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Abstract. This paper deals with the discrete-time nonlinear 
system identification via Recurrent High Order Neural 
Networks, trained with an extended Kalman filter (EKF) 
based algorithm. The paper also includes the respective 
stability analysis on the basis of the Lyapunov approach for 
the whole scheme. Applicability of the scheme is illustrated 
via real-time implementation for a three phase induction 
motor. 
Keywords: Neural identification, Extended Kalman filtering 
learning, Discrete-time nonlinear systems, Three phase 
induction motor. 
 
Resumen. Este artículo trata el problema de identificación 
de sistemas no lineales discretos usando redes neuronales 
recurrentes de alto orden entrenadas con un algoritmo 
basado en el filtro de Kalman extendido (EKF). El artículo 
también incluye el análisis de estabilidad para el sistema 
completo, en las bases de la técnica de Lyapunov. La 
aplicabilidad del esquema se ilustra a través de la 
implementación en tiempo real para un motor de 
inducción trifásico. 
Palabras clave: Identificación neuronal, Aprendizaje 
usando filtro de Kalman Extendido, Sistemas no lineales 
discretos, Motor de inducción trifásico. 

1   Introduction 

Since the seminal paper [Narendra and 
Parthasarathy, 1990], Neural networks (NN) have 
become a well-established methodology as 
exemplified by their applications to identification and 
control of general nonlinear and complex systems. 
In particular, the use of recurrent high order neural 
networks (RHONN) has increased recently [Sanchez 
and Ricalde, 2003] due to their excellent 
approximation capabilities, requiring less units, 
compared to the first order ones; they are also more 

flexible and robust when faced with new and/or 
noisy data patterns [Ghosh and Shin, 1992]. 
Furthermore, several authors have demonstrated 
the feasibility of using these architectures in 
applications such as system identification and 
control [Ge, et al., 2004; Haykin, 1999; Kim and 
Lewis, 1998; Narendra and Parthasarathy, 1990; 
Rovithakis and Christodolou, 2000; Sanchez, et al., 
2004; and references therein]. There are recent 
results which illustrate that the NN technique is 
highly effective in the identification of a broad 
category of complex discrete-time nonlinear systems 
without requiring complete model information [Yu 
and Li, 2003; Yu and Li, 2004].  

The best well-known training approach for 
recurrent neural networks (RNN) is the back 
propagation through time learning [Singhal and Wu, 
1989]. However, it is a first order gradient descent 
method and hence its learning speed could be very 
slow [Singhal and Wu, 1989]. Recently the Extended 
Kalman Filter (EKF) based algorithms has been 
introduced to train neural networks, in order to 
improve the learning convergence [Singhal and Wu, 
1989]. The EKF training of neural networks, both 
feedforward and recurrent ones, has proven to be 
reliable and practical for many applications over the 
past ten years [Singhal and Wu, 1989]. 

In [Rovithakis and Christodolou, 2000], adaptive 
identification and control by means of on-line 
learning is analyzed; the stability of the closed loop 
system is established based on the Lyapunov 
function method. Lyapunov approach can be used 
directly to obtain robust training algorithms for 
continuous-time recurrent neural networks [Sanchez 
and Ricalde, 2003; Rovithakis and Christodolou, 
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2000]. For discrete-time systems, the problem is 
more complex due to the couplings among 
subsystems, inputs and outputs. Few results have 
been published in comparison with those for 
continuous-time domain [Yu and Li, 2003; Yu and Li, 
2004]. By other hand discrete-time neural networks 
are more convenient for real-time applications. 

For many nonlinear systems, it is often difficult to 
obtain their accurate and faithful mathematical 
models, regarding their physically complex 
structures and hidden parameters as discussed in 
[Chui and Chen, 1998]. Therefore, system 
identification becomes important and even 
necessary before control systems can be considered 
not only for understanding and predicting the 
behavior of the whole system, but also for obtaining 
an effective control law.  

