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Abstract. Modern reorder buffers (ROBs) were 
conceived to improve processor performance by 
allowing instruction execution out of the original 
program order and run ahead of sequential instruction 
code exploiting existing instruction level parallelism 
(ILP). The ROB is a functional structure of a processor 
execution engine that supports speculative execution, 
physical register recycling, and precise exception 
recovering. Traditionally, the ROB is considered as a 
monolithic circular buffer with incoming instructions at 
the tail pointer after the decoding stage and 
completing instructions at the head pointer after the 
commitment stage. The latter stage verifies instructions 
that have been dispatched, issued, executed, and are 
not completed speculatively. This paper presents a 
design of distributed reorder buffer microarchitecture 
by using small structures near building blocks which 
work together, using the same tail and head pointer 
values on all structures for synchronization. The 
reduction of area, and therefore, the reduction of 
power and delay make this design suitable for both 
embedded and high performance microprocessors.  

Keywords. Superscalar processors, reorder-buffer, 
instruction window, low power consumption. 

Diseño de un búfer de reordenamiento  
para procesadores de alto desempeño 

Resumen. El búfer de reordenamiento de instrucciones 
(ROB) fue conceptualizado para mejorar el desempeño 
de los procesadores al permitir ejecutar instrucciones 
fuera del orden original del programa y en avance al 
instante preciso de la ejecución secuencial, explotando 
el paralelismo que existe a nivel de las instrucciones 
ILP. El ROB es una estructura funcional de la máquina 
de ejecución de los procesadores para dar soporte a la 
ejecución especulativa, al reciclado de los registros 
físicos y a la recuperación precisa de excepciones. 
Tradicionalmente el ROB es considerado un búfer 

circular monolítico en donde las instrucciones entran 
en la dirección especificada por un apuntador de cola 
después de la etapa de decodificación y son 
terminadas en la dirección especificada por un 
apuntador de cabecera después de la etapa de 
finalización. El artículo presenta el diseño de un búfer 
de reordenamiento de instrucciones distribuido en 
pequeñas estructuras cercanas a los bloques 
funcionales con los cuales interactúan, usando los 
mismos valores de apuntadores de cola y cabecera por 
sincronía. La reducción de área y por consecuencia la 
reducción de consumo de energía y retardo hacen de 
este diseño apropiado para procesadores embebidos y 
procesadores de alto desempeño.  

Palabras Clave. Procesadores súper escalares, búfer de 
reordenamiento, ventana de instrucciones, consumo 
de baja potencia. 

1 Introduction 

Superscalar processors allow the execution of 
more than one instruction in a clock cycle; this 
goal becomes increasingly complex to achieve in 
hardware. The total complexity is distributed 
along the pipeline stages in order to make it 
manageable. As each stage is designed to 
support the parallel execution of N instructions by 
a processor, such a processor is referred to as an 
N-way processor. Modern superscalar processors 
implement deep pipelines by splitting the 
established stages (IF instruction fetch, IDe 
instruction decode, IR instruction rename, IDi 
instruction dispatch, IS issue, EX execute, WB 
write back, and IC instruction commitment) into 
sub-stages to get more clock frequency and more 
in-flight instructions.  
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A processor microarchitecture is divided into 
two sections: the front end, covering the IF, IDe, 
IR, and IDi stages executing in program order, 
and the back end, covering IS, EX, and WB 
executing OOO out of order; finally, IC completes 
the instructions in order.  The OOO execution is 
used to exploit Instruction Level Parallelism (ILP) 
of in-execution code to enhance the IPC 
performance. To be able to perform out-of-order 
execution, several scheduling techniques are 
implemented along the processor 
microarchitecture. Dynamic scheduling 
techniques covering from IF to IC are branch 
prediction, register renaming, speculative 
execution, exception recovering, resources 
recycling, amount others. An important structure 
that makes the dynamic scheduling possible is 
the reorder buffer (ROB).  

The ROB unit stores all instructions in 
execution and executed. The executed 
instructions wait to be committed by the 
processor. While instructions fly across the 
pipeline stages, several flags are being set in 
order to preserve the processor’s state because 
of recovering misspeculation support. Speculative 
execution is the execution of instructions on an 
optimistic code path chosen by the branch 
predictor unit. The instructions of the chosen path 
become non-speculative when the branch 
condition is computed and the destination 
address matches the speculative address offered 
by the branch predictor. If a mismatch takes 
place, an exception recovery mechanism is 
launched.  

