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Abstract. Fundamental and applied research have instigated and 
still require today the development of methods for studying 
phenomena and measurement of properties in several fields of 
science. In this introductory chapter we will examine the basic 
principles of a whole range of methods based on the common 
principle of heating the sample with intensity modulated or pulsed 
radiation beams and measuring the resulting dynamical sample’s 
temperature (often denoted as thermal waves) or the fluctuations of 
some temperature dependent parameter, i.e., the so-called photothermal 
techniques. 

 
1. Introduction 
 
 About hundred years ago, Fourier [1] showed that expanding temperature 
distributions as series of waves could be useful in solving heat conduction 
problems, anticipating the concept of thermal wave, widely used today for the 
explanation of the photothermal (PT) phenomena, on which several 
measurement techniques are based [2]. In these techniques, the periodic or 
transient absorption of energy without re-emission losses leads to sample 
heating, which at the same time induces changes in temperature-dependent 
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parameters of the sample itself and/or of the surrounding medium, whose 
detection is the basis of the different experimental methods. 
 Fourier has used equations identical to those used today in describing 
thermal waves to propose a method for estimate the thermal properties at the 
earth crust, making use of the daily periodical temperature oscillations [3]. 
Today measurements of the soil’s temperature as a function of time at 
different distances from the earth surface and interpretation of the results 
using the thermal wave solution of the heat diffusion equation in presence of 
periodical harmonic heat sources allow the determination of parameters like 
the soil’s thermal diffusivity [4, 5], as proposed earlier by Fourier. This is 
probably one of the simplest experiments in thermal wave physics [6-8]. 
Although Ängström in 1861 proposed a similar temperature-wave method for 
measuring the thermal diffusivity of a solid in a form of a rod [9], it was not 
until the 1970’s that practical applications of PT techniques appeared.  This 
was motivated mainly by the works of Rosencwaig [10, 11] in the today well 
established field of Photoacoustic Spectroscopy (PAS), a technique based on 
the Photoacoustic (PA) effect, discovered approximately one century before 
by A. G. Bell [12], and investigated by relevant scientists of those times such 
as Röntgen [13], Tyndall [14] and Rayleigh [15]. It is worth to mention the 
early work of Viengerov in the 1930’s [16] using the PA effect in gases, a 
field of active current investigation [17, 18]. 
 Thermal waves can be generated using different kinds of radiation, but 
the most used form is by impinging a pulsed or intensity modulated 
electromagnetic light beam onto the sample to be investigated. Part of the 
light energy is then absorbed and transformed into heat by means of different 
non-radiative processes, which depend on the kind of the sample’s material 
and the incident photons energy. The generated heat will diffuse through the 
sample and a temperature field will be created, which can be denoted as a 
thermal wave field. As a consequence of the temperature changes induced in 
a sample, its temperature dependent properties will also change, as well as 
those of its neighboring media. The measurement of these changes is the 
basis of the different measurement configurations, i.e., of the different PT 
techniques. Following the mentioned mechanisms the photothermal signal, 
whether in the time or modulation frequency domain depending if the thermal 
waves are excited by pulsed or periodical radiation respectively, will depend 
on the optical properties of the material, on those describing the 
electromagnetic energy into heat conversion mechanisms, and on the thermal 
properties responsible for the heat transfer process. 
 Although the physical aspects related to the mechanisms involved in the 
optical generation of thermal waves are well known, including the role 
played in the PT techniques by the thermal parameters governing the heat 
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transport, some peculiarities of this phenomenon are often not well known or 
they are misinterpreted. For example, the majority of people base their works 
using equations associated with the parabolic heat diffusion equation derived 
from the law of Fourier for stationary heat conduction and the law of energy 
conservation, or continuity equation. But this theoretical framework not 
always describes the heat transfer regimes on very small space and time 
scales [19] such as those that appears in the recent developed fields of 
nanoscience and nanotechnology and when  thermal waves are excited using 
laser pulses of very short period when compared with the relaxation times of 
the heat carriers. Therefore, we will begin this chapter discussing the 
fundamental characteristics of the thermal transport in the case of time 
varying heat sources including aspects related to the so-called hyperbolic heat 
transport, trying to fill in part the lack of discussion in the field. Then we will 
briefly present the solution for the thermal wave fields in the case of pulsed 
and periodical heat sources, the so called thermal waves, making emphasis in 
their principal characteristics in the context of PT science and techniques. 
Although our general analysis here will be limited to the case of solid 
materials some special features concerning the work with liquids and gases 
will also be discussed.  
 
2. Heat transfer mechanisms 
 
 It is well known that any temperature difference within a physical system 
causes a transfer of heat from the region of higher temperature to the one of 
lower. This transport process takes place until the system has reached a 
uniform temperature throughout. Thus, the quantity of heat, H, transferred 
per unit time, t, should be some function, Φ, of the temperatures, Tl and T2, of 
both the regions involved, i.e., 
 

( )21,TT
t

H
Φ=

∂
∂                                                         (1) 

 
 It is denoted as the rate of heat flux (units of W) and its form depends on 
the nature of the transport mechanism, which can be convection, radiation or 
conduction (or a coupling of them) [20].  
 
