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ABSTRACT 

We describe an autonomous mobile robot that employs a 
simple sensorimotor learning algoríthm at three different be­
havioral levels to achieve coherent goal-directed behavior. 
Therobotautonomously navigates to a goal destination within 
an obstacle-ridden environment by using the learned behav­
iors of obstacle detection, obstacle avoidance, and beacon fol­
lowing. These reactive behaviors are learned in a hierarchical 
manner by using a simple hillclimbing routine tbat attempts t~ 
find tbe optimal transfer function from perceptions to actions 
for each behavior. We present experimental results which 
show that each behavior was successfully learned by the robot 

witbin a reasonably short period oftime. We conclude by dis­
cussing salient features of our approach and possible direc­
tions for future research. 

Keywords: Robot learning, behavior-based robotics, 
robot navigation. 

1 INTRODUCTION 

Traditionally, the task of developing a sensorimotor con­
trol architecture for a situated autonomousrobot was left to the 
human programmer of the robot. Prewiring robot behaviors 
by hand however becomes increasingly complex for robots 

4 

with large number of sensors and effectors, especially when 
tbey are performing sophisticated tasks that involve continu­
ous interaction witb the encompassing environment. In such 

cases, it is our belief tbat considerable simplification can be 
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achieved by employing a hierarchical b..?havior-baseddecom­
position of tbe control architecture as originally suggested by 
Brooks [1]. In addition, it is desirable in many cases to endow 
therobot with tbe ability to adapt its constítuen t behaviors on­
line in response to ellvironmental stimuli by allowing it to au­
tonomously leam the transfer funcHon mapping sensory input 
into motor commands. 

For even moderately complex tasks andlor robots, the high 
dimensionality of tbe sensorimotor space makes learning dif­
ficult. One commonly used approach to make robot learning 
feasible despite tbe high dimensionality ol' the sensory space is 
to mn the learning algoritbm on a simulated environment (for 
example, [6]). However, in many situations, it is difficult or 
impossible to gatber enough knowledge about the robot and 
its environment to build an accurate simulatíon. Moreover, 
sorne physical events, such as collisions, are extremely diffi­

cult to simulate even when there is complete knowledge. For 
thesereasons, we believe that iri order for the learned skills to 
be applicable by the physical robot in its envíronment, all tbe 
learning and experimentation has to be carried out by tbe em­
bodied physical robot itself. However, using a real robot has 
sorne drawbacks: given tbe slowness ofreal world experimen­
tation and the limited computing power typically available in 
autonomous mobile robots, for tbe learning algorithms to be 
successfully applied, it is crucial tbat tbey converge within a 
reasonable number of trials and tbat tbey don't require large 
amounts of memory. The technique we present in this paper 
satisfies botb requirements. 

This paper describes an autonomous mobile robot tbat em­
ploys a simple sensorimotor learning algorithm at three dif­
ferent behaviorallevels to achieve coherent goal-directed be­
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havior. In particular, the robot solves the task of navigating 
to a goal destination (indicated by an infrared beacon) within 
an obstacle-ridden environment by using a set of learned be­
haviors for obstacle detection, obstacle avoidance, and beacon 
following. The behaviors themselves are learned individually' 
by using a simple heuristic hillclimbing technique. 

2 TASK DESCRIPfION 

The task to be learned by the robot (figure 1) is one of nav­
igation and obstacle-avoidance. Specifically, we expect the 
robot to learn appropriatesensorimotor strategies for navigat­
ing between two points in an obstacle-ridden environment. 

Three classes of sensory input are available to the robot: 

• Bump Sensors: Realized using digital microswitches, 
these sensors indicate whether the robot is physically 
touching an obstacle. Five ofthese sensors, placed at dif­
ferent locations around the robot, are used for learning 
the obstacle-detection behavior. In particular, the robot 
is expected to learn to back up when its front bump sen­
sors are active, to turn left when the right bump sensor is 
active, and so on. 

• 	Photosensors: Three shielded photoresistors placed in 
a tripodal configuration are used to give advance warn­
ing of an approaching obstacle, taking advantage of the 
fact that the obstacles have a darker color than the fioor. 
The inputs from these sensors are used for learning the 
obstacle-avoidance behavior; they are expected to allow 
the robot to steer clear of obstacles detected in its path. 

