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This is a book with two maín items: One is logic, 
i.e. deduction, and the other is learning, Le. induc­
tion. Hence, the text is divided in two parts. The first 
part, consisting of eight chapters, can be considered as 
a complete textbook in a course of computationallogic. 
The second part consists of eleven chapters and intro­
duces the fundamentals of learning from a logical point 
of view. 

There are c1assical textbooks ([2],[3],[4],[6]) on these 
topies. However a modem presentation was lacking. For 
sure the current textbook fulfills this lack. 

The first three chapters in the book introduce the ba­
sic notions of propositional and predicate calculi. Both 
presentations are based on semantics. The syntactical 
aspects are restricted to the rules of formulae well for­
mation. In spite that formal deduction is not treated, 
the authors present fundamental results as the Deduc­
tion Theorem (for any set of formulae E and any two 
formulae c/J,'IjJ: E F (c/J --t 'IjJ) iir E U {c/J} F 'IjJ) and 
the Compacteness Theorem (any infinite unsatisfiable 
set of formulae contaíns an unsatisfiable finite subset). 
The algorithmic transformation of formulae into their 
respective Skolem normal forms is presented in detail. 
Then Herbrand models are constructed in order to prove 
the fundamental result: Any theory is consistent iir it 
possesses a Herbrand model. 

Resolution and 4nification are treated in the fourth 
chapter. For any set of c1auses E and any c1ause C, it 
is written E f- r C if C can be (formally) derived from 
E by resolution. Obviously, if E is unsatisfiable then 
E f- r O, where O is the empty c1ause, which gives rise 
to proofs by refutation. Indeed, in a more general way, 
a 	 soundness theorem for resolution is proved: (E f- r 
C)::::} (E F C). 

The fifth chapter deals with subsumption and refu­
tation completeness. A clause D subsumes another 

clause C if for sorne substitution e one has De e C. 
The authors write E f- d C to denote the fact that 
for sorne D, E f- r D and D subsumes C. The sub­
sumption theorem entails soundness and completeness: 
(E F C) {::} (E f-d C). In the text, two interesting 
proofs of the "compIeteness" implication are given: The 
first is done by cases and the second by refutation. The 
classical use of refutation is based on the logical equiv­
alence: (E F c/J) {::} (E U {-,c/J} f- r D). Nevertheless any 
of the components of this equivaIence is an undecidable 
predicate, as is stated by the Schmidt-Schauss theorem. 

In my opinion, the first five chapters cover the formal 
basics of a course on mathematicallogic addressed to an 
audience in an undergraduate programme in computing. 

The remaíning chapters in Part 1 are devoted to spe­
cific strategies for resolution. It is written E f- 1r C if C 
is derived from E by linear resolution and E f- 1d D if, for 
sorne C which subsummes D, E f- 1r C. The correspond­
ing completeness theorems are proved: E is unsatisfiable 
iir E hr D, and (E F D) {::} E hd D. The input res­
olution coincides with linear resolution except that, at 
each step, each resolvent is restricted to be selected in 
the input set of clauses. This procedure, whose search 
is quicker than the linear one, is not complete, Le. it 
maíght faíl to find a derivation in ¡¿pite that there exists 
one. The linear resolution with a selection function, SL­
resolution for short, gives rise to SL-resolution for defi­
nite c1auses, SLD-resolution for short. This is the basic 
principIe of PROLOG progrqmming: restricted to Hom 
c1auses, the current clause is obtaíned by resolving a se­
lected atom of the former c1ause and the head atom of a 
clause in the input set of clauses (indeed the logic pro­
gram). Corresponding notations E f- sr C and E f- sd D 
are introduced. For this type of derivation, restricted to 
Hom clauses, the corresponding completeness theorems 
also hold. Then the authors present the formal founda­
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tions of PROLOG programming. Let us say that a "def­
inite program" is a set of HOTn clauses and that a "defi­
nite goal" is a Hom clause with no positive atom. Then 
it is shown that any definite program has a minimal Her­
brand model, indeed, any ground atom A is in the mini­
mal model of the definite program II iff II U { ...,A} f- sr D. 
Conceming the query satisfaction made by PROLOG 

. k ' 
for a glven goal G = /\i=1 ...,Ai = (f- Al, . .. ,Ak ) and 
a program II, let us say that a substitution () is a "cor­

