Recognizing planar rigid AND NON-RIGID WIRE-SHAPES*

J. Humberto Sossa A. ${ }^{1}$ and J. Luis Diaz de León S.
Centro de Investigación en Computación-IPN
Unidad Profesional Adolfo López Mateos México D.F. 07738, México
e-mail: Thsossa, idiazl@pollux.cenac.ipn.mx

Abstract

A new methodology for the fast recognition of 2-D wireshapes is presented. Both the rigid and the non-rigid case are explored. The proposed methodology is based on a characterization of the skeleton of the shape in terms of a set of two topological robust features: terminal points (TPs), i.e. points with just one neighbor and three-edge-points (TEPs), i.e points with only three neighbors. The number of TPs and, TEPs in the skeleton are used as inputs to look up the object's database for the fast recognition of the shape. The proposed technique profits the advantages of the Fast Distance Transformation (FDT) to rapidly obtain the skeleton. These two characteristics make of the proposed approach a fast and simple method for the fast recognition of 2-D binary objects, which is desired for real time applications.

Keywords: 2-D wire-shape recognition, skeleton, topological features, Fast Distance Transform.

1. Introduction

In the field of image processing and computer vision, object recognition plays an important role. Indeed, for a robot manipulator as well as for a mobile robot, identification and location of objects in their working environment are main steps allowing them to perform tasks such as picking, assembly and obstacle avoidance.

[^0]The identification problem consist on assigning names or labels to each of these objects. Two main approaches have been used to solve this problem. In the first approach, a model of each object in the model database is matched against the scene image and a score is calculated [14]. The unknown object is recognized by the highest score. In the second approach, in order to eliminate the process of matching every model with the input scene, local features are used to generate a hypothesis to see if the model can be found in the scene image [8]. This hypothesis is then usually verified by a point to point matching of a template of the object with the image.

Figure 1. An object with different geometry but with the same topology.

In this work, the identification of an object is solved by means of a topological characterization using the skeleton of the shape for it preserves the structural information of the shape. We are then restricted to the case of isolated objects that can change their geometry but not their topology (see Figure 1). A 4-skeleton is chosen in this case because as it was shown in [1], 4-skeletons do not present the inconvenient of parasite holes, effect that is sometimes present in 8 -skeletons after skeleton obtaining (Figure 2). The topological features used here are the terminal points (TPs), i.e. points with just one neighbor and the three-edge-points (TEPs), i.e. points with only three neighbors. TPs and TEPs are used here because they have proven to be very nice features to obtain the Euler Number or genus of a shape [2]. The number of

TPs and TEPs in the object's skeleton are used as inputs to look up the object's database to rapidly identify the shape. To substantially speed the identification process, the skeleton of the object is obtained by means of the recent algorithm proposed in [1] and [3], which profits from the advantages of the Fast Distance Transformation (FDT) to rapidly obtain the desired skeleton.

Figure 2. Pathological cases sometimes present in 8-skeletons.

Figure 3. The object recognition process.

Object recognition is divided in two main processes: database building and object identification. Both processes are depicted in Figure 3. From this figure, we can see that both processes share three phases: image adquisition, image preprocessing and feature extraction. The output of the first process is a database of models. This database of models is then used by the identification module to retrieve from it the list of models that resemble the most the objects in a test image. This makes object recognition easy and fast to implement. The proposed methodology, as it will be shown in the experimentation section, will be applied for the recognition of both rigid and articulated wire-shapes.

1.1. Outline of the paper

In section 2 the two topological features used in this work: the terminal point (TP) and the three-edge-point (TEP), are first presented. They were already formally defined in [19] in terms of the so called Yokoi's connectivity numbers and after in [13] in terms of the Rutovitz's crossing number [12]. In [3], it was also shown that any crossing point, i.e. a point with three o more neighbors, can be decomposed into a set of TEPS and this number equals $n-2$, with n the number of branches.

This result is important because as we will see in this paper it will allows us to define a formal methodology to describe any 2-D wire-shape using its skeleton. Section 3 describes how TPs and TEPs are obtained and how they are used to describe 2-D shapes. In section 4 the identification approach is presented. This last takes as input the shape's description extracted from each one of the objects in an image to obtain the object's identity. In section 5 a set of shapes (both rigid and flexible) is then used to test the performance of the system. Finally, in section 6 some conclusions and some further research are given.