• 	 Infrared detectors: These sensors, when used in con­
junction with infrared detection software, indicate the 
strength of the modulated infrared light in a small spread 
along their lines of sight. Four of these sensors are used 
to learn the high-Ievel behavior of navigating toward the 
goal position, which is a source of infrared transmission. 

The aboye sensory repertoire is supplemented by two ef­
fectors consisting of a drive motor attached to the robot' s back 
axle and a servo motor at the front that is used for steering. 

The environment is as shown in figure 2, with a scattering 
of obstacles in an eight-foot square arena and infrared beacons 
at the near and far corners. 
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Figure 1: The robot used for the experiments. 

Figure 2: The robot arena 
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Figure 3: Block diagram of the robot control architecture 
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3 	 BEHAVIOR.BASED TASK DECOMPOSITION 

Since the robot is equipped with twelve different sen­
sors and two effeetors, fue learning task consists of finding 
a mapping from the 12-dimensional sensory space to fue 2­
dimensional motor space fuat optimizes the robot's perfor­
mance of the task. The number of different perceptions the 
robot may encounter grows exponentially wifu fue number of 
sensors itpossesses, thereby making the task ofhardwiring be­
haviors extremely cumbersome and error-prone. 

One way of circumventing fuis "curse of dimensionality" is 
to divide the given task into severallayers of control such that 
the first layer consists of an elementary level of performance 
(say avoid continuous contact with obstacles), wifu each sub­
sequent layer improving upon the performance obtained by 
the previous ones. If we chose this partition carefully, we can 
also arrange fuings in such a way fuat fue first layer uses only a 
subset of fue sensors available and each subsequent layer uses 
asuperset ofthe sensors used bythelower layers. This isrem­
iniscentofBrooks' subsumption architecture [l]. Fígure3 il­
lustrates fue simple three-level hierarchical architecture used 
in our robot. 

Hierarchical partitioning of the sensory space allows fue 
robot to learn fue sensorimotor mapping corresponding to , 
each layer independent of the other layers. This greatly re­
duces fue search space and allows for an implementation 
where aH fue learning can be done by physically experiment­
ing wifu fue world, instead of relying on simulation. By not 
relying on simulation we avoid fue danger of learning a policy 
that works well only in simulation and can not be transfered to 
fuereal world. 

4 	 LEARNING REACTIVE BEHAVIORS USING 


PERCEPTUAL GOALS 


To learn each constituen t behavior, we use arelatively sim­
ple hillclimbing technique. Since we only keep in memory a 
policy that encodes a series of statements offue formpercep­

tion -+ action, the method can be implemented using very lit­
tle memory. This is in contrast to some machine learning tech­
niques recently apphed to mobile robotics (for example, ge­
netic programming [4], reinforcement learning [2], and neural 
networks [3]) that usually require the storage of considerable 
amounts of information. 

Let A be the set of actíons that fue robot can perform, let 
P be fue set of relevant perceptions fuat fue robot can obtain 
from its sensors. A policy is a mapping m(p) : P -+ A fuat 

defines fue acUon m(p) E A to be taken when confronted with 
fue sensory stimulus p E P. 

To every perception p we also assign a numeric value 
vp measuring the desirability or "goodness" of the situations 
were fuat perception normally occurs. For example, a percep­
tual input indicating one or more pressed bump sensors has a 
low v, since its occurs in fue undesirable situation when the 
robot crashes into an obstacle, while having no bump sensors 
pressed will have a high v, since it indicates fue robot is clear. 

The task of the learning mechanism is to learn a policy 
m fuat will take fue robot from "bad" to "good" perceptions 
and maintain ir in good perceptions when fuey are found. We 
achieve this by computing a heuristic metric h(p) fuat mea­
sures how often, on average, the action taken in situation p 

has resulted in perceptions fuat are more desirable than p. For 
every perception-action pair in fue current policy, we keep a 
heuristic value h and replace fuose entires in the policy that 
are judged to be inadequate U.e. for which h falls under a pre­
speeified threshold.) 