The identification problem consists of choosing 
an appropriate identification model and adjusting its 
parameters according to some adaptive law, such 
that the response of the model to an input signal (or 
class of input signals), approximates the response of 
the real system to the same input [Rovithakis and 
Christodolou, 2000]. A challenger problem for 
nonlinear systems identification is to select a 
suitable structure for the identifier, capable of 
approximating the unknown nonlinear dynamics. In 
this consideration, it is notable that recurrent neural 
networks offer the advantage of well approximating 
a nonlinear system to an arbitrarily accurate level 
[Cotter, 1990]. 

In this paper, a recurrent high order neural 
network (RHONN) is used to identify the plant 
model, under the assumption of all the state is 
available for measurement. The online learning 
algorithm for the RHONN is implemented using an 
Extended Kalman Filter (EKF). The respective 
stability analysis, on the basis of the Lyapunov 
approach, is included for the proposed scheme. The 
applicability of this scheme is illustrated by real-time 
implementation for an electric three phase induction 
motor. 

2   Mathematical preliminaries 

Through this paper we use k as the step sampling, k 
∈ 0 ∪ Z+, |•| for the absolute value, • for the 

Euclidian norm for vectors and for any adequate 
norm for matrices. For more details related to this 
section see Ge, et al. [2004]. Consider a MIMO 
nonlinear system: 

( 1) ( ( ), ( ))k F k u kχ χ+ =  (1) 

where nχ ∈ℜ , mu∈ℜ and n m nF ∈ℜ ×ℜ →ℜ is 
nonlinear function. 
Definition 1. The solution of (1) is semiglobally 
uniformly ultimately bounded (SGUUB), if for anyΩ , 
a compact subset of nℜ  and all ( )0kχ ∈Ω , there 

exists an 0ε >  and a number ( )( )0,N kχ∈  such 

that ( )kχ ε<  for all 0k k N> + . 

In other words, the solution of (1) is said to be 
SGUUB if, for any apriori given (arbitrarily large) 
bounded set Ω  and any apriori given (arbitrarily 
small) set 0Ω , which contains (0,0) as an interior 
point, there exists a control u, such that every 
trajectory of the closed loop system starting from Ω  
enters the set ( ) ( ){ }0 k kχ χ εΩ = <  in a finite time 

and remains in it thereafter [Ge, et al., 2004]. 
 
Theorem 1 [Ge, et al., 2004]. Let ( )( )V kχ  be a 

Lyapunov function for the discrete-time system (1), 
which satisfies the following properties: 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

( )( ) ( )

1 2

3 3

1

                                        

k V k k

V k V k V k

k

γ χ χ γ χ

χ χ χ

γ χ γ ς

≤ ≤

+ − = ∆

≤ − +  

where ς  is a positive constant, γ1(•) and γ2(•) are 
strictly increasing functions, and γ3(•) is a 
continuous, nondecreasing function. Thus if 

( ) ( )0   for   V kχ χ ς∆ < >  

then ( )kχ  is uniformly ultimately bounded, i.e. there 

is a time instant Tk , such that ( )  Tk k kχ ς< ∀ <
  

3   Discrete-time Recurrent Neural 
Networks 

Let consider the following discrete-time recurrent 
high order neural network (RHONN), depicted in 
Fig.1 which is described as: 

( ) ( ) ( )( )1 , ,    1, ,T
i ix k w z x k u k i n+ = =   (2) 
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where ix  is the state of the i-th neuron, iL  is the 
respective number of higher-order connections, 

{ }1 2, , ,
iLI I I  is a collection of non-ordered subsets 

of { }1,2, ,n , n  is the state dimension, iw  is the 
respective on-line adapted weight vector, and 

( ) ( )( ),iz x k u k  is given by 

( ) ( )( )

( )

( )

( )

11

2 2

1

2

,

j

j

j

j

j i
Li

jLi

d
ij Ii
d

i ij I
i

d Li
ij I

yz

z y
z x k u k

z y

∈

∈

∈

 
   
   
   = =   
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 (3) 

with ( )
ij

d k  being a nonnegative integers, and iy  is 

defined as follows: 

( )
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 = =  
   
   
   
     

 