2.1. Convection 
 
 Heat convection takes place by means of macroscopic fluid motion. It 
can be caused by an external source (forced convection) or by temperature 
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dependent density variations in the fluid (free or natural convection). In 
general, the mathematical analysis of convective heat transfer is extremely 
complex. These problems can often be solved only numerically or 
graphically. But convective heat flow in its most simple form, i.e. heat 
transfer from surface of wetted area A and temperature T2, to a fluid with a 
temperature T1<T2, and for small temperature differences ΔT=T2-T1, is given 
by Newton’s law of cooling, 
 

( )conv conv 2 1 convh A T T h A TΦ = − = Δ                                                       (2) 
 
The convective heat transfer coefficient, hconv (Wm-2K-1), is a function of 
several parameters of different kinds but independent of ΔT.  
 
2.2. Radiation 
 
 It is the continuous energy interchange between separated bodies by 
means of electromagnetic waves. In this mechanism the net rate of heat flow, 
qrad, radiated by a body surrounded by a medium at a temperature T1 is given 
by the Stefan-Boltzmann Law  
 

( )4 4
rad 2 1σAε T TΦ = −                    

(3) 

 
where σ is the Stefan-Boltzmann constant, A is the surface area of the 
radiating object and ε is the emissivity of its surface having absolute 
temperature T2. The non-linearity of Eq. (3) makes often difficult the solution 
of heat transfer problems. However a glance at Eq. (3) shows that if the 
temperature difference ΔT = T2-T1 is small enough, then one could expand 
Φrad as Taylor series around T1 obtaining a linear relationship: 
 

( ) ( )3
rad 1 2 1 rad 2 1 rad4 A T T T h A T T h A TΦ σ ε= − = − = Δ                  

(4) 
 
Observing the analogy with Eq. (2) we will denote hrad=4σεT1

3 as a radiation 
heat transfer coefficient.  
 
2.3. Conduction 
 

2.3.1. Fourier’s law 
 
 Thermal conduction can be understood as a microscopic down-
temperature diffusion process of heat within solids and stagnant fluids. It is a 
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process where the thermal energy, in the case of solids, is mainly transported 
by phonons, the quanta of lattice vibrations, and/or free electrons. In the case 
of fluids (i.e. liquids and gases) this process occurs through the movement of 
atoms and molecules in a more complicated form due to the presence of other 
hydrodynamic effects, such as convection.  
 The local heat flow-rate in some direction, r, of homogeneous solid 
material is governed by Fourier’s law: 
 

cond kA TΦ = − ∇                                                         

(5) 
 
The thermal conductivity, k, is expressed as the quantity of heat transmitted 
per unit time, t, per unit area, A, and per unit temperature gradient ∇T=∂T/∂r. 
The negative sign indicate that heat flow will take place in the opposite 
direction of the temperature gradient. Thermal conductivity is a measure of 
the ability of a material to conduct heat. Although it depends on temperature 
as well as pressure and, beyond it, for solids it is highly structure sensitive 
parameter, over moderate ranges of temperature and pressure it can often be 
considered as constant. For one-dimensional steady state conduction in 
extended samples of homogeneous and isotropic material and for small 
temperature gradients Fourier’s law can be integrated in each direction to its 
potential form. In one dimensional, rectangular coordinates it reads [20]: 
 

2 1
cond cond

2 1

T T TkA kA h A T
x x x

Φ
− Δ

= − = − = Δ
− Δ

                                                    

 (6) 

 
Here, k is called the mean thermal conductivity and hcond is the conduction 
heat transfer coefficient. Tl and T2 represent two planar isotherms at positions 
x1 and x2, respectively. Due to its analogy to electrical conduction, Eq. (6) is 
often defined as Ohm’s law for thermal conduction. This analogy shows that 
temperature differences are equivalent to potential differences (voltage) and 
(continuous) heat flux plays the role of (DC) electrical current. Then, the 
term  
 

kA
xRT

Δ
=                                                          (7) 

 

should be interpreted as a thermal resistance of the material, so that: 
 

condTT R ΦΔ =                                                         (8) 
 

Fourier’s law is often expressed in terms of the heat flux density, φ=Φcond/A, as: 
 

Tk∇−=φ                                                          (9) 
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2.3.2. Cattaneo’s equation 
 
 Something appears paradoxical in the description given above because 
Eq. (5) gives rise to infinite speeds of heat propagation. In other words, if we 
apply at a given instant a supply of heat to, for example, one face of a flat 
slab, according to Eq. (5) there is an instantaneous effect at the rear side, 
what of course is not physically reasonable. This paradox was resolved in the 
mid of the past century [21, 22] in the following way: If as a consequence of 
the temperature existing at each time instant, t, the heat flux appears only in a 
posterior instant, t +τ, for one dimensional heat flux (the here achieved 
results are easy extensible to the three dimensional case) the Fourier’s Law 
adopts the form: 
 

( ) ( )
x

txTktx
∂

∂
−=+

,, τφ                                     (10) 

 
The time τ is the so-called relaxation time, i.e. the build-up time for the onset 
of the thermal flux after a temperature gradient is suddenly imposed on the 
sample. If τ is small (otherwise Fourier’s Law would not work for the 
description of daily phenomena. In condensed mater τ is often related to the 
phonon relaxation time, which is in the picosecond range) then we can 
expand the heat flux density in a Taylor Series around τ = 0 obtaining: 
 

( ) ( ) ( )
t

txtxtx
∂

∂
+=+

,,, φτφτφ                                     (11) 

 
where we have neglected higher order terms. Substituting Eq. (11) into Eq. 
(9) leads to:  
 

( ) ( ) ( )
x

txTk
t

txtx
∂

∂
−=

∂
∂

+
,,, φτφ

                                   

(12) 

 
This is the so-called modified Fourier’s law, also known as Cattaneo’s equation. 
 