2. Tps, Ters and crossings

In this section the two topological features used hereafter in this work: TPs and TEPs, are presented. As we said, they were already formally defined in [19] and [13]. We will also recall how any crossing point, i.e. a point with three o more neighbors, can be decomposed into a set of TEPs and this number equals $n-2$, with n the number of branches.

Definition. Let $q=(x, y)$ and $p=(u, v)$ with $q, p \in \mathcal{Z}^{2}$ and $K \in\{4,6 L, 6 R, 8)$, then the following metrics are widely used:

$$
\begin{aligned}
& d_{4}(p, q)=|x-u|+|y-v| \\
& d_{8}(p, q)=\max (|x-u|,|y-v|) \\
& d_{6 R}(p, q)=\max (|x-u|,|y-v|,|x-u+y-v|) \\
& d_{6 L}(p, q)=\max (|x-u|,|y-v|,|x-u-y+v|)
\end{aligned}
$$

Hereafter, these metrics will be denoted by $d_{4} d_{g^{\prime}} d_{6 R^{\prime}} d_{6 L}$ (or d_{K} where K is the basis of the metric).

Definition. Let (A, α) a bidimensional metric space and α any metric, and let $N(p)=\left\{p_{i} \mid 0<\alpha\left(p_{i} p\right) \leq 1\right\}$ for A discrete or $N(p)=\left\{p_{i} \mid \alpha\left(p_{i} p\right) \rightarrow 0\right.$ but not 0\} for A real, the neighborhood of p and N_{p} its cardinality, i.e. the number of neighbors of p different from 0 Then:

1. If $N_{p}=1$ we say that p is a terminal point (TP).
2. If $N_{p}=2$ we say that p is an internal point.
3. If $N_{p} 3$ we say that p is a crossing point or simply a crossing.
4. If $N_{p}=3$ we say that p three-edge-point (TEP).

Definition. For $\left(Z^{2}, d_{k}\right)$ with $d_{k} \in\left\{d_{4}, d_{8^{\prime}} d_{6 R^{\prime}} d_{G I}\right\}$, we accept as a skeleton any K-connected set of points Q for which if a non-TP point is removed, the set Q is decomposed into two or more K-connected sets.

Figure 4. (a) An 8-connected skeleton. (b) A 4-connected skeleton.

Notice that for our definition of skeleton, the number of branches crossing a node in a 3×3 neighborhood is almost always the cardinality N_{p} of p (Figure 4), except for some particular cases (a few particular cases) such as the ones shown in Figure 5.

Figure 5. Some pathological cases that can be solved by special masking.

For these particular cases, instead of having one point as the point joining several branches we have four. Although these configurations may appear in real cases, they can be easily solved by special masking [1].

Figure 6. Admissible maximal cases after good skeletonization.

Another characteristic of 3×3 discrete neighborhoods is that non-particular cases containing more than 4 branches are not possible. The admissible maximal non-particular cases after a good sketonization (unitary skeletons) are the ones shown in Figure 6 .

Figure 7. Other possible admissible configurations.

Notice further that configurations as the ones shown in Figure 6 may appear also (and with a great probability) as shown in Figure 7 (b) and (d). So, we note the following:

Lemma 1 [2] For $\left(Z^{2}, d_{k}\right)$ with $d_{k} \in\left\{d_{\phi} d_{\beta^{\prime}} d_{6 R^{\prime}} d_{\sigma I}\right\rangle$, any crossing point should be decomposed into a set of three-edgepoints (TEPS).

Proof: It suffices to find a case where a crossing is generated by a set of TEPs to show that this is the general way to decompose a crossing point into TEPs in Z^{2}.

In general, any crossing (in the real case) will not be found in its natural form. Instead, it will appear decomposed into crossings of less order as shown in Figure 7. Thus, the general decomposition of any crossing is into TEPs. As a result we have the following:

Theorem 1. [2] A crossing point with n branches is equivalent to $n-2$ TEPs. i.e. $T E P s=n-2$.