rect answer" if II f- sr [/\:=1 ...,Ai ] (), and let us say that 

a "computed answer" is the substitution obtained as 
composition of the substitutions performed by the res­
olution process. A soundness result asserts that any 
computed answer is correct indeed. A completeness re­
sult asserts that any correct answer can be computed, 
up to a substitution consisting basically of a renaming 
of the involved variables. On this line of development, 
roughly speaking, a "computation rule" is a criterion to 
select atoms in the current clause considering the cur­
rent state of derivation. The strong version of complete­
ness for SLD-resolution states that any correct answer 
may be computed, up to a substitution, regardless of 
the stablished composition rule. The derivation proce­
dure may be formalized as a search process in a tree. 
A derivation is a path leading to a succesful leaf in the 
tree. In an exhaustive way, it is possible to recognize 
whether II I/sd D. Bad news, with respect to resolu­
tion, is that logical derivability between Hom clauses 
is undecidable. Thus, in spite that there were deriva­
tions, there is no a general procedure to find them. Fi­
nally, SLDNF-resolution (SLD-resolution with Negation 
as Failure) is introduced. Two points of great inter­
est in the text are the discussion on the non-monotonic 
aspects of the Closed World Assumption (CSW) and 
the formalization of the CSW. Namely, given a defi­
nite program II, it is firstly extended to a logic with 
equality and then, for each predicate P, each clause of 
the form C = [P(t) f- LI(t,y), ... ,Lk(t,y)] is trans­
formed into the formula C' = [P(x) f- 3y : (x = 
t), LI (t, y), ... , Lk(t, y)] = [P(x) f- E]. The "comple­
tion" comp(II) is the program with equality consisting 
of the clauses [P(x) t-+ VE E]. Then one has that G 
can be derived from II using SLDNF-resolution if and 
only if comp(II) f- G. 

The contents of the first part is a complete course in 
computational logic 'with a modem approach. Thus I 
strongly recommend the first part of this book as a text­
book in introductory courses to Computational Logic, 
in general, and Logic Programming, in particular. 

Second part of the book deals with Inductive Logic 
Programming (ILP). First of all, the problem is stated. 
Given two sets E+ and E- of clauses, indeed they may 
consist of just ground atoms, called respectively pos­
itive and negative examples, a theory I; is said to be 

complete with respect E+ if I; F E+. I; is said to be 
consistent with respect E- if I; U {...,ele E E-} is satis­
fiable. I; is said to be correct with respect to E+ and 
E- if I; is complete with respect E+ and consistent 
with respect E-. The main problem of ILP takes as 
instance a triplet (B, E+, E-) of background knowledge 
and positive and negative examples and looks to pro­
duce a theory I; such that I; U B is correct with respect 
to E+ and E-. Altematively, the nonmonotonic setting 
of this problem takes. as instance a pair (I+, I-) of sets 
of Herbrand interpretations (the positive and the nega­
tive examples) and looks to produce a theory I; which 
is true under each interpretation in I+ but false under 
each interpretation in I- . 

A theory I; is too strong with respect to a set E- if 
I; is not consistent with respect E-. I; is too weak with 
respect to a set E+ if I; is not complete with respect 
E+. I; is overly general with respect to E+ and E­
if it is complete with respect to E+ but not consistent 
with respect to E-. I; is overly specific with respect 
to E+ and E- if it is consistent with respect to E­
but not complete with respect to E+. The inmediate 
approach to solve the ILP problem is to proceed in an 
iterative way: Given that I; is the current candidate 
solution and it is not still correct, if I; U B is too strong 
to E- then specialize I;, and if I; U B is too weak to 
E+ then generalize I;. In sorne cases this search may 
succed to find a correct theory. However the problem in 
general may have no solution. The authors show, using 
a cardinality argument, that there are seis E+ and E­
consisting of ground terms such that there is no theory 
correct with respect to E+ and E-. 

The ILP problem can also be stated as the problem 
to find an axiomatization of a given theory: Let C be a 
clausallogic and let Ch e C be a language consisting of 
formulae of a certain type. Let Co e Ch be ?- language 
consisting of positive and negative examples, usually, 
ground terms, and let J be a Herbrand interpretation. 
An o: E Co is a "good" example if o: is true under J and 

ClIS. "b d" a otherwIse.. Let o be the set of good examples 
for J. A theory I; e Ch is a Co-complete axiomatization 
01 J if I; is true under J and I; F Cl. The pair (Co, Ch) 
is admissible if for any J and for any satisfiable I; e eh 
one has that for each o: ECo: I; F, o: <=> J(o:) = True. 
The axiomatization problem receives as input an ad­
missible pair (Co,Ch) and a Herbrand interpretation J, 
and asks to build a Co-complete axiomatization of J. 
Again, a generalization-speci¡l.lization strategy to solve 
this problem is presented. Of particular interest is the 
backtracking algorithm to find false clauses, when spe­
cialization is attempted, and the refinement operators, 
when generalization is attempted. Indeed, Shapiro's 
model inference algorithm takes a top-down approach 
to solve the axiomatization problem. 
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Induction can be seen as the reverse operation of de­
duction, hence inverse resolution is a form of induction. 
The V-operator generalizes a pair of clauses {el, R} 
to a pair {el,eZ}, in such a way that R would be an 
instance of a resolvent of el, ez. The \V-operator com­
bines two V-operators: Given a pair of clauses {RI, R2 } 

it produces a triplet {el, ez,e3 }, in such a way that 
Rl would be an instance of a resolvent of el, e2 and 
Rz an instance of a resolvent of e2 , e3 • The authors 
present the algorithms of Muggleton and Buntime ([5]) 
for inverse resolution, and emphasize its use as a type 
of generalization. 