2.3.3. Heat conduction under non-stationary conditions: Heat diffusion 
equation 
 
 When a material is subjected to non-steady heating or cooling, its inner 
temperature profile is given in terms of time and spatial coordinates. In the 
more general case the resulting heat conduction can be analyzed by 
combining Cattaneo’s law with a heat flow balance or energy conservation 
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law. In each time instant, t, and for each point x, this law lauds (neglecting 
internal heat generation) 
 

( ) ( )
t

txTctxdiv
∂

∂
=−

,, ρφ                                      (13) 

 
where ρ is the density and c is the specific heat. The product C=ρc is called 
the specific heat capacity or heat capacity per unit volume. 
 From Eqs. (12) and (13) and assuming constant thermal conductivity we 
can obtain the homogeneous hyperbolic heat diffusion equation  
 

( ) ( ) ( ) 0,,1,
2

2

2

2

=
∂

∂
−

∂
∂

−
∂

∂
t

txT
t

txT
x

txT
α
τ

α
                (14) 

 
where α = k/ρ c is the thermal diffusivity, which can be considered as the 
ratio of heat conducted through the material to the heat stored per unit 
volume. 
 For τ = 0 we become the well known homogeneous parabolic heat 
diffusion equation, some times called Fourier’s second law: 
 

( ) ( ) 0,1,
2

2

=
∂

∂
−

∂
∂

t
txT

x
txT

α
                                    (15) 

 
3. Thermal waves 
 

3.1. Harmonic, periodic heat sources  
 
 Consider an isotropic homogeneous semi-infinite solid, whose surface is 
heated uniformly (in such a way that the one-dimensional approach be valid) 
by radiation (typically a light beam in PT phenomena, as stated before) of 
periodically modulated intensity I0(1+cos(ωt))/2, where I0 is the intensity of 
the source, ω=2πf is the angular modulation frequency, and t is the time. The 
temperature distribution T(x,t) within the solid can be obtained by solving Eq. 
(14) with the boundary condition (BC) 
 

( ) ( )⎥⎦
⎤

⎢⎣
⎡=

∂
∂

−
=

tiI
x

txTk
x

ωexp
2

Re, 0

0

                                  (16) 

 
which expresses that the thermal energy generated at the surface of the solid 
by the absorption of light is dissipated into its bulk by diffusion. In the above 
equation i=(-1)1/2 is the imaginary constant. 
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 The solution of physical interest for applications in PT techniques is the 
one related to the time dependent component. If we separate this component 
from the spatial part, the temperature can be expressed as: 
 
( ) ( ) ( )[ ]tixtxT ωexpRe, Θ=                                     (17) 

 
Substituting in Eq. (14) we obtain 
 

( ) ( ) 02
2

2

=Θ−
Θ xq
dx

xd
                                       (18) 

 
where 
 

11
−=

ωτ
ω i
u

q
                           

(19) 

 
can be considered a complex wave number and u=(α/τ)1/2 is a parameter 
having the dimension of a velocity [23, 24]. 
 Two limiting cases can be examined.  
 First, for ωτ >> 1, i.e., for frequencies much higher than 1/τ, the wave 
number becomes q=iω/u, and the solution of Eq. (18) with the BC (16) has 
the form [25] 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−=

2
exp

2
0 πω

εωτ
θ

u
xiIx

                                  

(20) 

 
i.e., T(x,t)=Θ(x)exp(iωt) represents a non-attenuated harmonic thermal wave 
traveling at a given frequency across any solid without attenuation and with 
velocity u. This case represents a form of the heat transfer taking place 
through a direct coupling of vibrational modes (i.e. the acoustic phonon 
spectrum) of the material [25].  
 On the other hand, for ωτ << 1, 
  

( ) ( )
μα

ω
α
ω iiiq +

=+==
1

2
1

                                  

(21) 

 
where 
 

ω
αμ 2

=
                  

(22) 
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The general solution of Eq. (18) has yet the form 
 

( ) exp exp
42

oI x xx i πΘ
μ με ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − − +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦     
                             (23) 

 
where  
 

α
ρε kck ==                                     (24) 

 
is denoted as thermal effusivity.  
 This case represents a mode through which the heat generated in the 
sample is transferred to the surrounding media by diffusion at a rate 
determined by the thermal diffusivity. The parameter µ gives the distance at 
which an appreciable energy transfer takes place. It is denoted as the damping 
or heat diffusion coefficient. As 1/τ is in the ps range, PT experiments, which 
are often performed at frequencies ranging from a few Hz up to several kHz, 
can be then modeled using the simplest parabolic approach.  
 