This paper presents a design of distributed 
reorder buffer microarchitecture by using small 
bit-vector structures near building blocks which 
work together, using the same tail and head 
pointer values of all structures for synchronization 
instead of a monolithic structure. The rest of the 
paper is organized as follows. Section 2 presents 
related work concerning the development of 
today’s processor microarchitectures. Section 3 
describes the proposed design, analyzing all 
functions performed by the ROB unit. Section 4 
analyzes simulation results, and finally, Section 5 
presents the concluding remarks.  

2 Related Work 

Since functional units have different latencies and 
conditional branches may be in any position of a 
fetched instruction group, instruction completion 
may be out of order causing imprecise interrupts. 
Two techniques were developed to solve this 
problem. The first technique is to keep the state of 
a processor precise by allowing instructions to 
update the register file in program order. The 
second one is to tolerate the state of a processor 
imprecise by allowing instructions to update the 
register file out of order, but with a procedure for 
precise state recovery after an exception event.  

Four methods are analyzed in [12]: 

1) Completion Order. In this method, 
processor issues instructions only if all previous 
instructions are free of exceptions. The processor 
guarantees it by reserving the number of stages 
equal to the clock latency instructions in the result 
shift register. This simple approach does not 
make a full use of multi-latency functional units.  

2) Reorder Buffer. This method allows out-of-
order completion but stores the result of each 
instruction in a FIFO structure to reorder the 
instructions before modifying the processor’s 
state. Since the processor cannot issue 
instructions that depend on results waiting in the 
reorder buffer to be written to the register file, this 
method has a performance loss. 

3) History File. In this method, instructions 
can be completed in any order and immediately 
updated to the register file. However, a processor 
needs to save the previous state of the register 
file in a history buffer utilized for exception 
recovery. The history file method uses a reorder 
buffer structure and a result shift register. 

4) Future File. This method uses two 
structures of the register file, one called the 
architecture file and other called the future file. 
Instructions are issued and written back to the 
future file which provides the source for 
succeeding instructions. The processor updates 
the architectural file as in the reorder buffer 
method.  

When an exception occurs, the architectural 
register file is copied to the future file in order to 
recover the precise processor’s state. Complexity-
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performance comparison results show that the 
history file method should be used for high speed 
computations to achieve precise exceptions.  

The first approaches to the ROB design were 
based on a monolithic multiport memory with the 
wakeup logic, selection logic, and the register file 
working  together as  proposed in [8]. Additionally, 
the future file method is implemented for precise 
interrupt recovering. This organization is used in 
the Intel P6 microarchitecture design shown in [4]. 
Several techniques are proposed in [6] to reduce 
complexity and power consumption. The first 
technique is to eliminate the ROB write ports by 
allocating small FIFO queues to store results of 
each functional unit. The second technique is to 
eliminate the ROB read ports for reading out the 
source operand values from FIFO queues using 
small sets of associative-addressed retention 
latches and forwarding buses to supply results to 
the instructions waiting in the issue queue. The 
second technique was motivated by the fact that 
only a small fraction of source operands read their 
values from the reorder buffer slots. The design 
results in low performance degradation and 
significant power complexity reduction.  

The MIPS R10000 microarchitecture is 
described in [13], while [7] and [5] specify the 
Alpha 21264 microarchitecture. Both 
microarchitectures, with a few variations, 
represent the core of a modern superscalar 
processor, replacing the monolithic ROB of [8] 
and [3] for MIPS R1000 with a 32-entry active list 
(ROB), two architectural register banks of 64-
entry for integer, 64-entry for floating point and 
16-entry queues for integer, floating point and 
load-store instructions. In the case of the Alpha 
21264, a monolithic-ROB was replaced with an 
80-entry ROB, two architectural register banks of 
80-entry for integer, 72-entries for floating point 
algebraic operations, and compacting queues for 
20-entries for integer algebraic operations, 15-
entries for floating point algebraic operations and 
load-store instructions. A similar ROB architecture 
where the register file is separated from the 
reorder buffer is used in the Intel Pentium 4 Burst 
microarchitecture [4]. Two techniques analyzed in 
[2] allow processors to keep thousands of in-flight 
instructions. In the first technique, the normal 
ROB structure is replaced with a mechanism to 
make check-pointing based on simple heuristics: 