The heuristic hillclimbing learning algorithm used f or each 
level can be defined as follows: 

1. 	Randomly initialize m 

2. 	 Initializeheuristic value and occurrence counter 

(Vp E P)h(p) O, n(p) = O 


3. 	Repeat until convergence 

(a) 	Get perceptual input p from sensors 

(b) 	Perform action m(p) 

(e) 	Get resulting perceptual input r from sensors 

(d) 	Adjust heuristic value 

h(p) == nCJf21 h(p) + n(p)+l (a(vr - vp ) + f3vr ) 

(e) 	 Update occurrence counter 


n(p) = n(p) + 1 


(f) 	if h(p) < thresholdreplace mp by a randomly cho­
sen action q E A and reinítialize h(p) and n(p) 

At fue obstacle-detection and obstacle avoidance levels, 
v(p) = 1 if p represents a perception where the robot is not 
crashing into an obstacle (i,e. none of fue bump sensors is 
depressed) and v{p) = -1 ofuerwise. 

At the beacon-following level, v is positive for fue case 
where fue beacon is secn by the front infrared detector, neg­
ative if it is seen by the back infrared detector and zero if it is 
seen by fue side detectors. 
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Figure 4: Obstacle Detection. The plot shows tbe average 
collisions per cyele as a function of tbe number of cycles. 
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Figure 5: ObstacIe Avoidance. The average collisions per cy­
ele plotted as a function of tbe number of cyeles. 

5 EXPERIMENTAL RESULTS 

In our experiments, tbe robot mns tbrough the three levels 
of behavior, first learning to detect collisions witb obstaeles, 
tben learning to avoid such collisions, and, finally, learning to 

navigate from goal to goal. Once tbe algoritbm obtains ade­
quate performance 'as specified by pre-set criteria, it switches 

bebaviors and begins learning at tbe next level. For example, 
when, in tbe obstaele-detection behavior, tbe frequency witb 

which the robot collides with obstades drops below a given 

threshold, tbe algoritbm proceeds to the obstacle-avoidance 
behavior. 

For each behavior, we plot performance against time. Fig­
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Figure6: Beacon Following. The plot shows the average time 
per trip from one beacon to the otber as a function of tbe trip 
number. 

ure 4 plots collisions per robot control cycle versus time for tbe 

lowest level behavior, where tbe robot can feel but not see ob­

stacles; figure 5 plots collisions-per-c.yele versus time for tbe 

second level behavoir, where tbe robot can botb feel and see 
obstaeles; and figure 6 plots average time-per-trip against trip 
number during tbe beacon-following behavior. 

Figure 4 shows tbe performance of tbe robot in 
tbe obstaele-detection behavior. Collisions-per-cyele drop 

sharply until it reaches a stable value of approximately .25, Pi 
iobeyond which point tbe (blind) robot cannot improve. Af­


ter a few hundred cycles, tbe robot ha~ learned the appropri­


ate actions to take when it crashes into an obstacle. Once ta 


tbe robot has achieved a good level of performance in tbe 


obstacle-detection behavior, it switches to the next level be­

havior, obstaele-avoidance. The resuIts for this behavior are 


shown in figure 5. Collisions-per-cycle again drop sharply, 

starting this time witb tbe final value from tbe first behavior, 


and eventually reaching a new mínimum of about .05. As in 


the previous case, after a few hundred cycles tbe robot suc­ C2 


incessfulIy learns a policy tbat results in significantl y fewer col­
sillisions. It should be noted tbat given the finite turning radius 
o(of the robot and the cluttered environment, collisions cannot 
mbe completely elimínated. 
hi 

Figure 6 shows theresults ofbeacon-following, tbehighest lo 
level behavior. The graph plots tbe average time spent by tbe ac 
robot on a trip between tbe beacons as a function oftime. As in 
tbe otber bebaviors, itcan be seen tbat the robot quickly learns 
a policy tbat successfully perforrns tbe task (in tbis case, tbe as 
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FLgure 7: The Obstacle AvoidancelBeacon following behav­
ior of the robot after hierarchicallearning. 

task ofhoming to the location ofthe goal beacon). 

Figure 7 depicts the behavior toward the end of the learning 

period, when all three behaviors are active. 

6 CONCLUSIONS 

We have shown that a simple heuristic hillclimbing strategy 

can be effectively used for learning useful reactive behaviors 

in an autonomous mobile robot. Our method results in con­

siderable savings ofmemory space over other learning meth­

ods such as genetiOlprograrnming, reinforcement learning and 

neural networks since we require the storage of only a small 

history of perceptions for determining credit assignment fol­

lowed by a subsequent stochastic change in the perception-to­

action mapping. 

Current work involves further experiments regarding the 

assignment of credit to vector elements, integration of addi­

tional behaviors, and possible autonomous learning of coor­

dination between behaviors (cf. [5]). 
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