3.2. The physical and mathematical properties of thermal waves 
 
 From Eqs. (17) and (23) we can obtain the temperature variations T(x,t) as: 
 

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

4
expReexp

2
, πω

μμωε
txixItxT o      (25) 

 
This equation has a form similar to an attenuated plane wave. It is called, 
therefore, a thermal wave. Like other waves it has an oscillatory spatial 
dependence of the form exp (-ix /μ), with a wave number q given by Eq. (21). 
Its wavelength is λ=2πμ and it propagates with the phase velocity given by 
 

αωλ 2v == ff
                                    (26) 

 
The parameter μ is called the thermal diffusion length of the thermal wave, 
i.e. the distance at which the wave amplitude decays e times from its value at 
the surface of the periodical heated body. Between the light excitation and the 
thermal response of the sample there is a phase lag given by the term (x/μ+π / 4) 
in the complex exponent.  
 Note that the thermal wave behaviour depends on the values of both, 
thermal effusivity, which determines the wave amplitude at x=0, and the 
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thermal diffusivity, describing the temporal and spatial behaviour of the 
temperature field. 
 As in other wave phenomena the phase velocity is defined as the velocity 
of points of constant amplitude in a wave. Since Eq. (18) is a linear ordinary 
differential equation describing the motion of a thermal wave, then the 
superposition of its solutions will be also a solution of it (we have 
approximated the temperature distribution by just the first harmonic of that 
superposition because the higher harmonics damp out more quickly due to the 
damping coefficient decrease with frequency). This superposition represents a 
group of waves with angular frequencies in the interval [ω, ω+dω] travelling in 
space as “packets” with a group velocity vg. This velocity is the phase velocity 
of the envelope, i.e., it is the velocity of points of constant amplitude in a group 
of waves and it is calculated from the dispersion relation as usually: 
 

fg

d
dq v2221Rev ==

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= αω

ω

                                  (27) 

 
On the other hand, as other kind of waves, thermal waves experiences 
reflection and refraction. Consider two regions, 1 and 2, separated by the 
plane x=0. Suppose that the incident, reflected and transmitted plane thermal 
waves make angles θi, θr and θt with the x axis respectively. One can show 
that after some straightforward calculations the reflection and transmission 
coefficients can be written as [2]: 

 
( ) ( )
( ) ( )ti

ti
t θbθ

θbθR
coscos
coscos

+
−

=                                        (28) 

 
and 
 

( )
( ) ( )ti

i
t θbθ

θT
coscos

cos2
+

=                                    (29) 

 
where 
 

2

1

ε
εb =                                      (30) 

 
is the ratio of the media thermal effusivities.  
 It is important to note that for normal incidence (θi = θt = 0) the above 
coefficients reduce to the more useful: 
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b
bRt +

−
=

1
1                                     (31) 

 
and 
 

b
Tt +
=

1
2                            (32) 

 
Thermal effusivity can be regarded, therefore, as a measure of the thermal 
mismatch between the two media. 
 Now suppose that we have a modulated, alternating, heat flux, related to 
a periodic oscillating temperature field. Following the definition of electrical 
impedance, Z, as a ratio of the potential difference between two points of a 
conductor and the flowing alternating electrical current (Z=V/I), the thermal 
impedance Zt can be defined, in analogy, as the temperature difference 
between two faces of a thermal conductor divided by the heat flux crossing 
the conductor. Then the thermal impedance becomes the ratio between the 
change in thermal wave amplitude and the thermal wave flux. At the surface 
of the semi-infinite medium treated with above we get, 
 

( )
( )

0

0

,
,0

=

Θ
−

Θ−=Θ
=

x

t

dx
xdk

xZ
ω

ω                                     

(33)
 

 
where Θ0 is the ambient (constant) temperature (we will set it equal to zero 
for a seek of simplicity) and Θ(x,ω) the spatial part of the thermal wave field. 
Substituting Eq. (23) in Eq. (33) one obtains after a straightforward calculation: 
 

⎟
⎠
⎞

⎜
⎝
⎛−=

−
=

4
exp11 π

ωεωε
iiZt

                (34) 

 
Note that, contrary to thermal resistance (see Eq. (7)), which depends on 
thermal conductivity, in the thermal impedance definition it is not only the 
thermal conductivity that come into play; the specific heat capacity (C) must 
be also considered through the thermal effusivity definition (Eq. (24)). Also 
in this case the thermal effusivity becomes the relevant parameter.  
 
3.3. Pulsed heat sources 
 
 Now we will analyze the case of pulsed excitation with very short 
duration (transient) and that of longer duration step-like excitation. We will 
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limit here our discussion to the solution of the parabolic heat diffusion 
equation by supposing that the pulse period is in both cases much longer than 
the characteristic relaxation times. A discussion of the solution of the 
hyperbolic heat diffusion can be found elsewhere [26-28] and numerous 
works have been devoted in the last years to the peculiarities of the resulting 
temperature fields [29].  
 
3.3.1. Transient excitation 
 
 Consider that a light pulse of energy density I0 [J/m2] generates a heat 
source of density Q0 at t=0 and x=0 decaying very fast to zero. The parabolic 
heat diffusion equation (without loss of the generality we will assume the one 
dimensional case) can be written in its non-homogeneous form as: 
 

( ) ( ) ( ) ( )
k

xtQ
t

txT
x

txT δδ
α

0
2

2 ,1,
−=

∂
∂

−
∂

∂                                  (35) 

 
where  δ is a Dirac delta function defined as:  
 

( )
⎩
⎨
⎧

≠
=

=
00
01

z
z

zδ                                      (36) 

 
The solution of Eq. (35) is [30] 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

t
x

t
ItxT

απε 4
exp,

2
0                                     (37) 

 
We can see that the energy distribution is Gaussian, with a characteristic width  
 

μ t = 2(α t)1/2                                     (38) 
 
After a time t has been elapsed the generated heat have been dissipated over a 
distance equal to μt. As in the case of harmonic thermal waves, this parameter 
called the effective thermal diffusion length, is the distance at which the wave 
amplitude decays e times from its value at the surface of the sample. The 
surface amplitude at x=0 is also determined by the inverse of the thermal 
effusivity. Note from Eq. (38) that the time required for the heat to diffuse 
throughout a distance D is of the order of D2/α. For typical distances in the 
nanometer range this time is of about 1ps, i.e., it has the order of magnitude 
of typical relaxation times. For these time scales the parabolic approach is no 
longer applicable [19]. 
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3.3.2. Step heating 
 
