20
String#blank method, 176
String#camelize method, 175
String#capitalize method, 175
String#empty method, 176
String#endsWith method, 176
String#escapeHTML method, 173
String#evalJSON, 182–183
String#gsub, 179
String#gsub method, 168
String#include method, 176
String#interpolate method, 177, 179
String#match method, 169
String#replace method, 168
String#scan method, 169
String#startsWith method, 176
String#strip method, 169
String#stripTags method, 174
String#sub method, 169
String#truncate method, 175
String#unescapeHTML method, 173
strip method, 169–170
strip_tags function, 63
stripTags method, 170–174
style object, 120
style property, 117
style tag, 281
styles, script.aculo.us effects, 247–248
styles.css file, 247
sub method, 167–169
subclasses, 145–147
submit event, 97–98
submit handler, 104
submitEntryForm form, 98
submitEntryForm function, 97, 107
sum function, 159–160
superclass property, 301

■T
table element, 130, 135
table node, 129
tag option, sortables, 272
taste parameter, 68, 73
tbody element, 155
team_name-inplaceeditor class, 291

■INDEX326

Template class and string interpolation,
176–180

advanced replacement, 178–179
bringing it back to String#gsub, 179
overview, 176–177
using Template class, 177

Template method, 179
Template#evaluate method, 177–178
test folder, 210
text boxes, 104, 277
text files, 62
textarea method, 171
text/javascript file, 53
text-transform property, 225–226
tfoot element, 155
this keyword, 142, 164
this.element element, 302
this.options method, 301
time function, 81
toArray method, 46
toggle method, 101, 115–117
toggleClassName method, 117–119
toJSON method, 184
tokens option, 286
tooltip:hidden event, 313
top property, 203, 217, 268
top value, 59, 201
top/bottom control, 203
toString method, 178, 183
toString property, 144
totalElement object, 153
Totaler class, 150–151, 158, 164, 249
Totaler#initialize class, 164
Totaler#updateTotal class, 152
totaler.js file, 155, 248
toTemplateReplacements method,

178–179, 183
track element, 293
Trackable mixin, 303
truncate method, 175
turning into arrays, 46
twoReminders function, 163
type sniffing with Object.isX, 184–188

Object.isArray, Object.isHash,
Object.isElement methods, 186

Object.isString, Object.isNumber,
Object.isFunction methods, 185

Object.isUndefined method, 186
overview, 184–185
using type-checking methods in your

own functions, 187–188
typeof operator, 184–185

■U
ul container, 65
ul element, 258–259, 261, 264–269, 272,

274, 280
undefined value, 186
underscore method, 174–175
unescapeHTML method, 170–174
uniq method, 189
unittest.js file, 210
up method, 129–131
update method, 120–122
updateElement element, 279, 286
updateTeam function, 252–253
updateTotal instance method, 252
updateTotal method, 157, 164
usable content area, 196

■V
valid text box, 104
validateForm method, 108
value parameter, 290
value property, 45
values option, 296
variable interpolation, 176
Version property, 16
visible method, 115–117
visualizing with block-level elements, 194

■W
web applications, 74
Web browsers. See browsers
web sites

Prototype, 11
script.aculo.us, 209

Widget.Foo class, 302
width property, 196
window.totaler statement, 157

■INDEX 327

without method, 189
wrap method, 135
writeAttribute method, 126–128
writing markup, script.aculo.us effects,

244–247

■X
x parameter, 228
XmlHttpRequest object, 49, 56

■Y
y parameter, 228

■Z
zindex option, draggables, 263
z-index property, 202–203
z-index value, 263

■INDEX328

	cover.jpg
	front-matter.pdf
	front-matter_001.pdf
	fulltext.pdf
	fulltext_001.pdf
	fulltext_002.pdf
	fulltext_003.pdf
	fulltext_004.pdf
	fulltext_005.pdf
	fulltext_006.pdf
	fulltext_007.pdf
	front-matter_002.pdf
	fulltext_008.pdf
	fulltext_009.pdf
	fulltext_010.pdf
	fulltext_011.pdf
	fulltext_012.pdf
	back-matter.pdf