1) at the first branch after each 64 instructions, 2) 
after 500 instructions, and 3) after 64 stores. The 
second technique termed Slow Lane Instructions 
Queuing introduces a secondary buffer used to 
store instructions moved from fast instruction 
queues because of issue time length, freeing slots 
of instruction queues for more decoded 
instructions which will be executed quickly. These 
instructions are returned to the fast queue when 
ready to issue. With these two mechanisms, the 
resultant processor microarchitecture includes 
128-entry pseudo-ROB, 128-entry IQ’s, and 2048-
entry SLIQ, reporting a performance increase of 
204% relative to a conventional processor with 
128-entry ROB and 128-entry IQ´s. 

It is proposed in [9] to replace the ROB with a 
validation buffer structure VB, two structures of 
register alias tables (the front-end RATfrom used in 
the rename stage and the retirement RATret for 
maintaining the architectural state, similar to the 
future file method) plus one additional table 
necessary to track the physical register status 
(RST) for recycling. This microarchitecture allows 
retiring instructions out-of-order of VB as soon as 
it is known that they are non-speculative, updating 
the RATret which contains a valid state of register 
mapping and is used in recovering, and updating 
the RATfrom table. The RST table has, in each 
entry, a counter for physical register successors, 
a valid remapping bit, and a completed bit to 
identify when the corresponding entry contains (0, 
1, 1). These conditions ensure that a specific 
register can be safely recycled. Compared with in-
order-commitment, the VB microarchitecture 
presents high IPC for FP benchmarks with 32-
entry ROB size. Because of OOO retirement and 
early physical register recycling, VB behavior in 
modern superscalar processors with major size 
structure is more efficient. 

3 Distributed ROB Design 

The reorder buffer structures are shown in Figure 
1. The ROB is composed of 1-bit vectors for 
dispatched, branch, branch decision, issued, and 
executed flags, 7-bit structures for old destination 
and current destination registers plus a 5-bit 
structure for the exception pointer, using the 
same tail and head pointer. All structures are of 
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the ROB size. The exception pointers use a 5-bit 
structure to index the branch ROB structure to 
update the branch predictor unit. All instructions 
are dispatched to different queues: integer, 
floating point, and load-store; a flag is activated 
(set) in the dispatched flag structure indexed by 
the tail pointer. At the same time, the tail pointer is 
stored in the in-flight tag field of IQ with the 
incoming instruction. When instructions are ready 
to be executed, they are issued to the functional 
units setting a flag in the issued flag structure 
pointed by the previously stored in-flight tag. A 
description of IQ’s operation can be found in 
[10, 11], in which the wakeup, allocation, and 
issue operations are presented in great detail. 
Each functional unit executes instructions and set 
a flag at execution ending in the executed flag 
structure entry indicated by the in-flight tag 
pointer. The number of 1-bit write ports in the 
executed flag structure is equal to the number of 
execution units of a processor. 

3.1 Speculative Execution 

The branch predictor unit is responsible for 
speculative execution support.  In each clock 
cycle, the fetch unit calculates the next program 
counter next-PC incrementing the PC-register. 
Meanwhile, the branch predictor unit uses the 
calculated next-PC value to look for branches and 
their respective destination addresses in the 
branch history buffer BHB in order to offer a 

speculative program counter spec-PC for the next 
cycle. In the next clock cycle, instructions are 
fetched from a non-speculative or speculative 
path depending on the branch predictor decision 
(0-taken or 1-not taken) as it is shown in Figure 2. 
When branch instructions are decoded, the 
dispatch stage sets a flag in the branch flag 
structure indexed by the tail pointer. 

The superscalar processor schedules branch 
instructions in three sub-operations: 1) calculate 
the branch address destination, 2) resolve the 
branch condition, and finally, 3) verify the decision 
chosen by the branch predictor. 

3.1.1 Branch Address Calculation 

The fetch unit uses one ACU to increment the 
program counter (see Figure 2) and the decode 
stage uses another one to compute the branch 
address destination (see Figure 3). Since 
branches are relative to a given PC, the address 
destination is computed using the PC and the 
branch instruction offset (PC+ sign extended 
offset). Performing the branch predictor updating 
at commitment requires both the PC and the 
offset values, and furthermore, the branch 
condition calculation.  