Unfolding, which is a kind of dual to inverse resolu­
tion, is also treated in the texto Given an overly general 
theory, then it is necessary to specialize it to a correct 
one. The specialization problem is stated as follows: 
Given a definite program n and two disjoint sets of 
ground atoms and E- , such that n is overly general 
with respect to E+ and E- then the goal is to find a 
definite program n' such that n F n' and n' is correct 
with respect to and E- . 

The aim of unfolding is the construction of resolvents 
from parent clauses. If e = (A t- BI,' .. ,Bm ) is a def­
inite clause in a definite program n and {el,"" en} 
is the set of clauses in n whose head can be unified 
with sorne Bi then the unfolding of e upon Bi in n is 
Ue,i = {DI,"" Dn}, where each Dj is the resolvent 
of Cj and e using Bi and the head of. ej as the lit­
erals resolved upon. The type 1 program obtained by 
unfolding is n¡,G,i = (n - {e}) u Ue,i and the type 2 
program obtained by unfolding is nZ,e,i n u Ue,i. 
An UDS specialization of n ¡nto n' is a sequence 
n ni, ... , nj , ... ,nn = n', n 2': 1, such that for 
each j, nj+1 is either of the form (nj he,; (U nfolding), 
or of the form nj {e} (clause Deletion), or of the form 
nj u {C}, where e is subsumed by a clause in nj (Sub­
sumption). Then it can be seen that for any n and n', 
where n' has no tautologies: n F n' {::} n' is an UDS 
specialization of n. This kind of program transforma­
tion is used to solve the specialization problem stated 
aboye. 

Inmediately thereafter the authors present the quasi­
ordered structures of atoms and clauses. A quasi­
ordered set is a set provided with a reflexive and transi­
tive relation. A lattice is a quasi-ordered set such that 
any couple of eleIl\ents {x, y} has a greatest lower bound 
(glb), x n y, and a lowest upper bound (lub), x U y. In 
a non-linear order one may define also the notions of 
maximallower bound (mlb) and minimal upper bound 
(mub). If x,y are two elements in a quasi-ordered set, 
x > V, and there is no z with x > z > y, then x is 
an upward cover of y and y is a downward cover of X. 

Let A be the set of atoms in a language plus other two 
elements, T and 1. called the top and the bottom ele­
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ments respedively. Let t be the relation such that the 
top element is an upper bound, the bottom element is 
a lower bound, and for any two atoms A, B, A t B 
iff there is a substitution () such that A() B, Le. A 
subsumes B. Then (A, t) is a lattice, in fad the notion 
of upper bound corresponds to the notion of generaliza­
tion and the notion of lower bound corresponds to the 
notion of specialization. The greatest specialization of 
a finite set of atoms can be obtained by the Unification 
Algorithm, while its least generalization by the so-called 
Anti-Unification AIgorithm. AIso, in this lattice each 
conventional atom can be connected to T by a chain of 
consecutive upward covers and to 1. by a chain of con­
secutive downward covers. The downward covers of T 
are the most general atoms, while the upward covers of 
1. are the ground atoms. For any two clauses e, D, let 
e t D if there is a substitution() such that e() = D, 
and let e "" D if e t D and D te. A clause e is re­
duced if for no proper subclause D e e we have e "" D. 
The Plotkin's algorithm serves to reduce a given set of 
clauses. Inverse reduction takes as input a reduced set 
of clauses and an integer m and produces an equivalent 
set of clauses with at most m clauses. For purposes of 
refinements, inverse redudion is an useful too1. Let e 
be the set of clauses. Then (e, is a lattice, and the 
set of Horn clauses 1{ with the inherited structure is a 
lattice as wel!. It may happen, nevertheless that sorne 
clauses do not have covers. An important property is 
that the subsumption relation t is decidable over e. 

As an alternative to the subsumpfion relation, the 
logical implication relation is treated. Implication is 
stronger than subsumption and it is undecidable. A 
sufficient condition for a finite set of clauses to have a 
least generalizatíon, with respect to implication (LG!), 
ís that it has at least one functíon-free non-tautological 
clause. Greatest specialízations for finite clause sets al­
ways exist. Thus if e is functíon-free, (e, is a lattice. 
However, the Horn clauses do not form a lattice, even if 
there is no function symbols. The decision for the exis­
tence of LG! under the exístence of function symbols is 
an open question till now. 

In the textbook there ís also a chapter devoted to the 
relativízation ofboth subsumptíqn and implicatíon with 
respect to background knowledge, which is a must on 
systems based on knowledge. The approaches of Plotkin 
and Buntine are exposed. 

Finally, the text deals wtth the treatment of the non­
monotonic setting of ILP. The PAe algorithm is pre­
sented. This is a probabilistic algorithm that given a 
concept in an explicit way ít produces an implicit con­
cept such that almost surely the probabilistic measure 
of the symmetric difference between those concepts ís 
smal!. 
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1 have found the book very illustrative of the notions 
of Inductive Logic Programming. AH methods are ex­
plained in detail, hence they provide the reader with a 
lot of possibilities of experimentation. The second part 
is at present very specialized, thus 1 recommend it as a 
text at the graduate level. It is worth to mentíon that 
in spite of its high level of specialízation, this is a self 
contained text quite readable. 
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