 (4) 

In (4), [ ]1 2, , , T
mu u u u=   is the input vector to the 

neural network, and ( )S •  is defined by 

( ) ( )
1

1 exp
S x

xβ
=

+ −  (5) 

Consider the problem to approximate the general 
discrete-time nonlinear system (1), by the following 
discrete-time RHONN series-parallel representation 
[Rovithakis and Christodolou, 2000]: 

( ) ( ) ( )( )*1 ,
T

ii i i zk w z x k u kχ ε+ = +  (6) 

where iχ  is the i-th plant state, 
izε  is a bounded 

approximation error, which can be reduced by 
increasing the number of the adjustable weights 
[Rovithakis and Christodolou, 2000]. Assume that 
there exists ideal weights vector *

iw  such that 
izε  

can be minimized on a compact set i

i

L
zΩ ⊂ℜ . The 

ideal weight vector *
iw  is an artificial quantity 

required for analytical purpose [Rovithakis and 
Christodolou, 2000]. In general, it is assumed that 
this vector exists and is constant but unknown. Let 
us define its estimate as iw  and the estimation error 
as 

( ) ( )*
i i iw k w w k= −  (7) 

The estimate iw  is used for stability analysis 
which will be discussed later.  

 
Fig. 1. Schematic representation for a discrete-time 

RHONN 

4   The EKF Training Algorithm 

Kalman filtering (KF) estimates the state of a linear 
system with additive state and output white noises 
[Chui and Chen, 1998; Grover and Hwang, 1992]. 
For KF-based neural network training, the network 
weights become the states to be estimated, with the 
error between the neural network output and the 
desired output; this error is considered as additive 
white noise. For identification, the desired output is 
information generated by the plant; in this paper, the 
respective state. Due to the fact that the neural 
network mapping is nonlinear, an extended Kalman 
Filtering (EKF)-type is required.  

The training goal is to find the optimal weight 
values that minimize the prediction errors (the 
differences between the desired outputs and the 
neural network outputs). The EKF-based NN training 
algorithm is described by 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1

1
1, ,

i i i i

i i i i i

T
i i i i i i

K k P k H k M k

w k w k K k e k

P k P k K k H k P k Q k
i n

η

=

+ = +

+ = − +

= 

 (8) 

with 

( ) ( ) ( ) ( ) ( ) 1T
i i i i iM k R k H k P k H k

−
 = +   (9) 

( ) ( ) ( )i i ie k k x kχ= −  (10) 

where ( )ie k  is the respective identification error, 

( ) i iL L
iP k ×∈ℜ  is the prediction error covariance 

matrix at step k , iL
iw ∈ℜ  is the weight (state) 

vector, iL  is the respective number of neural 
network weights, iχ  is the i-th plant state, ix is the i-
th neural network state, n  is the number of states, 

iL
iK ∈ℜ  is the Kalman gain vector, i iL L

iQ ×∈ℜ  is the 
NN weight estimation noise covariance matrix, 

iR ∈ℜ  is the measurement noise covariance; 
iL

iH ∈ℜ  is a vector, in which each entry ( )ijH  is the 

derivative of one of the neural network state, ( )ix , 

with respect to one neural network weight, ( )ijw , as 

follows 

( ) ( )
( )

( ) ( )1j
i i

T

i
ij

i w k w k

x k
H k

w k
= +

 ∂
=  

∂  
 (11)

 

where 1,2, ,i n=   and 1,2, , ij L=  . Usually iP  
and iQ  are initialized as diagonal matrices, with 
entries ( )0iP  and ( )0iQ , respectively. It is important 

to remark that ( )iH k , ( )iK k  and ( )iP k  for the EKF 
are bounded; for a detailed explanation of this fact 
see [Song and Grizzle, 1995]. 

Then the dynamics of the identification error (10) 
can be expressed as 

( ) ( ) ( ) ( )( )1 ,
i

T
i i i ze k w k z x k u k ε+ = +  (12) 

By the other hand the dynamics of (7) is 

( ) ( ) ( ) ( )1i i i iw k w k K k e kη+ = −  (13) 
Now, we establish the main result of this paper in 

the following theorem.  