The previous two values demand an area 
along the reorder buffer, and this space is not 
exploited for all instructions in the window. Our 
design utilizes a small structure associated to the 
branch predictor unit for storing these values.  

Fig. 2. Fetch unit scheme 

 

Fig. 1. Integer execution engine 
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The PC and the calculated destination address 
are stored in a structure smaller than the reorder 
buffer size, illustrated in Figure 3 as a Branch 
ROB. After the branch condition is calculated, the 
functional unit sets the branch decision flag (0-
taken or 1-not taken) and the executed flag (see 
Figure 1). 

Then, the branch and executed flags enable 
the exception pointer to select the corresponding 
Branch ROB entry. The PC and the branch target 
address are used to update the branch predictor. 
This action should be accomplished at the write-
back stage to launch a recovery mechanism in 
the case of misprediction and reduce wrong path 
executions. 

3.1.2 Resolving the Branch Condition 

The speculative behavior (taken/not-taken) of a 
conditional branch (beq rs, rt, offset) is resolved 
by comparing the processor registers (rs==rt). 
When the condition is computed as illustrated in 
Figure 1, the processor writes its result in the 
branch decision flag structure. Then, this result is 
used for the branch predictor unit to update its 
decision machinery and to signal all structures for 
recovering in case of misspeculation. In both 
cases, the exception pointer is used.  

3.1.3 Verifying Branch Predictor Decisions 

Since instructions are unknown at the fetch cycle, 
a superscalar processor needs to resolve all 

branch types in the same cycle via the branch 
predictor unit. Subsequently, more pipeline cycles 
are necessary to verify if the prediction was 
correct. Unconditional branches and return 
address are resolved by the branch predictor via 
a branch target buffer and a return address stack. 
However, conditional branches need to be 
predicted.  

The last step of turning a branch into a non-
speculative instruction is to verify the decision 
chosen by the branch predictor. This action starts 
when the conditional instruction has been 
executed by the functional unit setting the branch 
decision flags and the executed flag. The branch 
flag is set at dispatch once a given instruction has 
been decoded. These two conditions (the branch 
flag and the executed flag) are sufficient to select 
the E-pointer and the branch decision flag 
calculated by the processor as shown in Figure 3. 
The exception pointer is used to index the 
corresponding entry of the branch reorder buffer 
in order to read the information in the PC and the 
computed branch target address. The information 
obtained from the exception pointer and the 
branch decision flags are used by the branch 
predictor to verify past prediction.  

If the prediction was satisfactory, branch 
predictors set a non-speculative flag in the 
corresponding in-flight tag. For misspeculation, 
the fetch unit signals in all structures send the 
checkpoint for recovery. 

3.1.4 Branch Predictor Unit Update  

When the predictor hits or misses in the prediction 
of conditional branches, the processor feedbacks 
to the branch predictor unit with the condition and 
the branch destination address calculated to 
improve confidence for future predictions.  In the 
case of misses, together with the update action, 
the exception recovery mechanism is launched to 
clean the reorder buffer of incorrect path 
instructions. In the proposed model, branch 
decision flags and executed flags are set by the 
processor on the write-back stage.  

This condition is sufficient for selecting the 
corresponding entry of BROB to make the branch 
unit start updating as explained in Section 3.1.3, a 
fixed priority circuit can be used for the branch 
predictor unit update request logic. 

 

Fig. 3. Branch ROB scheme 
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3.2 Physical Register Recycling 

Another support provided by the ROB is physical 
register recycling. The life time of a logical 
register is specified by the compiler, when the 
logical register is reused in the program, which 
means that the last value is no longer necessary 
in the execution code. Its associated physical 
register is considered old and must be recycled 
when the instruction is complete.  

Each renamed instruction has a current 
destination physical register and an old 
destination physical register; both registers are 
inserted in the ROB with the instruction at 
dispatch. The old destination ROB section works 
together with the renaming unit of free register list 
as shown in Figure 4. At commitment, old 
destination register tags are recycled to the free 
physical register pool and are used to turn off the 
register ready bits which are set by wakeup 
events while the current destination physical 
register tag is used to set the register valid bit in 
order to update the architectural state of the 
processor.  