 As in the former case, when a constant flux of energy I0 is applied 
(uniformly, i.e. in such a way that the one-dimensional approach used in what 
follows is valid) at a surface of a semi-infinite homogeneous solid medium 
the temperature distribution within the sample is given by [30, 31] 
 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

t
xerfcx

t
xt

k
ItxT

ααπ
α

224
exp,

2
0                                 (39) 

 
Again, at a surface (x=0) the temperature is inversely proportional to the 
thermal effusivity ε=k/α1/2 and an effective thermal diffusion length can be 
defined by Eq. (38).  
 Eqs. (37) and (39) are the basis of transient photothermal methods for 
thermal properties measurement, such as the well recognized Flash method, 
devised by Parker et al  [32].  In this technique a sample is heated by a short 
duration light pulse and the temperature as a function of time is measured at 
its front or at its rear side, some times from the emitted black body radiation 
(see Eq. (4)) using an IR detector. Heat losses are minimised in these 
methods by making measurements in a time sufficiently small so that slightly 
cooling can occur. 
 Considering now that as a consequence of the energy absorption a 
sudden temperature variation from T0 to T1 takes place at the sample’s 
surface. For the calculation of the temperature evolution in the medium one 
can solve the homogeneous parabolic heat diffusion equation (15) with the 
boundary conditions 
 
T(x = 0, t ≥ 0) = T1  ;      T(x > 0, t=0) = T0         (40) 
 
The solution of the problem for t > 0 can be expressed as [8, 33]:  
 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛−+=

t
xerfTTTtxT
α2

, 101
                (41) 

 
From the temperature field given by the above equation one may deduce, by 
differentiation, the heat flow, q=Φ/A, given by the Fourier’s law. This would 
lead to 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

t
x

t
TTq

απ
ε

4
exp

2
01                                    (42) 
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This heat flow is not proportional to the thermal conductivity of the material, 
as under steady state conditions, but to its thermal effusivity. At x=0 we have: 
 

( )
t
TTq

π
ε 01 −=                   (43) 

 
Suppose now that one brings two half infinite materials with temperatures T1 
and T2 (T1>T2) into ideal thermal contact at t=0. The mutual contact interface 
acquires a contact temperature Tc in between. This means that the surface 
temperature of each material becomes Tc. This temperature follows from Eq. 
(43) by requiring that the flow out of the hotter surface equals that into the 
cooler one. One finds  
 
( ) ( )

t
TT

t
TT cc

π
ε

π
ε 2211 −

=
−                                    (44) 

 
giving 
 

21

2211

εε
εε

+
+

=
TTTc

                                     (45) 

 
According to this result, if ε1 = ε2, Tc lies halfway between T1 and T2, while if 
ε1 > ε2, Tc will be closer to T1 and if ε1 < ε2, Tc will be closer to T2. This is the 
reason why when we touch bodies of equal temperature but of different 
effusivities, they do not seem to be equally hot or cold [17]. The contact 
temperature is a function of the effusivity of the body we touch [34, 35]. 
 
3.3.3. The temperature relaxation method 
 
 We will analyze yet the important case of a sample heated with a step 
like heat pulse of very long duration so that thermodynamic equilibrium can 
be reached. Consider the following experimental situation. A thin slab of a 
solid sample of thickness L is heated with a light beam that is uniformly 
focused onto one of its surfaces. We will suppose that the thickness is small 
enough so that the effects of the temperature gradient across the sample could 
be ignored in the energy balance equation (see later), as has been 
demonstrated elsewhere [36]. On the opposite side of the sample, its 
temperature can be monitored as a function of time during and after the 
illumination is abruptly interrupted. The variation with time, t, of the 
generated heat in the sample, Q, due to the absorption of light of incident 
power Pi, is given by 
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,i
Q P
t

Φ∂
= −

∂
                                    (46) 

 
where Φ is a term taking into account the power losses.  
 If we want to calculate the rise of temperature, ΔT, of the back sample’s 
surface, we must express the heat term of Eq. (46) as a function of that 
increase. It is given by the relationship 
 

TcVQ Δ= ρ                   (47) 
 
where V=AL the sample’s volume. Differentiation of Eq. (47) with respect to 
time and substitution into Eq. (46) leads to: 
 

0=−
Φ

+
∂
Δ∂

cV
P

cVt
T i

ρρ
                          (48) 

 
Here, for small enough temperature differences, the parameter Φ is specified 
by the sum of the convection, radiation and conduction linear terms given by 
Eqs. (2), (4) and (6) respectively. Substituting them into Eq. (48) leads to 
 

0=−Δ+
∂
Δ∂

cV
PT

cL
h

t
T i

ρρ
                                   (49) 

 
where 
 
h = hconv + hcond + hrad                                    (50) 
 
The solution of Eq. (49) is well known [37]:  
 

⎟
⎠
⎞

⎜
⎝
⎛ −−=Δ ↑ )exp(1

τ
t

Ah
PT i                                    (51) 

 
If illumination is interrupted, then the temperature sinks exponentially to its 
initial value following the law 
 

)exp(
τ
t

Ah
PT i −=Δ ↓

                 (52) 

 
 In the above equations  
 

h
cL

2
ρτ =                                      (53) 
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This result has been used before in a technique known as the temperature 
relaxation method under continuous illumination for the measurement of the 
specific heat capacity of solids. In original variants, used with the aim of 
complement PT measurements of thermal properties, the sample was 
supported adiabatically using a poor heat conductor in a reservoir where 
vacuum was performed in order to neglect heat losses by conduction and 
convection [37]. Experiments in the presence of both, convection and 
radiation [36, 38] have been reported recently making use of the above 
presented linear relationships.  
 