Proof. By construction (see Figure 8), consider the case of the minimal crossing, i.e. a crossing with just one TEP (Figure 8(a)) then $n-T E P s=2$. If we append a new branch to this crossing point, a new TEP is added (Figure 8(b)), and $n-T E P s=2$. It is not difficult to see that if we continue appending new branches (Figure $8(\mathrm{c})$), $n-T E P_{s}=2$ remain the same, then TEPs=n-2.

(a)

(b)

(c)

Figure 8. To append a brach to a crossing adds a new TEP.

3. Feature extraction and object description

In this section the feature extraction process is described. This process is needed to obtain the reference model for each object to be further recognized. Lots of features have been used in the past to derive the model of an object. These include computing Fourier shape descriptors [20] and [10], different types of moments [7], [6], [17], [5], [9], [4], [16] and [15], as well as classical shape measures of compactness, elongatedness, and so on [11].

The kind of features used in this work are topological in nature. They have been chosen firstly due to the representation
chosen to describe the structure of the shape, and secondly, because topological features have proven to be very nice global descriptors in shape recognition [18]. The two topological features chosen here are the terminal points (TPs), i.e. points with just one neighbor and the three-edge-points (TEPs), i.e. points with only three neighbors. These features have been already used in the computation of the Euler Number of a binary shape [2]. The extraction of these features is as follows. From a binary image containing one or more binary objects:

1. Skeletonize the image until a 4 -skeleton for each of object is obtained. The method used in this case (see [1] and [3]) profits the advantages of the Fast Distance Transformation (FDT) to rapidly obtain the desired skeleton. For this, it uses a logical operator over the FDT instead of the classical morphologic operators over the discrete array (erosion and dilation), to obtain a much faster algorithm.

2. Label each pixel as:

- a termianl point if the number of its 4 -neighbors equals one.
- a crossing point if the number of its 4 -neighbors is greater or equal to three.

3. Decompose each crossing point p into its number of TEPs. This number, as we said and as it was shown in [2], equals the number of branches composing the crossing point-2, or equivalently, $N_{4}(p)-2$.

Once each skeleton has been decomposed into its TPs and TEPs, their number is used to describe the object. An object is then described by a label (the label identifying the object) and two numbers: the number of TPs and the number of TEPs of its
associated skeleton. This information is used to build the database of models. It is a list of descriptions ordered by magnitude of the two elements: number of TPs and number of TEPs. Figure 9(a) shows some shapes, their skeletons and their corresponding descriptions. Figure 9(b) shows their positions along the database.

4. Object identification

Once the database of models has been constructed, a binary image containing one or more objects is presented to the system. Each object is then preprocessed as explained in section 3 to obtain respectively: its skeleton and its numbers of TPs and TEPs. The number of PTs and TEPs is then used as an access key to retrieve from the database of models the corresponding models. This process is depicted in Figure 9(c).

5. Results and discussion

The methodology proposed in sections 3 and 4 is applied in the recognition of flat objects comprising both rigid and articulated instances. The reference patterns used to train the system are shown in Figure 10(a). Their corresponding skeletons along with their descriptors are shown in Figure 10(b).

5.1. Rigid case

The patterns used to test the system's performance in this first case are shown in Figure 10(c). It is not difficult to see that they are copies of the same objects shown in Figure 10(b)

Figure 9. (a) Some objects and their descriptors. (b) Positions of these models in the database. (c) The searching process.
but subjected to a combination of a translation, a rotation and a change of scale. Note that in all cases (as expected) all objects were successfully recognized.

5.2. Flexible case

A more interesting problem to tackle with, is the case of recognizing articulated objects. i.e. objects with a certain number of rigid parts and links maybe different joining them. Two different classes of objects were used in this case. The first class comprises flexible objects composed of two or at most three rigid parts with a rotating or a translating axis: scissors, verniers, pliers, and so on; the second class comprises objects with a great number of rigid parts and different kind of links joining them: worms, spiders, crabs, and so on. The patterns used to test the system belonging to the first class are shown in Figure 11 (a). The matching results are shown in Figure 11(b). Note again that in all cases, all instances were well recognized.

Figure 10. (a) Reference patterns. (b) Their sketetons and descriptors. (c) Test patterns.