 
Theorem 2: The RHONN (2) trained with the EKF-
based algorithm (8) to identify the nonlinear plant 
(1), ensures that the identification error (10) is 
semiglobally uniformly ultimately bounded (SGUUB); 
moreover, the RHONN weights remain bounded. 

Proof: Consider the Lyapunov function candidate 

Vi(k)=wiT(k)Pi(k) w(k)+ei
2(k) 

ΔVi(k)=Vi(k+1)-Vi(k) 
          = wiT(k+1)Pi(k+1)wi(k+1) 
           + ei

2(k+1)-wiT(k)Pi(k)wi(k)-ei
2(k) 

 

(14) 
 

Using (12) and (13) in (14) 

( ) =∆ kV   

( ) ( ) ( )[ ] ( ) ( )[ ] ( ) ( ) ( )[ ]kekKkwkAkPkekKkw iiiiii
T

iiii ηη −−− ~~  

( ) ( ) ( )( )[ ]2,~ kukxzkw i
T+   

( ) ( ) ( ) ( )kekwkPkw iii
T
i

2~~ −−  (15) 

 

with ( ) ( ) ( ) ( ) ( )T
i i i i iA k K k H k P k Q k= + ; then, (15) 

can be expressed as 

( ) ( ) ( ) ( )
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( ) ( ) ( )( )
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i i z z
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 (16) 

Using the inequalities 

( ) ( )2 2
min max

2
2

T T T

T T T

T

X X Y Y X Y
X X Y Y X Y

P X X PX P Xλ λ

+ ≥

+ ≥ −

− ≥ − ≥ −
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which are valid , ,   ,   0n n n TX Y P P P×∀ ∈ℜ ∀ ∈ℜ = > , 
then (16), can be rewritten as 

ΔVi(k)≤–wiT(k)Ai(k)wi(k) 

–ni
2ei

2(k)Ki
T(k)Ai(k)Ki(k)+wiT(k)wi(k) 

+ni
2ei

2(k)Ki
T(k)Pi(k)Pi

T(k)Ki(k)+ei
2(k) 

+ni
2 wiTAi(k)Ki(k)Ki

T(k)Ai
T(k)wi 

+ ni
2ei

2Ki
T(k)Pi(k)Ki(k) 

+2(wiTz(x(k),u(k)))2+2 2
izε -ei

2(k) 

 

(17) 

Then 

ΔVi(k)≤║wi(k)║2 

+ni
2│ei(k)│2║Ki(k)║2λ2

max(Pi(k)) 

-║wi(k)║2λmin(Ai(k)) 

+ni
2║wi (k)║2λ2

max(Ai(k))║Ki(k)║2 

+ni
2│ei(k)│2║Ki(k)║2λmax(Pi(k)) 

-ni
2│ei(k)│2║Ki(k)║2λmin(Ai(k)) 

+2║wi(k)║2║zi(x(k),u(k))║2+2 2
izε  

(18) 

Then, there exists iη , iQ  and iR  such that 
0iE >  and 0iF > , with 

Ei(k)=λmin(Ai(k))–ni
2λ2

max(Ai(k))║Ki(k)║2 

–2║zi(x(k),u(k))║2–1 

Fi(k)=ni
2║Ki(k)║2λmin(Ai(k)) 

–ni
2║Ki(k)║2λ2

max(Pi(k)) 

–ni
2║Ki(k)║2λmax(Pi(k)) 

Gi(k)=2 2
izε
 

Therefore, (18) can be expressed as 

( ) ( ) ( ) ( ) ( ) ( )2 2
i i i i i iV k w k E k e k F k G k∆ ≤ − − +  

Then ( ) 0iV k∆ <  when 

( ) ( )
( ) ( ) ( )

( )1 2   OR   i i
i i

i i

G k G k
w k e k

E k F k
κ κ≥ ≡ ≥ ≡  

Therefore, according to Theorem 1, the solution 
of (12) and (13) is stable, hence the identification 
error and the RHONN weights are SGUUB.  