4. The photothermal techniques 
 

4.1. Experimental 
 
 Photothermal methods can be defined as a group of highly sensitivity 
methods which were originally developed, and still are widely used, to 
measure optical absorption, but with the potential of giving access to a 
variety of thermodynamic and kinetic parameters of a given sample. As 
mentioned before the term photothermal comes from the detection of thermal 
relaxation of excess energy associated with photoexcitation of the sample, 
although PT techniques can also detect processes and events that are not 
necessary of thermal origin [39].  
 When pulsed or periodic light energy is absorbed (Fig. 1) and 
subsequently totally or partially dissipated as heat, it results in sample 
heating, leading to temperature changes as well as changes in the 
thermodynamic parameters of the sample and its surroundings. 
Measurements of these changes are ultimately the basis for all photothermal 
methods that have been developed mainly in the last three decades and differ 
fundamentally by the kind of excitation and detection of the thermal waves. 
Fig. 2 synthesizes some of them.   
 The temperature variations could be detected directly using a pyroelectric 
transducer in the so called Photopyroelectric (PPE) method [40]. In the 
microphone based photoacoustic detection the sample is enclosed in a gas 
(example air) tight cell. The temperature variations in the sample following 
the absorption of modulated radiation induce pressure fluctuations in the gas, 
i.e. acoustic waves, that can be detected by a sensitive microphone already 
coupled to the cell [41]. The gas itself can be the sample under study [42]. 
 Acoustic waves should be also induced in the sample itself and can be 
sensed by a piezoelectric sensor in contact with it in the Piezoelectric 
detection scheme, mainly applied in time domain, pulsed excitation 
experiments [43]. The sample’s temperature    oscillations can be also the cause  
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Figure 1. The photothermal effect schematically. The direct or indirect detection of 
the temperature changes in the sample or its surrounding is the basis of the PT 
techniques (After Ref. [2]). 
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Figure 2. Some photothermal detection schemes. 
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of periodical black body infrared electromagnetic waves that are radiated by 
the sample and that can be measured using an appropriate sensor in the PT 
radiometry method [44], in a way similar as in the Flash technique described 
before. The temperature changes induces variations in the sample’s optical 
reflection coefficient, modulating the intensity of a probe laser beam in PT 
reflectance [45], and those induced in the refraction index of the sample or its 
surrounding media are detected also with a probe laser beam in the Mirage 
technique [46] and in the thermal lens technique [47]. Other detection 
schemes can be devised. Due to the frequency dependence of the thermal 
diffusion length and of the phase lag in experiments with intensity modulated 
light excitation, and the existence of a time delay between laser excitation 
and the detection of thermal waves in pulsed experiments, the monitoring of 
the time and spatial dependence of the oscillating temperature fields offers 
the possibility to obtain depth resolved information on optical and thermal 
parameters [48, 49].  
 The detection of the thermal response is performed in several ways, 
either in direct contact or without contact of the detector with the sample  
(see table I). Besides oscillatory temperature fields, which are analyzed in  
the frequency domain using a synchronous lock-in   amplifier (Fig. 3 shows a  
 

Light 
Source

Acoustic
waves

Monochromator

Mirror

Microphone

Sample

Sample’s Support

Lock-In amplifier PT Signal

Synchronism
Signal from 

light modulator

 
 
Figure 3. A typical experimental set-up for experiments performed in the modulation 
frequency domain. A PA cell was chosen for illustration of the PT sensor. In non-
spectroscopic applications the lamp and the monochromator are often substituted by 
continuous laser sources. The whole apparatus is frequently computer controlled for 
data acquisition and processing.  
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typical experimental set-up), also pulse heating is frequently used, where data 
recording is performed using oscilloscopes, boxcar systems, or fast A/D 
converters. In modulated excitation schemes, radiation sources are employed 
whose intensities fluctuate periodically in the form of a square or a sine 
wave, resulting in a 50% duty cycle. This can be realized for example by 
mechanical chopping or by electronic modulation of the light source. In 
pulsed experiments lasers are also usually employed for excitation, in which 
short illumination intervals followed by a much longer dark period are 
available, i.e. a very low duty cycle. 
 The existence of superimposed signals of different nature can be a 
possible source of complexity in the data analysis. However, instead of being 
a drawback, this has turned out to be a feature which can, in principle, yield a 
wealth of information otherwise not obtainable. Although data analysis is 
often complicated requiring in many cases sophisticated approaches, in a 
number of situations of practical interest it can be simplified by making 
reasonable assumptions. In the following section we will briefly describe 
some features of the theory behind the PT methods which constitute the basic 
of the principal applications of the PT techniques. 
 