In the second phase of the experiment, a couple of sequences of images representing the movement of an object among other objects in the scene, were used to test the system. Both sequences are shown in Figures 12(a) and 12(a). The goal here was to follow the movement of a given object among the others given its modeling parameters. This was carried out by marking the object's pixels with a different symbol. In this case, the object's pixels appear darker than the rest. The tracking results are shown in respectively in Figures 12(b) and 12(b). Note again the effectiveness of the method in both cases.

5.3. Discussion

It is obvious that in both cases the method will present some problems. For example, it suffices that any of the appendices of the staircase shown in Figure 10(b) and (c) disappears so that the system fails. Similarly, it suffices that the worm of Figure 13 cross a couple of its multiple legs, so the same occurs. The same problem will appear if the skeleton's connectivity is lost or if some parasite branch appears at the moment of the obtaining of the skeleton.

It is also clear that the exclusive use of the TPs and the TEPs for the modeling of wire-shapes cause that a lot of objects with different shape have the same number of TPs and TEPs. This is the case, for example, of the eyeglasses of Figure 10 and the scissors of Figure 11. In this case the system will give as a result a list of those objects having the same pair (TPs, TEPs).

6. Conclusions and future research

In this paper, a simple method for the recognition of twodimensional wire-objects was presented. It is based on a topological model of the object (its skeleton) using as features the number of terminal points (TPs) and the number of three-edge-points (TEPs), i.e. points with only three neighbors in the objects' skeleton. Both the rigid and the articulated cases were tackled with nice results.

The principal merits of the proposed approach are its originality, execution speed and robustness in the presence of geometrical changes. One disadvantage of the proposed method is that it completely topologically dependent. This means that the object's topology cannot be broken. If this is the case, a different method should be used. A local one could be a good option.

Another characteristic of the present approach is that there exist a multitude of shapes sharing the same set of TPs and TEPs. This problem could be partially solved for example by using (along with the number of TPs and TEPs) their distribution along the skeleton to obtain a more complete
model, by means of a graph for example. As a future work, we are planning to tackle the more challenging problem of recognizing both 2-D rigid and non-rigid objects when the object is occluded by other objects or by itself, when some of the objects' information is missing and when some noise is present in the
image. Figures 14 (a), (b), (c) and (d) show these four cases. Although it is true that the recognition of flat objects from their skeletons is still lacking a real success, perhaps if combined with other techniques like contour coding, special scanning sequences, model matching; etc. it may turn to be a winner.

(a)

(b)

Figure 11. (a) Flexible reference patterns. (b) Flexible test patterns.

Figure 12. (a) A test sequence. (b) Tracking the man-pattern.

Figure 13. (a) Test sequence (b) Tracking the worm-pattern.

Figure 14. (a) An object occluding itself. (b) Mutually occluding objects. (c) Incomplete object. (d) Noisy object.

References

[1] J. L. Díaz de Leon S., Skeletonization algorithms for binary images, CINVESTAV - IPN, Departamento de Ing. Electrica, Sección de Control Automático, August, 1993, In Spanish.
[2] J. L. Diaz de León S. and J. H. Sossa, On the computation of the Euler number of a binary object, Pattern Recognition, 29(3):471-476, 1996.
[3] J. L. Díaz de Leon S. and P. Wiederhold, Skeletonization algorithms based on several connectivity criterions. In preparation.
[4] S. O. Belkasim and M. Shridhar and M. Ahmadi, Pattern recognition with moment invariants: a comparative study and new results, Pattern Recognition, 24(12):1117-1138, 1991.
[5] J. F. Boyce and W. J. Hossack, Moment invariants for pattern recognition, Pattern Recognition Letters, 1:451-456, 1983.
[6] S. Dudani and K. J. Breeding and R. D. McGhee, Aircraft identification by moment invariants, IEEE Transaction on Computers, 26: 39-45, 1977.
[7] M. K. Mu, Visual pattern recognition by moment invariant,