The neural identification is performed on-line, 
using a series-parallel configuration as illustrated in 
Fig. 2. 

 
Fig. 2. Neural Identifier scheme 

5   Application 

In this section Real-Time results are presented for 
the for neural network identification scheme 
proposed above. The experiments are performed 
using a benchmark, which includes:  
• Computer Station. A PC for supervision, with a 

DS1104 stand alone board for data acquisition 
and control, and the required software (Fig. 3). 

• Sensors. One encoder, current sensors, and TTL 
to CMOS coupling (Fig. 4). 

• Electronic Power Station. A three-phase driver, 
with the required IGBTs (Fig. 5). 

• Benchmark. A three-phase squirrel cage 
induction motor (Fig. 4). It is important to remark 
that the induction motor parameters are 
unknown. 

 

 
Fig. 3. View of the PC and the DS1104 board
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        Fig. 4. Encoder coupled with the induction motor                                                                      Fig. 5. PWM driver 
 

5.1 Motor model 

 

The six-order discrete-time induction motor model in 
the stator fixed reference frame ( ),α β , under the 
assumptions of equal mutual inductances and linear 
magnetic circuit, is given by [Loukianov, et al., 2002] 

 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 2

1 2

2

1 1

1 cos 1 sin 1

1 sin 1 cos 1

1

1

1
1

               

L

p p

p p

L

Tk k a M i k k i k k T k
J

k n k k n k k

k n k k n k k

Ti k k u k

Ti k k u k

T k a
k k k T T T M i k k i k k

J

β α α β

α

β

α α α

β β β

β α α β

µω ω ψ ψ
α

ψ θ ρ θ ρ

ψ θ ρ θ ρ

ϕ
σ

ϕ
σ

µθ θ ω ψ ψ
α α

 + = + − − −  
 

+ = + − +

+ = + + +

+ = +

+ = +

−   
+ = + − + − −   

   

 (19) 

 

with 

Ρi(k)=a(cos(npθ(k))ψα(k)+sin(npθ(k))ψβ(k)) 

+b(cos(npθ(k))iα(k)+sin(npθ(k))iβ(k)) 

Ρ2(k)=a(cos(npθ(k))ψα(k)-sin(npθ(k))ψβ(k)) 

+b(cos(npθ(k))iα(k)-sin(npθ(k))iβ(k)) 

φα(k)=iα(k)+αβΤψα(k)+npβΤω(k)ψα(k)-γΤiα(k) 

(20) 

φβ(k)=iβ(k)+αβΤψβ(k)+npβΤω(k)ψβ(k)-γΤiβ(k) 

with ( )1b a M= − , r

r

R
L

α = , 
2

2
sr

r

RM R
L

γ
σ σ

= + , 

2

s
r

ML
L

σ = − , 
r

M
L

β
σ

= , Ta e α−=  and p

r

Mn
JL

µ = , 

besides sL , rL  and M  are the stator, rotor and 
mutual inductance respectively; sR  and rR  are the 
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stator and rotor resistances respectively; pn  is the 

number of pole pairs; iα  and iβ  represents the 
currents in the α  and β  phases, respectively; αψ  

and βψ  represents the fluxes in the α  and β  
phases, respectively and θ  is the rotor angular 
displacement. 

5.2 Neural network identification 

The RHONN proposed for this application is as 
follows: 

( )

( )
( )
( )

1 11

12

13

2 21 22

3 31 32

4 41 42

1 ( ) ( ( ))

               ( ) ( ( )) ( ( )) ( )

               ( ) ( ( )) ( ( )) ( )

1 ( ) ( ( )) ( ( )) ( )

1 ( ) ( ( )) ( ( )) ( )

1 ( ) ( ( )) (

x k w k S k

w k S k S k i k
w k S k S k i k

x k w k S k S k w i k

x k w k S k S k w i k

x k w k S k w

β α

α β

β β

α α

α

ω

ω ψ

ω ψ

ω ψ

ω ψ

ψ

+ =

+

+

+ = +

+ = +

+ = +

( )
43 44

5 51 52

53 54

) ( ( ))