4.2. Theoretical considerations   

4.2.1. Photothermal experiments in condensed matter 
 
 Perhaps the simplest theory describing the generation of the PT signal in 
frequency domain is based in the well-known RG model for PA signal 
generation [10]. This constitutes the fundamental theoretical apparatus for the 
most applications in the field even neglecting important contributions such as 
those due to thermoelastic effects [50, 51], volatile components evaporation 
[52], and spatial and temporal distributed heat sources as occurs in doped 
substances [53] and semiconductors [54, 55], among others. On its basis we 
will discuss now what we can call the general model for the PT [56] signal 
generation in condensed matter under intensity modulated light excitation of 
thermal waves.  
 In Fig. 4 a schematic view of the experimental situation is given.  
 In the discussion of section 3 we assumed that the incident energy was 
absorbed at the sample surface. Now we will consider that the heat density 
generated at any point x in the sample due to the absorption of light of 
intensity I0 and wavelength λ modulated at a frequency ω=2πf is: 
 

( ) ( ) ( )[ ] ( )xtiRIxH βωηβ exp
2

exp110
+

−=                                  (54) 
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Figure 4. Schematic view of a typical experimental situation showing the relevant 
coordinates for the standard one-dimensional model. 
 
where β and R are the sample absorption and reflection coefficients at the 
photon energy respectively and η is the light energy into heat conversion 
efficiency. We will assume that only the sample absorbs light, thus no heat 
generation takes place in the gas and the backing media. Note that, depending 
on the detection method, one can be interested in the temperature distribution 
in different regions of the Fig. 4. The temperature distribution in each region 
can be obtained by solving the heat diffusion equation for the gas, sample and 
backing with the BC given by the continuity of temperature and heat flux at 
the interfaces at x=0 and x=-l. For most of the PT methods the values of the 
temperature at the gas sample interface is of major importance. It is given by 
[10, 56] 
 
( ) ( )[ ]titT ωexp,0 Γ=                                    (55) 

 
where  
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22
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β

ηβ                               (56) 

 
Here b=εb/εs, g==εg/εs, r=(1-i)βμs/2 and qs=(1+i)/ μs. The subindexes g, s and 
b refer to the gas, sample and backing regions respectively. 
 Following Rosencwaig and Gersho [10], different limiting cases can be 
discussed by comparing the three main characteristic lengths involved in the 
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problem: The sample’s thickness l, the thermal diffusion length μs and the 
light penetration depth μβ=1/β (Fig. 5). One can deal therefore with optically 
transparent (μβ>>l) or opaque samples (μβ<<l), and in each case with 
thermally thick (μs<<l) or thin (μs>>l) samples.  Such an analysis can be 
found in the pioneer work of Rosencwaig and Gersho [10]1. For optically 
transparent samples (Case I of Fig. 5) the signal depends on the product βl 
when the sample is thermally thin and on βμs if it is thermally thick. These 
products determine the distance from which useful information can be 
obtained and suggest the possibility of spectroscopic applications. In the 
second case only light absorbed within the thermal diffusion length 
contributes to the signal [10]. For thermally thin samples (cases IA and B) the 
thermal effusivity of the backing comes into play whereas the signal for 
thermally thick samples depends on both, thermal diffusivity and effusivity of 
the sample (IC). On the other hand, for optically opaque samples (case II) the 
signal can be determined by the thermal properties of both, the sample and/or 
the substrate backing material. This result is useful for applications involving 
thermal properties determination. Only the particular situation IIB, for which 
the sample becomes thermally thick with the thermal diffusion length smaller 
than the optical penetration depth, allows spectroscopic measurements.  
 For a given sample μβ(λ) can be varied by changing the wavelength 
whereas μs(ω) can be controlled by adjusting the modulation frequency, a 
fact that renders noticeable experimental possibilities. Note also that the role 
of backing and sample can be interchanged in a given experimental situation. 
It is also worth to notice that often one needs a calibration procedure because 
many parameters involved in Eq. (56) can be unknown for the experimenter 
and due to the fact that the relationships between the measured signals given 
by the used detectors and the temperature can be rather complicated. In 
spectroscopic measurements one often uses carbon black as the reference 
sample. Thin metal foils of well known thermal properties can be used in 
transport properties characterization experiments, among others.   
 One may also choose to detect the rear temperature variation at the 
sample-backing interface. Thoen and Glorieux [56] have obtained the 
following result: 
 
( ) ( )[ ]titlT ωexp, Γ=                                    (57) 

 
 

