International Journal of Modern Physics D
Vol. 20, No. 13 (2011) 2525–2542
© World Scientific Publishing Company
DOI: 10.1142/S0218271811020524

ENTROPY SPECTRA OF SINGLE HORIZON BLACK HOLES IN TWO DIMENSIONS

A. LÓPEZ-ORTEGA

Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, Calzada Legaria # 694, Colonia Irrigación, Delegación Miguel Hidalgo, México, D. F., C. P. 11500, México alopezo@ipn.mx

> Received 21 March 2011 Revised 4 October 2011

The Hod conjecture proposes that the asymptotic quasinormal frequencies determine the entropy quantum of a black hole. Considering the Maggiore modification of this conjecture, we calculate the entropy spectra of general, single horizon, asymptotically flat black holes in two-dimensional dilaton gravity. We also compute the entropy quanta of the two-dimensional Witten and AdS_2 black holes. Using the results for the entropy quanta of these two-dimensional black holes, we discuss whether the produced values are generic. Finally we extend the results on the entropy spectra of other black holes.

 $Keywords\colon$ Two-dimensional black holes; entropy spectrum; quasinormal modes; Hod's conjecture.

1. Introduction

For a stationary black hole, Bekenstein¹⁻³ suggests that in the semiclassical limit the area spectrum of its event horizon takes the form^a

$$A_s \approx \epsilon \hbar s, \quad s = 0, 1, 2, \dots,$$
 (1)

with \hbar denoting the reduced Planck constant and ϵ the parameter of order unity. We believe that the exact value of ϵ must be determined by the quantum theory of gravity, nevertheless, based on some assumptions, the parameter ϵ is calculated in several references,⁴⁻¹⁸ and we notice that two values of ϵ appear frequently, $\epsilon = 4 \ln(3)$ and $\epsilon = 8\pi$.

One way to get the value $\epsilon = 4 \ln(3)$ is to assume a strict statistical interpretation of the black hole entropy, in such a way that the area elements of the event horizon have three internal degrees of freedom.^{4,5} For the four-dimensional Schwarzschild

^aIn units where $G = k_B = c = 1$. Here G is the gravitational constant, k_B is the Boltzmann constant, and c is the velocity of light in vacuum.