3.3 Load/Store Reorder Buffer 

LD/ST instructions are split into memory address 
calculation and the corresponding read or write 
action. A special address queue is used to store 
the immediate value, the base address register, 
the tag of the source or destination register, the 
in-flight tag, and the LS-Buffer entry assigned to 
memory instructions.  A special LS-Buffer is used 
to store memory data, memory address, R/W bit, 
and in-flight tag as an interface to the memory 
port as shown in Figure 5. 

Memory address computations are resolved 
by the ACU and the results are written to the 
address field of the LS-Buffer. For loads, the 
destination register tags appoint the register file, 
to write the data read from memory. For stores, 
the source register is read from the register file 
and written to a LS-Buffer entry data field. Since 
memory access involves multi-cycle operations, 
the issue flag of the reorder buffer is set when the 
address calculation is sent to execution 
meanwhile the execute flag is set when the 
instruction memory access is complete.  

3.4 Commitment Mechanism  

The superscalar processor makes a checkpoint of 
its state in each clock cycle through the rename 
units, issue queues, and register file by storing 

Fig. 5 LOAD/STORE instruction scheduling  
(LS-Queue and LS-Buffer) 

 

Fig. 4. Physical register recycling and update 
architectural state schemes 
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multiples copies in recovery structures. They map 
its status in shadow memories. Rename units use 
shadow maps, instruction queues use bit-vectors 
as valid entries, and the register file uses register 
ready bit and valid bit vectors. For example, in a 
4-way processor, RATs of rename units maps 
four instructions in each cycle. This mapping 
corresponds to four instructions which will be 
allocated in one entry of the reorder buffer in the 
next cycle.  

Group commitment is the mechanism 
implemented in our design; it assists the 
processor’s state management and recovery 
while reducing design complexities with negligible 
impact performance. Figure 6 shows the 
structures of a reorder buffer organized in groups; 
here the instructions are fetched in a 4-way 
processor to illustrate group commitment 
scheduling. At dispatch, four instructions are 
inserted in the reorder buffer and each instruction 
sets a bit in its corresponding bit-vector dispatch 
structure. Instructions could be dispatched to any 
queue (IQ, FPQ, or LSQ), but when issued, each 
queue can set the corresponding issue flag in a 1-
bit vector issue structure. Executed flags are set 
by the functional units at the end of execution. A 
non-speculative flag is set by non-speculative 
instructions at dispatch and by the branch 
predictor unit when verifying the chosen decision 
for the branch predictor unit at write-back. 

When four consecutive instructions have been 
dispatched, issued, executed, and are not 

speculative, the commitment mechanism 
augments the head pointer register for all 
structures of the reorder buffer, freeing resources 
such as the corresponding checkpoint copies and 
old destination registers. Note that the head 
pointer is a register of 7 bits split into a 5-bit part 
to index the ROB-entry and a 2-bit offset to select 
a precise in-flight instruction. This addressing 
mechanism allows fast and exact exception 
recovery. The 5-bit ROB entry matches the RAT 
copy index of the renaming unit and other 
checkpoint structures, while the 2-bit offset 
permits selecting the offending instruction exactly.  

3.5 Exception Recovery  

When misspeculation is detected by the branch 
predictor unit, the checkpoint index is sent to all 
structures including the reorder buffer unit. This 
index is loaded to the tail pointer register 
invalidating all entries between the tail pointer and 
the head pointer, and their corresponding 
checkpoint copies. Finally, the status checkpoint 
copies of every processor structure, indexed by 

 

Fig. 6 Group commitment scheduling 

Table 1. Processor configuration 

Element P1 P2 P3 

ROB 128 

B-ROB 08 16 32 64 

L/S Queue 32 

F-I-C-Width 4-4-4/8-8-8 

Int.  Functional 
Units 4-2-2/8-4-4 

ALU-MUL-DIV F.P. Functional 
Units 

Brach Predictor gshare, 2048-Entries 

Branch Penalty 8-Cycles 

Memory ports 2 

L1 Data  Cache 
64K 1 Cycle 

L1 Inst.   Cache 

L2 Unified Cache 256K 10 Cycles 

TLB 
8-Entry, 4-Way, 8KB 

pages, 30 Cycles 

Memory Latency 100 Cycles 
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the tail pointer, are updated as the earlier 
processor status.  