1Note that these authors have developed their work only for the special case of PA detection, 
where the whole arrangement displayed in Fig. 4 has been enclosed in a PA cell. They obtained 
an expression for the pressure in the PA gas chamber differing slightly (mainly in the frequency 
dependence) from our Eq. (57). 
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Figure 5. Schematically representation of the particular cases mentioned in the text 
for the front side temperature. In the left hand side we show the results to which the 
approximations performed in Eq. (57) lead. Note that for optically transparent solids 
(Eq. 59) the frequency dependence of the front temperature amplitude is ω-1/2 for 
thermally thin samples and ω-1 for thermally thick ones. For optically opaque and for 
both thermally thin and thermally thick samples the signal depends as ω-1/2 (Eq. (60) 
whenever μ >μβ. For thermally thick samples the signal scales with ω-1 if μ <μβ. The 
modulation frequency dependence can allow us the identification of the particular 
case at hand in a given experiment. 
where 
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Note that the backing can be substituted by air, if remote detection is required 
such as in the mirage or radiometric detection schemes, by a pyroelectric 
sensor in a PPE method, or by a PA open cell detection in heat transmission 
configuration [57], among others. Particular cases of Eq. (57) can also be 
discussed, in a way similar as doing with Eq. (55). Spectroscopic applications 
are possible for optically transparent as well as for opaque samples, as 
discussed by Chirtoc et al [58], a result used in photopyroelectric and 
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photoacoustic spectroscopy of semiconductors by Christofides et al [59] and 
Vigil et al [60] respectively. If the sample is optically opaque for the 
radiation impinging on its front face, opposite to the sensor, and thermally 
thick, the PT signal will depends on its thermal diffusivity in a 
straightforward manner, namely T(l,t)∼exp(-qsl) [61], allowing the 
determination of this parameter from both the amplitude or the signal phase. 
In other useful configurations, the backing can also play the role of a sample 
and the later can be substituted by a thermally thin and optically opaque 
pyroelectric detector in a so-called front detection configuration for which the 
signal will depends on the inverse of the sample’s thermal effusivity [62]. 
The pyroelectric and similar detection schemes [63] in both, front and rear 
side configurations, have been widely used in the last years for thermal 
characterization [64] and in applications involving thermal properties 
variations such as phase transition studies [65] and study of dynamic 
processes in liquids [66, 67], among others. 
 When short duration laser pulses are used the light absorption leads to an 
instantaneous adiabatic expansion of the medium, generating pressure pulses 
that propagate through the sample at the speed of sound, c [68]. These 
ultrasonic pulses can be detected photoacoustically at the sample’s boundary 
by piezoelectric transducers or by optical methods [69] such as thermal lens 
or mirage. As in modulated PT techniques the signal is proportional to the 
excitation energy and the absorption coefficient of the sample. For a useful 
discussion about pulsed experiments in condensed matter the earlier review 
of Patel and Tam [70] about PA spectroscopy is recommened. 
 
4.2.2. Gas-phase experiments 
 
 In the case of gaseous samples the majority of the published work deal 
with PA spectroscopy for traces detection, whose basic principles can be 
found elsewhere [71]. A modulated light energy of suitable wavelength, 
selected so that the absorption spectrum of the molecules of the investigated 
substance can be accessed (often a thermal IR source, and a CO or a CO2 
continuous wave IR laser are used), is absorbed by the molecules in a 
spectroscopically selective step. The absorbed energy is then transformed 
into sound following relaxation processes whose rates depend on the 
properties of the participating molecules. The generated sound can be 
detected by a sensitive microphone. There are some special requirements for 
the PA cells used for gas phase measurements: They must be mainly resonant 
cells and the gas volume has to be sufficiently small so that no dilution takes 
place when the produced trace gas is flowed through the cell volume. Siegrist 
[17] has considered detection schemes different from PA detection. Although 
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the author concludes that the PA technique appears to give the simplest and 
most sensitive solution, there are instances, however, where other approaches 
such as thermal lens are necessary. 
 Other applications of PT methods to gases characterization are still 
scarce, although recently Shen and Mandelis [72] and Lima et al [73] described 
about the potential use of the so-called thermal wave interferometry for thermal 
properties measurement and study of diffusion processes [74]. A thermal wave 
interferometer (TWI) consists of a cavity of variable length formed between a 
thin metallic foil and a pyroelectric temperature sensor. A modulated laser light 
beam impinges on the outer surface of the metallic foil, which acts as a light 
absorber, thus launching thermal waves into the gas filled cell. According to the 
wave model the thermal waves propagate back and forth between the foil and 
the sensor. On striking the gas-foil and gas-sensor boundaries, they are partially 
reflected, and interference between the reflected and incident wave trains will 
set in [73]. The temperature oscillations resulting from the superposition of all 
arriving waves can be measured with the sensor as a function of the gas layer 
thickness. The measured signal depends on the gas thermal diffusivity in a 
relative simple manner. The potential uses of TWI not only for gases but also 
for liquids [75] and solid samples coatings thermal characterization [76] have 
been recognized nowadays as well established applications of thermal wave 
physics. 
 
5. Conclusions 
 
 In this introductory chapter we have tried to give a brief overview about 
the basic principles behind thermal wave physics on which the different 
photothermal methods and applications can be constructed. We have shown 
how the spatial and temporal dynamic temperature fields created in a sample 
by time variable optical excitation are tightly linked to the boundary 
conditions imposed by the kind of excitation. Photothermal methods have 
become common and useful tools in many scientific and industrial 
laboratories. Their easy of use and versatility increase the fields of 
applications and new areas of research are emerging at a rapid rate. Very 
promising is the presence of these methods in multidisciplinary experiments 
involving people with expertise in dissimilar areas such as biology, 
chemistry, physics, material science, medicine, environmental science, food 
industry and so on. Much of these developments are possible because 
photothermal methods have several advantages over more conventional 
techniques such as the wide dynamic range, the possibility they offers to 
perform optical measurements in highly opaque samples, and in those in the 
form of powers, gels, etc. The lesser influence from light scattering when 



Thermal wave physics 25 

compared with optical techniques, the possibility of depth profiling in layered 
samples, the non necessity of electrical contacts for transport properties 
measurements, and the straightforward mathematical formalism behind them, are 
also advantages of the method. The most common PT techniques are based on 
modulated excitation of thermal waves in condensed matter samples, and in the 
pulsed excitation and direct generation of sound waves, mainly in gaseous 
samples. The availability of compact light sources of high intensity and with a 
wide range of available wavelengths, such as continuous and pulsed lasers of 
very short duration, as well as the development of new techniques for the 
detection of signals with low signal to noise ratio and the existence of strong 
computer capabilities will expand the field of applicability of these methods in 
the near future.  
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