IRE Transaction on Information Theory, 12:179-187, 1962.
[8] T. F. Knoll and R. C. Jain, Recognizing partially visible objects using feature indexed hypotheses occluded parts, IEEE Journal of Robotics and Automation, 2(1):3-13, 1986.
[9] Z. Mingfa nad S. Hasani and S. Bhattarai and H. Sing, Pattern recognition with moment invariants on a machine vision system, Pattern Recognition Letters, 9:175-180, 1989.
[10] E. Persoon and K. S. Fu, Shape discrimination using Fourier descriptors, IEEE Trans. Syst. Man, Cybern., 7: 170-179, 1977. [11] A. Rosenfeld and A. Kak, Digital Picture Processing, Academic Press, New York, 1976.
[12] D. Rutovitz, Pattern Recognition, J. Royal Statist. Soc., 129:504-530, 1966.
[13] H. Tamura, A comparison of line thinning algorithms from a digital geometry viewpoint, Proceedings of the 4 th. Int Conf. on Patt. Recognition, 715-719, 1978.
[14] J. L. Turney and T. N. Mudge and R. A. Voltz, Recognizing partially occluded parts, IEEE Trans. Patt. Anal. and Mach.

Intell., 7: 410-421, 1985.
[15] W. Wen and A. Lozzi, Recognition and inspection of manufactured parts using line moments of their boundaries, Pattern Recognition, year $=1993,26(10): 1461-1471,1993$.
[16] W. Wen and A. Lozzi, Recognition and inspection of twodimensional industrial parts using subpolygons, Pattern Recognition, 25(12):1427-1434, 1992.
[17] R. Y. Wong and E. L. Hall, Scene matching with moment invariants, Computer Graphics and Image Processing, 8: 1624, 1978.
[18] H. S. Yang and S. Sengupta, Intelligent shape recognition for complex industrial tasks, IEEE Control Systems Magazine, June, 23-29, 1988.
[19] S. Yokoi and J. Toriwaki and T. Fukumura, An analysis of topological properties in digitized binary pictures, Computer Graphics and Image Processing, 4:63-73, 1975.
[20] C. Zhan and R. Roskies, Fourier descriptors for plane closed curves, IEEE Transaction on Computers, 21:269-280, 1972.

Juan Humberto Sassa Azuela. Nacionalidad mexicana, obtuvo el doctorado en el I.P.N. de Grenoble, Francia con espectalidad en informática. Profesor titular en el Centro de Investigación en Computación del I.P.N. Areas de interés: Visión por Computadora, Reconocimiento de Patrones Visuales y Control de Sistemas Electromecánicos usando Información Visual.

Juan Luis Dlaz de Led́n Santiago. Nacionalidad mexicana, obtuvo el doctorado en el CINVESTAV del I.P.N, México con especialidad con ingeniería eléctrica. Profesor titular en el Centro de Investigación en el I.P.N. Areas de interes: morfologia matemática, topologiay procesamiento de Imágenes.

DEBE DECIR

PORTADA:
Revista Iberoamerica de Computación
CONTRAPORTADA:
Votumen. I Numero.
Volume. 1. Number 1
006 Bruce H. Mc.Cormick,
David A. Batte and Andrew T. Duchwski
014 JoséRuiz. Shulcloper,
Martin G. Chac y losé F. Mantinez
Bases Conceptuales para una Teoria de Objetos Simbólicos
022 Gustavo Núnez and Matias Alvarado
Contextual Knowiedge Rewsoning
Representation and Automatizaton
028 Igor A. Bolshakov
El Modelo Morfologico Formal para la Síntesis de Sustantivos y Adjetivos en Espatiol
038 1. Humberto Sossa and J. Luis Diaz de Loón
Recognizing Planar Riding and Non-Riding Wire-Shapes
046 Sergio R Sandoval
Revisión de libros
048 Amuncios y Eventos
Announcements and call for papers

PRIMERA DE FORROS

Juan Manuel Ibarra Centro de Ivestigación
en Computación-IPN México
Pag. 1
Volumen I Número. 1
Volume I Number. I
006 Bruce H. Mc.Cormick,
David A. Bate and Andrew T. Duchwski
014 José Ruiz. Shulcloper,
Martin G. Chac y Jose F. Martinez
Bases Conceptuales para una Teoria de Objetos Simbólicos
022 Gustavo Núñez and Matias Alvarado
Contextual Knowledge Reasoning
Representation and Automatizaton
028 Igor A. Bolshakov
El Modelo Morfolegico Formal pars la Síntesis de Sustantivos y Adjetivos en Español
038 J. Humberto Sossa and J. Luis Diaz de León
Recognizing Planar Riding and Non-Riding Wire-Shapes
046 Sergio R. Sandoval
Revision de libros
048 Anuncios y Eventos
Announcements and call for papers
PÁG. 2
Línea 11
invited several well know Mexican and foreign researchers in Computer Science and related fields,
pAG. 3
Linea 9
Corree electrónico : Revista@pollux, cenac.ipn.mx
PAG. 26
Matias Alvarado Mentado. Nacionalidad mexicana, es licenciado en Matemáticas por la Facultad de Ciencias de la Universidad Nacional Autonoma de México.