4 Evaluation 

The framework for evaluation is the Simplescalar 
Suite [1] with modifications presented in 
Section 3, compiled for the PISA architecture and 
configured with parameters as shown in Table 1. 
A subset of SPEC CPU2000 benchmarks were 
compiled for PISA and used as input. To explore 
the microarchitecture behavior, a dynamic subset 
of instructions of each benchmark consisting of 
200M committed instructions were simulated, 
getting statistics after 100M forward instructions. 

4.1 Evaluating Commitment in Group  

First, we evaluated the impact of group 
commitment compared with individual 
commitment. For comparison purposes, 08-entry, 
16-entry, 32-entry, and 64-entry BROB plus 128-
entry distributed ROB structures defined in 
Section 3 have been modeled and were 
compared with traditional 128-entry reorder buffer 
identified as 00-BROB. Figure 7 shows the 
average IPC performance, the results of 
simulating the subset SPEC CPU2000 integer 
and floating point benchmarks. The group 
commitment model allows the load-store 

instructions to be committed individually. The 
simulation results report a negligible negative 
impact on the processor performance. The worst 
cases are a 0.5% and 0.7% performance loss for 
4-way and 8-way processors.  

4.2 Measuring the Impact of the BROB Size 

Second, we evaluated the impact of the branch 
ROB structure size.  Our model stops the fetch 

Fig. 7. Average IPC performance for 4- and 8-way 
processors and different BROB size  

a) SPECInt simulation results 

b) SPECfp simulation results 

Fig. 8. 4-ways processor performance 
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activity when BROB becomes full until it has room 
to allocate new branches. Figures 8 and 9 show 
the processor performance for the four 
configurations of the branch-ROB structure a) for 
integer and b) for floating point for 4- and 8-way 
processors, respectively. We can observe a little 
performance loss for 08-BROB and 16-BROB, but 
for 32-BROB model there is no performance loss. 

The first consideration to select the optimal 
size of a Branch ROB is related with in-flight 
branch instruction average. Figure 10 shows the 
percentage of branches executed. Simulation 
reports (on average) 21.5 % of integer executed 
instructions and 12.5 % of floating point executed 
instructions corresponding to conditional 
branches.  

4.3 Measuring the ROB/BROB Occupancy 

The second consideration for selecting the 
optimal size of a branch ROB is to conserve the 
reorder buffer instruction occupancy similar to the 
traditional reorder buffer identified as 00-BROB 
but modeled with a BROB size equal to the ROB 
size in order to compare both ROB and BROB 

Fig. 10. Percentage of branches executed 

Fig. 11 Average ROB and BROB instruction 
occupancy 

a) SPECInt simulation results 

b) SPECfp simulation results 

Fig. 9. 8-way processor performance 
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occupancies. Figure 11 shows the average 
instruction occupancy. The baseline instruction 
occupancy is reached in the 32-BROB model. 
The BROB size is answered in part by the 
average of executed branches and it is fully 
answered with similar occupancy of the baseline 
reorder buffer. 

5 Conclusions  

This paper presents a simple reorder buffer 
design based on distributed five 1-bit flag 
multiport structures (the dispatched flag, the 
branch flag, the issue flag, the execute flag, and 
the branch decision flag), two 7-bit multiport 
structures (the old destination register tag and the 
current destination register tag), and one 5-bit 
multiport structure (the exception pointer), which 
presents an easy solution for commitment and 
branch misprediction recovery.  

The new multiport structures have 1 write 
port, 1 read port for the dispatched flag and the 
non-speculative flag, 6 write ports, 1 read port for 
the issue flag and 14 write ports, 1 read port for 
the executed flag and the branch decision flag 
structures for a 4-way processor.  The use of the 
group commitment scheme assists the recovery 
and the processor state management while 
reducing design complexities.  

The design proposes another hardware 
simplification by the use of a branch ROB, a small 
structure 25% of the ROB size to store the PC 
and the destination addresses of conditional 
branches. This microarchitecture allows updating 
the branch predictor unit as soon as the condition 
of the branch is resolved by the processor 
reducing unnecessary executions on the wrong 
path. The complete design does not cause a 
performance loss. 
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