               ( ) ( ( )) ( )

1 ( ) ( ( )) ( ) ( ( ))

               ( ) ( ( )) ( )

k S k

w k S i k w u k
x k w k S k w k S k

w k S i k w u k

β

α α

α β

β β

ψ

ψ ψ

+ +

+ = +

+ +

 (21) 

The training is performed on-line, using a series-
parallel configuration as illustrated in Fig. 2. During 
the identification process the plant and the NN 
operates in open-loop. Both of them (plant and NN) 
have the same input vector ,u uα β   ; All the NN 

states are initialized in a random way as well as the 
weights vectors. It is important remark that the initial 
conditions of the plant are completely different from 
the initial conditions for the NN. The identification is 
performed using (8) with 1,2, ,i n=   with n  the 
dimension of plant state ( )5n = . 

5.3 Real-time results 

In this subsection the neural network identification 
scheme proposed above for the discrete-time 
induction motor model is applied in real-time to the 
described benchmark. During the identification 
process the plant and the NN operates in open-loop. 
Both of them (plant and NN) have the same input 
vector ,u uα β   ; uα  and uβ  are chirp functions with 

200 volts of amplitude and incremental frequencies 

from 0 Hz to 150 Hz and 0 Hz to 200 Hz, 
respectively. The implementation is performed with a 
sampling time of 0.0005s. The results of the real-
time implementation are presented as follows: Fig. 6 
displays the identification performance for the speed 
rotor, plant signal is in solid line and neural signal is 
in dashed one, their overlap is due to the excellent 
performance of the neural identifier, the standard 
deviation for the identification error 1xω −  is 
0.0896 /rad s ; Fig. 7 and Fig. 8 present the 
identification performance for the fluxes in phase α  
and β  respectively, plant signal is in solid line and 
neural signal is in dashed one, their overlap is due to 
the excellent performance of the neural identifier, the 
standard deviation for flux identification errors 

2xαψ −  and 3xβψ −  are 20.0442wb  and 20.0263wb , 
respectively;. Fig. 9 and Fig. 10 portray the 
identification performance for currents in phase α  
and β  respectively plant signal is in solid line and 
neural signal is in dashed one, their overlap is due to 
the excellent performance of the neural identifier, the 
standard deviation for current identification errors 

4i xα −  and 5i xβ −  are 0.0840A  and 
0.0995A respectively. Finally the input signals are 
presented in Fig. 11. 

 
Fig. 6. Real time rotor speed identification (plant signal in solid 

line and neural signal in dashed line) 



68   Alma Y. Alanis, Edgar N. Sánchez, Alexander G. Loukianov and Marco A. Pérez 

Computación y Sistemas Vol. 14 No. 1, 2010, pp 61-70 
ISSN 1405-5546 

 
Fig. 7. Real time alpha flux identification (plant signal in solid 

line and neural signal in dashed line) 

 
Fig. 8. Real time rotor beta flux identification (plant signal in 

solid line and neural signal in dashed line) 

 
Fig. 9. Real time rotor alpha current identification (plant signal 

in solid line and neural signal in dashed line) 

 
Fig. 10. Real time beta current speed identification (plant 

signal in solid line and neural signal in dashed line) 

 
Fig. 11. Input signals applied during the identification process 

( ( )u kα  in solid line and ( )u kβ  in dashed line) 

6   Conclusions 

This paper has presented the application of 
recurrent high order neural networks to identification 
of discrete-time nonlinear systems. The training of 
the neural networks was performed on-line using an 
extended Kalman filter. The boundness of the 
identification error was established on the basis of 
the Lyapunov approach. The RHONN training with 
the EKF-based algorithm, presents good 
performance. Real-time results show the 
effectiveness of the proposed schemes, as applied 
to an electric three-phase squirrel cage induction 
motor. This paper deals only with on-line 
identification for a three phase induction motor, 
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control synthesis and implementation based on the 
proposed approaches is considered as future work. 
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