Juan Luis Dinz de León Santiago. Nacionalidad mexicana obtuvo el doctorado en el CINVESTAV del IP.N, México con especialidad con ingenieria eléetrica. Profesor titular en el Centro de Investigación en el I.P.N

PAG. 52
Linea 33
[7]..

PAG 53
Linea 14 Los articulos deben ajustarse a las siguientes especificaciones :

Revista Iberoamericana de Computación

Volumen I Numerol
Volume I Number I
5 Bruce H. McCormick,
David A. Batte and Andrew T. Duchowski
13 José Ruiz Shulcloper.
Martin G. Chac y Jose F. Martínez
Bases Concepruales para una Teoria de Objetos Simbolicos
21 Gustavo Nünez and Matias Alvarado
Contextual Knowledse and Belief :
Representation and Reasoning
27 Igor A. Bolshakov
El Modelo Morfologico Formal para Sustantivos y Adjetivos en el Español
37 J. Humbero Sossa and J. Luis Diaz de Leín
Recognizing Planar Rigid and Non-Rigid Wire-Shapes
45 Sergio Sandoval Reyes
Revisión de libros
47 Anuncios y Eventos
Announcements and call for papers

Juan Manuel Ibarra Zannatha Centro de Investigación
en Computación-IPN México

Volumen I Número 1
Volume I Number 1
5 Bruce H. McCormick
David A. Batte and Andrew T. Duchowski
13 José Ruiz Shulcloper
Martin G. Chac y José F. Martinez
Bases Conceptuales para una Teoria de Objetos Simbolicos
21 Gustavo Núnez and Matias Aivarado
Contextual Knowledge and Belief
Representation and Reasoning
27 Igor A Bolshakov
El Modelo Morfológico Formal para Sustantivos y Adjetivos en el Español
37 J. Humberto Sossa and I. Luis Díaz de León
Recognizing Planar Rigid and Non-Rigid Wire-Shapes
45 Sergio Sandoval Reyes
Revisién de libros
47 Anuncios y Eventos
Announcements and call for papers
invited several well known Mexican and foreign researchers in Computer Science and related fields

Correo electrónico : Revista@pollux cenac.ipn.mx
Matias Alvarado Mentado. Nacionalidad mexicana, es licenciado en Matemáticas por la Facultad de Ciencias de la Universidad Nacional Autónoma de México

PAG. 44
Juan Luis Diaz de Lén Santiage. Nacionalidad mexicana, obtuvo el doctorado en el CINVESTAV del
I.P.N, México con especialidad en ingenieria elécrica. Profesor titular en el Centro de Investigación en Computación en el I.P.

Linca 33
[7] A Rosenfeld Digital Topology Amer.Arath Montly,
86:621-630, 1979.
[7] G. Matheron. Random Sets and Integral Geometry.
John Wile and Sons, New York, 1995.
[7] B. Vazquez, IH. Sossa and JL. Díaz de León
Autoguided Vehicie Control using Expended Time
B-splines. In IEEE Intrinational Conference on Systems,
Man and Cybermetics, pages 2786-2791, San Antonio
Texas, October, 1994.
[7] P. Permer, P. Wang and A. Rosefeld (Eds). Advances
in Structural and Syntactical Pattern Recognition,
Springer 1996.

Linca 14 Los articulos deben ajustarse a las siguientes especificaciones

[^0]: * A preliminary version of this paper appeared in the proceedings of the 6^{n} International Workshop on Structural and Syntactical Pattern Recognition, Leipzig, Germany. August 1996 pp. $300-309$ under the title "Recognizing 2-D rigid and non-rigid wire-shapes".
 ${ }^{1}$ Humbero Sossa is also a researcher at CINVESTAV, Sección de Control Automático, Av. IPN. 2508, México, D.F. 07300 , México, e-mail: hossa@ctrl.cinvestav.mx

